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Abstract
Sensors provide computer systems with a window
to the outside world. Activity recognition “sees”
what is in the window to predict the locations, tra-
jectories, actions, goals and plans of humans and
objects. Building an activity recognition system
requires a full range of interaction from statisti-
cal inference on lower level sensor data to sym-
bolic AI at higher levels, where prediction results
and acquired knowledge are passed up each level
to form a knowledge food chain. In this article, I
will give an overview of some of the current activity
recognition research works and explore a life-cycle
of learning and inference that allows the lowest-
level radio-frequency signals to be transformed into
symbolic logical representations for AI planning,
which in turn controls the robots or guides human
users through a sensor network, thus completing a
full life cycle of knowledge.

1 Introduction
One of the most important technological innovations in to-
day’s world is the arrival of cheap and easy-to-use elec-
tronic sensors. With the growing maturity of sensor and
sensor-network technologies, advanced applications are gain-
ing speed in areas such as pervasive computing, medical as-
sistive technologies, security and environmental monitoring,
gaming, sensor-based farming and coal-mine-safety tech-
nologies and many others. Like many previous technolog-
ical innovations, sensor technology also helps usher a new
era for artificial intelligence research, with far-reaching im-
plications. With the help of accurate activity recognition,
researchers are now capable of providing various personal-
ized support for many real-world applications. For exam-
ple, [Pollack et al., 2003] used activity recognition to help
the elders recognize and deal with cognitive decline asso-
ciated with sickness and aging by sending personalized ac-
tivity reminders. [Liao et al., 2004; Patterson et al., 2004;
Zheng et al., 2008c] employed activity recognition to predict
transportation modes. [Yin et al., 2007] showed how to detect
abnormal human activity for security monitoring.

With the arrival of sensor technology, we now have an un-
precedented opportunity to advance the science of artificial

intelligence (AI), by linking sensors at the low levels of ab-
straction with high-level knowledge representation, reason-
ing, learning and inference. In a way, achieving this link-
age is an ultimate goal of AI, which is to provide a closed-
loop feedback-control system to embody all aspects of intel-
ligence. Through sensor-based activity recognition systems,
we can envision a healthy life-cycle in which a positive feed-
back loop is in place to allow experience to be continuously
acquired and fed into a high-level machinery for creating
knowledge bases for AI. A major impetus of this computa-
tional machinery will be the ever-widening range of applica-
tions, which help provide the much needed raw data for the
science of AI to go forward.

In this article, I will summarize recent works on sensor-
based activity recognition, including those of my research
group at Hong Kong University of Science and Technology.
I will argue for activity recognition to be a bridge that links
low-level sensors and high-level intelligence.

2 Overview
What is activity recognition? In a Forbes article, [Huang,
2003] gave this description:

Eric Dishman is making a cup of tea and his kitchen
knows it. At Intel’s Proactive Health Research
lab in Hillsboro, OR, tiny sensors monitor the re-
searcher’s every move. Radio frequency identifica-
tion tags and magnetic sensors discreetly affixed to
mugs, a tea jar, and a kettle, plus switches that tell
when cabinet doors are open or closed, track each
tea-making step. A nearby computer makes sense
of these signals; if Dishman pauses for too long,
video clips on a television prompt him with what to
do next.

This vivid description highlights several key aspects of activ-
ity recognition, which aims to interpret the sensor readings of
humans or moving things (such as a truck) and tell us in high-
level, human understandable terms what is going on. First,
activity recognition requires sensors, which can generate and
receive signals to be read by a computer program. Second,
there should be a software program that can interpret the sen-
sor readings. Most of these sensor readings are also uncertain
data. Finally, activity recognition involves looking at the past,
so that the computer program should be able to learn from
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experience. At the same time, it helps project into the future
through inferences.

Today, we have a variety of sensors and sensory devices
that are available to us at a low cost. Some of them are listed
here:

RFID Radio-frequency identification (RFID) uses an inte-
grated circuit for storing and sending radio-frequency (RF)
signal. A RFID reader device can both send and receive
signals. Passive RFID tags can read generate signals when
triggered by RF waves sent by the readers, whereas battery-
powered active tags can generate and receive signals by them-
selves. The range of RFID tags is within several meters.
RFID has been widely used in product tracking and identi-
fication, especially in logistics operations. In Hong Kong,
RFID technology is daily used by millions of people in a sub-
way and debit card known as the Octopus Card.

GPS The Global Positioning System (GPS) is a global sys-
tem based on between 24 and 32 satellites which send RF sig-
nals. Receivers can determine their current locations based on
the time-of-flight information carried by the RF signals. In an
outdoor environment, based on the location sequences, high-
level inference can be done to ascertain an agent’s transporta-
tion modes, goals and intentions, as done in [Liao et al., 2004;
Patterson et al., 2004; Zheng et al., 2008c].

WiFi Most notebook computers, PDAs and some mobile
phones today are equipped with WiFi device that can com-
municate through an IEEE 802.11b/g wireless network in the
2.4GHz frequency bandwidth. In an indoor or even outdoor
area, one or more access points (APs) can send and receive
RF signals from other APs or notebooks. WiFi devices are es-
pecially useful for locating a user and tracking his/her move-
ment in an indoor environment where GPS is often no longer
available.

Mobile Phones The mobile phones nowadays have ad-
vanced sensors for measuring some predefined activity of the
mobile user, such as turning directions. They are known as
the Inertial Navigation System (INS), which are motion sen-
sors such as gyroscope, accelerometer and compass.

A common feature of these sensors is that they are very
widely available in our everyday lives, as opposed to some
specialized and expensive sensors.

Taking the sensor-reading data, as well as some labels at-
tached to them through calibration, from the above sensor de-
vices as input, our goal is to build a model in the form of a
computer program. The input to the model is a sequence of
sensor reading vectors and the output is a set of meaningful
activity terms that reflect the observed actions of humans or
moving objects, or the final intentions (i.e., goals). For ex-
ample, a user holding a mobile phone that is equipped with
WLAN cards for reading WiFi signals can perform various
actions, such as Walk-in-HW2, Enter-Office and Make Pho-
tocopies, in an office WiFi environment. The mobile device
periodically (e.g. per second) records signal-strength mea-
surements sent by various access points (APs). For example,

an observation may be o =< 48; 83; 57 >, consisting of ra-
dio signal strength (RSS) values from three available APs. A
user’s behavior can be understood as a sequence of actions
taken to achieve high-level goals such as Seminar-in-Room2
and Print-in-Room3. A user’s signal trace is often represented
as a sequence of radio-signal strength (RSS) measurements
such as < o1; o2; . . . ; ot > , where each oi is a signal vector
at some time.

Early systems for activity recognition treat the inputs as
a sequence of high-level symbolic observations. They typi-
cally output symbolic goal descriptions at a higher level of
abstraction [Kautz and Allen, 1986; Lesh and Etzioni, 1995].
The fact that the input actions are mostly defined at the sym-
bolic level is partly due to the unavailability of the low-level
sensor data several decades ago. These systems are mostly
deterministic in nature. Their input consists of a plan library
that describes the logical models of actions and their relation-
ship in the form of an action taxonomy and associated log-
ical axioms. Given a sequence of symbolic action descrip-
tions as input, the task of plan recognition can be accom-
plished by searching in a space of possible goal hypotheses
for candidate plans and goals that are consistent with the ob-
served action sequences. Many of these methods relied on set
covering[Kautz and Allen, 1986], inductive logic program-
ming and natural language parsing.

3 From Sensors to Locations
Once we set up a sensor network and can collect signal val-
ues, our first task is to infer a user’s location. Given the cur-
rent RSS values o =< 25, 98, . . . , 40 >, where is the user
located?

One approach is multilateration, which consists two main
steps. It first transforms the sensor readings into a distance
measure. It then recovers the coordinates in terms of relative
distance to the beacon nodes. This approach relies on an ideal
signal propagation model and extensive hardware support.
However, it suffers from low accuracy because RSS signals
do not follow ideal propagation patterns. Specialized meth-
ods such as [Bahl et al., 2000] have been developed to accu-
rately track the mobile nodes using ultrasonic signals. How-
ever, these methods require special hardware devices such as
ultrasonic transceivers.

A complementary localization method is through machine
learning. Many localization systems operate in two phases:
an offline or training phase and an online localization phase.

If we model the location-estimation problem as a classifi-
cation problem in machine learning, the area of interest can
be modeled as a finite location space L = {l1, . . . , ln}. If
we consider the location coordinates as continuous values,
then we can use a regression model. An advantage of the
machine-learning methods is that the locations of APs are not
necessarily known.

In an offline phase, signal-strength measurements are col-
lected at each location li. After the data are calibrated, a his-
togram of observations is built for each AP or base-station bk

at each location li. This is done by constructing a conditional
probability P (sk|bk, li), which is the probability that bk has
the signal-strength value sk at the location li. By making an



independence assumption among signals from different trans-
mitters, we multiply all these probabilities to obtain the con-
ditional probability of receiving a particular observation oj

at the location li as P (oj |li) =
∏p

k=1 P (sk|bk, li), which
looks up the content stored in the radio map P (sk|bk, li). In
the online phase, when a real-time signal-strength vector o′
is observed, a posterior distribution over all the locations is
computed using Bayes’ rule:

P (li|o′) =
P (o′|li)P (li)∑n
i=1 P (o′|li)P (li)

, (1)

where P (li) encodes prior knowledge about where a user
might be. Based on this equation, the estimated location
is the one with a maximum posterior probability l∗ =
arg maxli P (li|o′). The advantage of the above machine-
learning based method is that it captures the noise in signal
propagation through conditional probabilities. Therefore, it
can preserve information carried by the signals for localiza-
tion. However, there are several limitations as we pointed out
above. One issue is that the above method assumes that the
location labels are available, which is often not the case. To
get the labels often requires expensive human effort. Several
recent approaches have been proposed for reducing the cali-
bration effort of learning localization models offline. [Ferris
et al., 2007] solved a WiFi-SLAM (simultaneous localization
and mapping) by applying Gaussian-Process-Latent-Variable
models (GP-LVMs) to construct RSS map under an unsuper-
vised learning framework. In this model, an appropriate mo-
tion dynamics model needs to be given. [Pan et al., 2006]
applied a semi-supervised learning framework in WiFi-based
location estimation.

Another major assumption is that the signal space does not
change, which is often wrong due to the dynamic characteris-
tics of signal propagation and the environment. Signal distri-
bution can be vastly different when we move across the floors
of a building, and when we switch between different sensor
devices when one device is used to collect the training data
and another device is used for location estimation. On this
issue, previous solutions have been proposed. The LEASE
system [Krishnan et al., 2004] utilizes different hardware sys-
tems to solve this problem. LEASE employs a number of sta-
tionary emitters and sniffers to obtain up-to-date RSS values
for updating the maps. The localization accuracy can only be
guaranteed when these additional hardware systems are de-
ployed. Yin et al. [Yin et al., 2005] placed several reference
points in an office environment to help provide up to date
signal and location information, which provides the current
labeled data to help calibrate a past model.

Recent research works have considered the dynamic-data
problem as a transfer learning problem. Transfer learning is
a machine learning framework that adapts learned models in
target domains by making use of the knowledge and data in
source domains [Caruana, 1997]. When the user trace infor-
mation is available online, the parameters of a hidden Markov
model can be transferred by adapting the parameters of model
from one time period to another [Zheng et al., 2008b]. A
manifold co-regularization based solution is proposed when
the trace information is not available online [Pan et al., 2007].

Similarly, the problem of adapting models across space can

be considered as a transfer learning problem for spatial trans-
fer. [Pan et al., 2008] presented a solution by exploiting the
data collected in one area and propagate them to the rest of
the environment. Domain knowledge of an indoor environ-
ment is first extracted from the labeled data collected in one
area. Then, the extracted domain knowledge is adapted in a
model to propagate the label information to unlabeled data
collected in the rest of the environment. The learning prob-
lem was formulated as a quadratically constrained quadratic
program optimization problem to discover an underlying se-
mantic manifold of the WiFi signal data. This semantic man-
ifold acts as a bridge that propagates the common knowledge
across different areas.

[Zheng et al., 2008a] considered transfer learning across
sensor devices for a two-dimensional WiFi-based indoor-
localization problem. In this approach, a multi-device local-
ization problem can be formulated as a multi-task learning
problem by exploiting an often-satisfied assumption that the
models learned in a latent feature space from the multiple de-
vices are often similar. In this latent space, a new device can
benefit from learning from the data collected by other devices
to train a localization model.

A collection of location estimation benchmark data
is available at http://www.cse.ust.hk/∼qyang/ICDMDMC07,
and an IEEE ICDM competition based on the data is de-
scribed in [Yang et al., 2008].

4 From Locations to Activities
In the next level up, we will infer activities and goals from
location sequences. Here the concept of a location is under-
stood in a general sense, where it can either be a physical 3-D
location, or it can be a virtual location in a multi-dimensional
space spanned by all available sensors (such as RFID sensors
attached to a pen or a door knob).

I now highlight a recent location-based activity-recognition
model (LAR) [Yin et al., 2004]. This model transforms se-
quences of sensor readings and inferred locations from the
last step (see last section) to user activities and goals. The
LAR model relies on a sensor model for location estimation
at the lowest level (see Figure 1), which shows two time slices
that are numbered t and t − 1, respectively. In the figure,
the shaded nodes SS represent the RSS variables of signals
received from the sensor beacons (e.g., APs in a Wireless
LAN), which can be directly observed. All other variables
are hidden, including the physical location L of the user, the
action A and the goal G.

Based on the sensor model, the LAR model can learn a dy-
namic Bayesian network (DBN) model from a collection of
training traces D. The model parameters are estimated using
an expectation maximization (EM) algorithm. After learn-
ing the DBN model, we can infer the most probable action
sequence A1, A2, . . . , At from the sensor readings and in-
ferred location sequences. We can then infer goals from the
actions. Given an inferred sequence of actions obtained so
far A1, A2, . . . , At, we can find the most likely goal set G∗
as follows:

G∗ = arg max
Gk

P (Gk|A1, A2, . . . , At) (2)
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Figure 1: Location-based Activity Recognition Model (LAR)
from [Yin et al. 2004]

By applying the Bayesian Rule, we then have

G∗ = arg max
Gk

P (A1:t|Gk)P (Gk)
P (A1:t)

(3)

Actions and goals do not have to be inferred from locations,
instead they can be predicted from trends of sensor signals in
a period of time. In [Yin et al., 2008], an alternative proba-
bilistic approach for activity recognition, which is referred to
as Segmentation-based Activity Recognition(SAR), was pro-
posed. Intuitively, a large class of a person’s activities ex-
ists where each activity is more or less rough-grained, in that
the precise location information is not needed, or impossible
to obtain. Instead, a rough idea of the general trends of a
user’s movements is sufficient for activity recognition. These
trends correspond to some segments of sensor readings along
the time dimension, which can be obtained through image-
segmentation algorithms.An advantage of this view is that we
can treat the patterns of an activity as a whole rather than each
individual values. For example, on seeing that a certain sen-
sor’s signal reading is gradually increasing while another, far
away sensor’s reading is gradually decreasing, we can recog-
nize that an agent is moving towards the first sensor, without
having to know the precise location of the agent at each mo-
ment.

When GPS data are available, location sequences are rel-
atively easier to obtain, and a major research focus is to
infer user activities in terms of their transportation modes.
For example, [Liao et al., 2004; Patterson et al., 2004;
Zheng et al., 2008c] employed probabilistic techniques to in-
fer whether a user is taking a bus or walking based on the
GPS readings.

One of the key features of real-world human activities is
that multiple goals are often achieved together and in a so-
phisticated way. [Hu et al., 2008] analyzed the MIT PlaceLab
House n PLIA1(“PlaceLab Intensive Activity Test Dataset
1”) [Intille et al., 2006] in detail for illustrating the taxonomic
nature of multiple goals. This dataset was recorded on Friday
March 4, 2005 from 9 AM to 12 noon with a volunteer famil-
iar with Placelab. [Hu et al., 2008] manually constructed a
goal hierarchy from this dataset. The lowest level, where the
activities are extracted from the original data, includes activ-
ities such as “sweeping”, “washing-ingredients”, etc. Rele-
vant activities are combined into more general activities that

form the medium level, with activities such as “preparing in-
gredients”, “Dealing-with-clothes”, etc. These activities are
grouped into 9 categories, comprising the highest level to
include: cleaning indoor, yard-work, laundry, dishwashing,
meal-preparation, hygiene, grooming, personal and informa-
tion/leisure. The higher-level goals are more coarse grained,
whereas the lower level ones are detailed. Through this tax-
onomy and the collected real-world activity sequences, it is
observed that interleaving goals, where one goal may pause
for a period of time while the human agent pursues another,
often occurs. Furthermore, the likelihood increases as we
move up the taxonomy. Similarly, concurrent goals, which
are goals being pursued together, are more often observed as
one moves down the goal taxonomy.

Multiple, concurrent and interleaving activities and goals
(which corresponds to a whole sequence of activities) are dif-
ficult to recognize due to their inherent complexity. By ex-
ploiting a Conditional Random Fields (CRF) model for these
activities, [Hu and Yang, 2008] applied CRF in a two-level
probabilistic framework that deals with both concurrent and
interleaving goals from observed sensor-reading sequences.
CRF has been previously used by several other researchers as
well [Vail et al., 2007; Liao et al., 2007]. To further consider
the correlation between goals, a correlation graph is designed
to represent the correlation between different goals, which
can be learned at the upper level of the system architecture.
The goal graph is learned from the training data, consisting of
sequences of sensor readings and activity labels, to allow the
inference of goals in a collective-classification manner. Ex-
perimental results using several real wireless sensor network
data sets demonstrate that the recognition algorithm, known
as CIGAR, is both efficient and accurate.

5 From Activities to Action Models
Above I have described some recent works on how to gener-
ate sequences of actions from observed sensor readings. In
this section, I will describe how to generate logical, gener-
ative models of actions that allow autonomous planning to
function, once sequences of user activities and some domain
conditions are known. I will only give an overview in this
section, and leave some of the details in [Yang et al., 2007].

Automatic planning systems today take as input the for-
mal definitions of actions, an initial state and a goal state de-
scription in logical forms, and produce symbolic plans, which
are sequences of activity terms, for execution. To achieve
goals, automatic planning systems produce sequences of ac-
tions from the given action models that are provided as in-
put [Ghallab et al., 2004]. A typical way to describe ac-
tion models is to use action languages such as the Planning
Domain Definition Language (PDDL) [Fox and Long, 2003;
Ghallab et al., 2004]. In the past, the task of building action
models has been accomplished manually, which can be time
consuming and error-prone. In a way, the lack of real-world
data has greatly hampered the progress of AI planning in its
practical applications, as action models have become a bot-
tleneck in this important field. Thus, it is desirable to be able
to automatically learn action models from sensory observa-
tions, so that these actions can be taken as inputs to planning



systems. This is a crucial step in the whole knowledge life-
cycle that I describe in this article.

In this section, I describe an algorithm known as ARMS (
Action-Relation Modelling System [Yang et al., 2007]) for au-
tomatically acquiring action models. The input to the ARMS
system is a collection of observed activity traces that are rec-
ognized through an activity recognition system such as LAR
or SAR described earlier. It first applies a frequent itemset-
mining algorithm to these traces to find a collection of fre-
quent action-sets. It then encodes these sets sets as constraints
on the candidate action models. These constraints then be-
come the input to another modeling system for solving the
weighted MAX-SAT [Kautz and Selman, 1996], whose so-
lution corresponds to the learned action models in terms of
their pre and post conditions. The output of ARMS is a set of
relational actions that can be further edited by human editors
to generate plans, thus reducing the burden of humans in cre-
ating the planning domains. Because the preliminary forms
of the actions have been encoded in logical forms, they can
also be accepted directly by autonomous planning systems to
produce plans.

Consider an example input and output of our algorithm in
a typical problem domain from an AI planning competition
[Fox and Long, 2003]. The actions to be learned are listed
in the form of activity names along with their likely param-
eters which are objects that are often associated with the ac-
tions. For example, an action in a logistics domain might be:
drive(?x:truck ?y:place ?z:place) where truck and place are
the types of objects given as input. ?x and ?y are variable pa-
rameters. Relations in the domain should also be given in cur-
rent version of our system, such as (at ?x:locatable ?y:place),
but they can also be learned from sensor readings. As part
of the input, we need activity traces, which are sequences of
activities. As an example, an activity sequence in the depot
domain is: < I1; lift(h1 c0 p1 ds0);load(h1 c0 t0 ds0); . . . ;
drop (h0 c0 p0 dp0); goal=((on c0 p0)>, where I1 = {(at p0
dp0), (clear p0), . . . , (clear c0), (on c0 p1), (available h1), (at
h1 ds0) } is an initial state description. The initial and goal
descriptions can be obtained by converting sensor readings to
propositional literals, or provided by human editors.

From these input, we wish to learn the preconditions,
add and delete lists of all actions, in a STRIPS action
representation, or more sophisticated forms. ARMS learns
an action model for every action in a problem domain in
order to “explain” all training examples successfully. An
example output from our learning algorithms for the load(?x
?y ?z ?p) action signature is:

action load(?x:hoist ?y:crate ?z:truck ?p:place)
pre: (at ?x ?p), (at ?z ?p), (lifting ?x ?y)
del: (lifting ?x ?y)
add: (at ?y ?p), (in ?y ?z), (available ?x), (clear ?y)

ARMS was shown in [Yang et al., 2007] to perform similar
inference and learning as a Markov Logic Network [Richard-
son and Domingos, 2006]. It works even when partially
observed states are available. Further extensions have been
made to allow ARMS to generate more expressive action
models that include conditional effects and first-order logic
formulas in preconditions and postconditions of action mod-

els. Another extension was recently made to allow hierarchi-
cal task network (HTN) task models to be learned from action
sequences and partial state observations [Zhuo et al., 2009].

6 Closing the Loop
We have generated some action models for the logistics do-
mains using ARMS based on action sequences generated by
an activity recognition module. These generated action mod-
els are given to a planning system to generate new plans. We
are currently testing a robotic system that can take these plans
and execute them. Preliminary tests have shown that, because
the action models generated by ARMS are imperfect, some
plans cannot be executed successfully. In such cases, we can
generate feedback to ARMS or to activity recognition mod-
ules for them to learn the action models better. Some plans
are indeed successful, in which case they can be passed on
to a robotic system for execution. Alternatively, we can send
the generated plans as guides for human users. For exam-
ple, researchers have used planning modules to generate re-
minders for people in their daily lives [Pollack et al., 2003;
Patterson et al., 2004]. Agents equipped with these reminders
and plans can further help generate more data in a sensor net-
work, creating an opportunity for activity recognition engines
to adapt and evolve.

Several decades have passed since the first inception of ar-
tificial intelligence (AI). As a science and an engineering en-
deavor, AI has achieved much over the years, but it is also
largely fragmented. A lesson that we can learn from other
fields, such as physics, is to develop an empirical subfield of
AI, and to integrate this subfield with the more theoretical
fronts of the discipline. To do this, we have to learn to get
our hands dirty. In building activity recognition systems into
a knowledge food chain, we will hopefully close the loop in
a positive feedback-loop for AI.
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