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Abstract

Domain adaptation solves a learning problem in a
target domain by utilizing the training data in a dif-
ferent but related source domain. Intuitively, dis-
covering agood feature representation across do-
mains is crucial. In this paper, we propose to
find such a representation through a new learn-
ing method,transfer component analysis(TCA),
for domain adaptation. TCA tries to learn some
transfer componentsacross domains in a Repro-
ducing Kernel Hilbert Space (RKHS) using Max-
imum Mean Discrepancy (MMD). In the subspace
spanned by thesetransfer components, data distrib-
utions in different domains are close to each other.
As a result, with the new representations in this
subspace, we can apply standard machine learning
methods to train classifiers or regression models in
the source domain for use in the target domain. The
main contribution of our work is that we propose
a novel feature representation in which to perform
domain adaptation via a new parametric kernel us-
ing feature extraction methods, which can dramati-
cally minimize thedistancebetween domain distri-
butions by projecting data onto the learnedtransfer
components. Furthermore, our approach can han-
dle large datsets and naturally lead to out-of-sample
generalization. The effectiveness and efficiency of
our approach in are verified by experiments on two
real-world applications: cross-domain indoor WiFi
localization and cross-domain text classification.

1 Introduction

Domain adaptation aims at adapting a classifier or regression
model trained in a source domain for use in a target domain,
where the source and target domains may be different but re-
lated. This is particularly crucial when labeled data are in
short supply in the target domain. For example, in indoor
WiFi localization, it is very expensive to calibrate a localiza-
tion model in a large-scale environment. However, the WiFi
signal strength may be a function of time, device or space,
depending on dynamic factors. To reduce the re-calibration
effort, we might want to adapt a localization model trained

in one time period (the source domain) for a new time pe-
riod (the target domain), or to adapt the localization model
trained on one mobile device (the source domain) for a new
mobile device (the target domain). However, the distributions
of WiFi data collected over time or across devices may be
very different, hence domain adaptation is needed[Yang et
al., 2008]. Another example is sentiment classification. To
reduce the effort of annotating reviews for various products,
we might want to adapt a learning system trained on some
types of products (the source domain) for a new type of prod-
uct (the target domain). However, terms used in the reviews
of different types of products may be very different. As a re-
sult, distributions of the data over different types of products
may be different and thus domain adaptation is again needed
[Blitzer et al., 2007].

A major computational problem in domain adaptation is
how to reduce the difference between the distributions of
source and target domain data. Intuitively, discovering agood
feature representation across domains is crucial. Agoodfea-
ture representation should be able to reduce the difference in
distributions between domains as much as possible, while at
the same time preserving important (geometric or statistical)
properties of the original data.

Recently, several approaches have been proposed to learn
a common feature representation for domain adaptation
[Dauḿe III, 2007; Blitzeret al., 2006]. Dauḿe III [2007]
proposed a simple heuristic nonlinear mapping function to
map the data from both source and target domains to a high-
dimensional feature space, where standard machine learning
methods are used to train classifiers. Blitzeret al.[2006] pro-
posed the so-called structural correspondence learning (SCL)
algorithm to induce correspondences among features from the
different domains. This method depends on the heuristic se-
lections of pivot features that appear frequently in both do-
mains. Although it is experimentally shown that SCL can re-
duce the difference between domains based on theA-distance
measure[Ben-Davidet al., 2007], the heuristic criterion of
pivot feature selection may be sensitive to different applica-
tions. Panet al.[2008] proposed a new dimensionality re-
duction method, Maximum Mean Discrepancy Embedding
(MMDE), for domain adaptation. The motivation of MMDE
is similar to our proposed work. It also aims at learning a
shared latent space underlying the domains where distance
between distributions can be reduced. However, MMDE suf-



fers from two major limitations: (1) MMDE is transductive,
and does not generalize to out-of-sample patterns; (2) MMDE
learns the latent space by solving asemi-definite program
(SDP), which is a very expensive optimization problem.

In this paper, we propose a new feature extraction ap-
proach, calledtransfer component analysis(TCA), for do-
main adaptation. It tries to learn a set of commontransfer
componentsunderlying both domains such that the differ-
ence in distributions of data in the different domains, when
projected onto this subspace, can be dramatically reduced.
Then, standard machine learning methods can be used in this
subspace to train classifiers or regression models across do-
mains. More specifically, if two domains are related to each
other, there may exist several common components (or latent
variables) underlying them. Some of these components may
cause the data distributions between domains to be different,
while others may not. Some of these components may cap-
ture the intrinsic structure underlying the original data, while
others may not. Our goal is to discover those components
that do not cause distribution change across the domains and
capture the structure of the original data well. We will show
in this paper that, compared to MMDE, TCA is much more
efficient and can handle the out-of-sample extension problem.

The rest of the paper is organized as follows. Section 2 first
describes the problem statement and preliminaries of domain
adaptation. Our proposed method is presented in Section 3.
We then review some related works in Section 4. In Section
5, we conduct a series of experiments on indoor WiFi local-
ization and text classification. The last section gives some
conclusive discussions.

In the sequel,A Â 0 (resp. A º 0) means that the ma-
trix A is symmetric and positive definite (pd) (resp. positive
semidefinite (psd)). Moreover, the transpose of vector / ma-
trix (in both the input and feature spaces) is denoted by the
superscript>, A† is the pseudo-inverse of the matrixA, and
tr(A) denotes the trace ofA.

2 Preliminaries of Domain Adaptation

In this paper, we focus on the setting where the target domain
has no labeled training data, but has plenty of unlabeled data.
We also assume that some labeled dataDS are available in
a source domain, while only unlabeled dataDT are available
in the target domain. We denote the source domain data as
DS = {(xS1 , yS1), . . . , (xSn1

, ySn1
)}, wherexSi

∈ X is the
input andySi

∈ Y is the corresponding output. Similarly,
we denote the target domain data asDT = {xT1 , . . . , xTn2

},
where the inputxTi

is also inX . Let P(XS) andQ(XT )
(or P andQ for short) be the marginal distributions ofXS

andXT , respectively. In general,P andQ can be different.
Our task is then to predict the labelsyTi

’s corresponding to
the inputsxTi

’s in the target domain. The key assumption
in a typical domain adaptation setting is thatP 6= Q, but
P (YS |XS) = P (YT |XT ) .

2.1 Maximum Mean Discrepancy

Many criteria, such as theKullback-Leibler(KL) divergence,
can be used to estimate the distance between distributions.

However, many of these criteria are parametric, since an in-
termediate density estimate is usually required. To avoid
such a non-trivial task, a non-parametric distance estimate
between distributions is more desirable. Recently, Borg-
wardtet al.[2006] proposed theMaximum Mean Discrepancy
(MMD) as a relevant criterion for comparing distributions
based on the Reproducing Kernel Hilbert Space (RKHS). Let
X = {x1, . . . , xn1} andY = {y1, . . . , yn2} be random vari-
able sets with distributionsP andQ. The empirical estimate
of the distance betweenP andQ, as defined by MMD, is

Dist(X,Y) =
∥∥∥∥ 1

n1

n1∑
i=1

φ(xi)− 1
n2

n2∑
i=1

φ(yi)
∥∥∥∥
H

. (1)

whereH is a universal RKHS[Steinwart, 2001], and φ :
X → H.

Therefore, the distance between distributions of two sam-
ples can be well-estimated by the distance between the means
of the two samples mapped into a RKHS.

3 Transfer Component Analysis
Based on the inputs{xSi} and outputs{ySi} from the source
domain, and the inputs{xTi} from the target domain, our
task is to predict the unknown outputs{yTi} in the target do-
main. The general assumption in domain adaptation is that
the marginal densities,P(XS) andQ(XT ), are very differ-
ent. In this section, we attempt to find a common latent
representation for bothXS andXT that preserves the data
configuration of the two domains after transformation. Let
the desired nonlinear transformation beφ : X → H. Let
X ′

S = {x′Si
} = {φ(xSi

)}, X ′
T = {x′Ti

} = {φ(xTi
)} and

X ′ = X ′
S∪X ′

T be the transformed input sets from the source,
target and combined domains, respectively. Then, we desire
thatP ′(X ′

S) = Q′(X ′
T ).

Assuming thatφ is the feature map induced by a universal
kernel. As shown in Section 2.1, the distance between two
distributionsP andQ can be empirically measured by the
(squared) distance between the empirical means of the two
domains:

Dist(X ′
S , X ′

T )=

∥∥∥∥∥
1
n1

n1∑

i=1

φ(xSi)−
1
n2

n2∑

i=1

φ(xTi)

∥∥∥∥∥

2

H
. (2)

Therefore, a desired nonlinear mappingφ can be found by
minimizing this quantity. However,φ is usually highly non-
linear and a direct optimization of (2) can get stuck in poor
local minima. We thus need to find a new approach, based on
the following assumption.
The key assumptionin the proposed domain adaptation set-
ting is thatP 6= Q, butP (YS |φ(XS)) = P (YT |φ(XT )) un-
der a transformation mapping φ on the input.

In Section 3.1, we first revisit Maximum Mean Discrep-
ancy Embedding (MMDE) which proposed to learn the kernel
matrixK corresponding to the nonlinear mappingφ by solv-
ing a SDP optimization problem. In Section 3.2, we then pro-
pose a factorization of the kernel matrix for MMDE. An ef-
ficient eigendecomposition algorithm for kernel learning and
computational issues are discussed in Sections 3.3 and 3.4.



3.1 Kernel Learning for Domain Adaptation
Instead of finding the nonlinear transformationφ explicitly,
Pan et al.[2008] proposed to transform this problem as a
kernel learning problem. By virtue of the kernel trick, (i.e.,
k(xi, xj) = φ(xi)′φ(xj)), the distance between the empirical
means of the two domains in (2) can be written as:

Dist(X ′
S , X ′

T ) = tr(KL), (3)

where

K =
[
KS,S KS,T

KT,S KT,T

]
(4)

is a (n1 + n2)× (n1 + n2) kernel matrix,KS,S , KT,T and
KS,T respectively are the kernel matrices defined byk on the
data in the source domain, target domain, and cross domains;
andL = [Lij ] º 0 with Lij = 1

n2
1

if xi, xj ∈ XS ; Lij = 1
n2

2

if xi, xj ∈ XT ; otherwise,− 1
n1n2

.
In the transductive setting, learning the kernelk(·, ·) can

be solved by learning the kernel matrixK instead. In[Pan
et al., 2008], the resultant kernel matrix learning problem is
formulated as asemi-definite program(SDP). Principal Com-
ponent Analysis (PCA) is then applied on the learned kernel
matrix to find a low-dimensional latent space across domains.
This is referred to as Maximum Mean Discrepancy Embed-
ding (MMDE).

3.2 Parametric Kernel Map for Unseen Patterns
There are several limitations of MMDE. First, it is trans-
ductive and cannot generalize on unseen patterns. Second,
the criterion (3) requiresK to be positive semi-definite and
the resultant kernel learning problem has to be solved by
expensive SDP solvers. Finally, in order to construct low-
dimensional representations ofX ′

S andX ′
T , the obtainedK

has to be further post-processed by PCA. This may poten-
tially discard useful information inK.

In this paper, we propose an efficient method to find a non-
linear mappingφ based on kernel feature extraction. It avoids
the use of SDP and thus its high computational burden. More-
over, the learned kernelk can be generalized to out-of-sample
patterns directly. Besides, instead of using a two-step ap-
proach as in MMDE, we propose a unified kernel learning
method which utilizes an explicit low-rank representation.

First, recall that the kernel matrixK in (4) can be decom-
posed asK = (KK−1/2)(K−1/2K), which is often known
as the empirical kernel map[Scḧolkopf et al., 1998]. Con-
sider the use of a(n1 + n2) ×m matrix W̃ to transform the
corresponding feature vectors to am-dimensional space. In
general,m ¿ n1 + n2. The resultant kernel matrix1 is then

K̃ = (KK−1/2W̃ )(W̃>K−1/2K) = KWW>K, (5)

whereW = K−1/2W̃ ∈ R(n1+n2)×m. In particular, the cor-
responding kernel evaluation ofk between any two patterns
xi andxj is given by

k̃(xi, xj) = k>xi
WW>kxj

, (6)

1As is common practice, one can ensure that the kernel matrix
K is positive definite by adding a smallε > 0 to its diagonal[Panet
al., 2008].

where kx = [k(x1, x), . . . , k(xn1+n2 , x)]> ∈ Rn1+n2 .
Hence, the kernel̃k in (6) facilitates a readily parametric form
for out-of-sample kernel evaluations.

Moreover, using the definition of̃K in (5), the distance be-
tween the empirical means of the two domains can be rewrit-
ten as:

Dist(X ′
S , X ′

T )= tr((KWW>K)L)

= tr(W>KLKW ). (7)

3.3 Transfer Components Extraction
In minimizing criterion (7), a regularization term tr(W>W )
is usually needed to control the complexity ofW . As will
be shown later in this section, this regularization term can
avoid the rank deficiency of the denominator in the general-
ized eigendecomposition. The kernel learning problem for
domain adaptation then reduces to:

minW tr(W>W ) + µ tr(W>KLKW )

s.t. W>KHKW = I, (8)

whereµ is a trade-off parameter,I ∈ Rm×m is the identity
matrix, H = In1+n2 − 1

n1+n2
11> is the centering matrix,

where1 ∈ Rn1+n2 is the column vector with all ones, and
In1+n2 ∈ R(n1+n2)×(n1+n2) is the identity matrix. More-
over, note that the constraintW>KHKW = I is added in
(8) to avoid the trivial solution (W = 0), such that the trans-
formed patterns do not collapse to one point, which can in-
flate the learned kernelk such that the embedding of datax′i
is preserved as in kernel PCA.

Though the optimization problem (8) involves a non-
convex norm constraintW>KHKW = I, it can still be
solved efficiently by the following trace optimization prob-
lem:
Proposition 1 The optimization problem (8) can be re-
formulated as

min
W

tr((W>KHKW )†W>(I + µKLK)W ), (9)

or

max
W

tr((W>(I + µKLK)W )−1W>KHKW ). (10)

Proof. The Lagrangian of (8) is

tr(W>(I + µKLK)W )− tr((W>KHKW − I)Z), (11)

whereZ is a symmetric matrix. Setting the derivative of (11)
w.r.t. W to zero, we have

(I + µKLK)W = KHKWZ. (12)

Multiplying both sides on the left byWT , and then on
substituting it into (11), we obtain (9). Since the matrix
I + µKLK is non-singular benefited from the regularization
term tr(W>W ), we obtain an equivalent trace maximization
problem (10). ¤

Similar to kernel Fisher discriminant (KFD), the solution
of W in (10) is the eigenvectors corresponding to them lead-
ing eigenvalues of(I + µKLK)−1KHK, where at most
n1 + n2 − 1 eigenvectors can be extracted. In the sequel,
the proposed method is referred to asTransfer Component
Analysis(TCA).



3.4 Computational Issues

The kernel learning algorithm in[Panet al., 2008] relies on
SDPs. As there areO((n1 +n2)2) variables inK̃, the overall
training complexity isO((n1 + n2)6.5) [Nesterov and Ne-
mirovskii, 1994]. This becomes computationally prohibitive
even for small-sized problems. Note that criterion (3) in this
kernel learning problem is similar to the recently proposed
supervised dimensionality reduction methodcolored MVU
[Songet al., 2008], in which low-rank approximation is used
to reduce the number of constraints and variables in the SDP.
However, gradient descent is required to refine the embedding
space and thus the solution can get stuck in a local minimum.
On the other hand, our proposed kernel learning method re-
quires only a simple and efficient eigendecomposition. This
takes onlyO(m(n1 +n2)2) time whenm non-zero eigenvec-
tors are to be extracted[Sorensen, 1996].

4 Related Works
Domain adaptation, which can be considered as a special
setting of transfer learning[Pan and Yang, 2008], has been
widely studied in natural language processing (NLP)[Ando
and Zhang, 2005; Blitzeret al., 2006; Dauḿe III, 2007].
Ando and Zhang[2005] and Blitzer[2006] proposed struc-
tural correspondence learning (SCL) algorithms to learn the
common feature representation across domains based on
some heuristic selection of pivot features. Daumé III [2007]
designed a heuristic kernel to augment features for solving
some specific domain adaptation problems in NLP. Besides,
domain adaptation has also been investigated in other appli-
cation areas such as sentiment classification[Blitzer et al.,
2007]. Theoretical analysis of domain adaptation has also
been studied in[Ben-Davidet al., 2007].

The problem of sample selection bias (also referred to as
co-variate shift) is also related to domain adaption. In sam-
ple selection bias, the basic assumption is that the sampling
processes between the training dataXtrn and test dataXtst

may be different. As a result,P (Xtrn) 6= P (Xtst), but
P (Ytrn|Xtrn) = P (Ytst|Xtst). Instance re-weighting is a
major technique for correcting sample selection bias[Huang
et al., 2007; Sugiyamaet al., 2008]. Recently, a state-of-
art method, called kernel mean matching (KMM), is pro-
posed[Huang et al., 2007]. It re-weights instances in a
RKHS based on the MMD theory, which is different from our
proposed method. Sugiyamaet al.[2008] proposed another
re-weighting algorithm, Kullback-Leibler Importance Esti-
mation Procedure (KLIEP), which is integrated with cross-
validation to perform model selection automatically. Xinget
al. [2007] proposed to correct the labels predicted by a shift-
unaware classifier towards a target distribution based on the
mixture distribution of the training and test data. Matching
distributions by re-weighting instances is also used success-
fully in Multi-task Learning[Bickel et al., 2008]. However,
unlike instance re-weighting, the proposed TCA method can
cope with noisy features (as in image data and WiFi data) by
effectively denoising and finding a latent space for matching
distributions across different domains simultaneously. Thus,
TCA can be treated as an integration of unsupervised feature
extraction and distribution matching in a latent space.

5 Experiments
In this section, we apply the proposed domain adaptation al-
gorithm TCA on two real-world problems: indoor WiFi lo-
calization and text classification.

5.1 Cross-domain WiFi Localization
For cross-domain WiFi localization, we use a dataset pub-
lished in the 2007 IEEE ICDM Contest[Yang et al., 2008].
This dataset contains some labeled WiFi data collected in
time periodA (the source domain) and a large amount of un-
labeled WiFi data collected in time periodB (the target do-
main). Here, a label means the corresponding location where
the WiFi data are received. WiFi data collected from different
time periods are considered as different domains. The task is
to predict the labels of the WiFi data collected in time pe-
riod B. More specifically, all the WiFi data are collected in
an indoor building around145.5× 37.5 m2, 621 labeled data
are collected in time periodA and3128 unlabeled data are
collected in time periodB.

We conduct a series of experiments to compare TCA with
some baselines, including other feature extraction methods
such as KPCA, sample selection bias (or co-variate shift)
methods, KMM and KLIEP and a domain adaptation method,
SCL. For each experiment, all labeled data in the source
domain and some unlabeled data in the target domain are
used for training. Evaluation is then performed on the re-
maining unlabeled data (out-of-sample) in the target domain.
This is repeated10 times and the average performance is
used to measure the generalization abilities of the methods.
In addition, to compare the performance between TCA and
MMDE, we conduct some experiments in the transductive
setting[Nigam et al., 2000]. The evaluation criterion is the
Average Error Distance (AED) on the test data, and the lower
the better. For determining parameters for each method, we
randomly select a very small subset of the target domain data
to tune parameters. The values of parameters are fixed for all
the experiments.

Figure 1(a) compares the performance of Regularized
Least Square Regression (RLSR) model on different feature
representations learned by TCA, KPCA and SCL, and dif-
ferent re-weighted instances learned by KMM and KLIEP.
Here, we useµ = 0.1 for TCA and the Laplacian kernel.
As can be seen, the performance can be improved with the
new feature representations of TCA and KPCA. TCA can
achieve much higher performance because it aims at finding
the leading components that minimize the difference between
domains. Then, from the space spanned by these components,
the model trained in one domain can be used to perform ac-
curate prediction in the other domain.

Figure 1(b) shows the results under a varying number of
unlabeled data in the target main. As can be seen, with only
a few unlabeled data in the target domain, TCA can still find
agoodfeature representation to bridge between domains.

Since MMDE cannot generalize to out-of-sample patterns,
in order to compare TCA with MMDE, we conduct another
series of experiments in a transductive setting, which means
that the trained models are only evaluated on the unlabeled
data that are used for learning the latent space. In Figure 1(c),
we apply MMDE and TCA on621 labeled data from the
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Figure 1: Comparison of Average Error Distance (in m).

source domain and300 unlabeled data from the target do-
main to learn new representations, respectively, and then train
RLSR on them. More comparison results in terms of ACE
with varying number of training data are shown in Table 1.
The experimental results show that TCA is slightly higher
(worse) than MMDE in terms of AED. This is due to the non-
parametric kernel matrix learned by MMDE, which can fit
the observed unlabeled data better. However, as mentioned in
Section 3.4, the cost of MMDE is expensive due to the com-
putationally intensive SDP. The comparison results between
TCA and MMDE in terms of computational time on the WiFi
dataset are shown in Table 2.

Table 1: ACE (in m) of MMDE and TCA with10 dimensions
and varying # training data (# labeled data in the source do-
main is fixed to621, # unlabeled data in the target domain
varies from100 to 800.)

# unlabeled and labeled data used for training
721 821 921 1,021 1,121 1,221 1,321 1,421

TCA 2.413 2.378 2.313 2.285 2.271 2.285 2.287 2.289
MMDE 2.315 2.247 2.208 2.212 2.207 2.182 2.257 2.279

Table 2: CPU training time (in sec) of MMDE and TCA with
varying # training data.

# unlabeled and labeled data used for training
721 821 921 1,021 1,121 1,221 1,321 1,421

TCA 25 30 46 59 72 94 115 145
MMDE 3,2093,5394,168 4,940 10,093 14,165 18,094 33,004

5.2 Cross-domain Text Classification
In this section, we perform cross-domain binary classifica-
tion experiments on a preprocessed dataset of Reuters-21578.
These data are categorized to a hierarchical structure. Data
from different sub-categories under the same parent category
are considered to be from different but related domains. The
task is to predict the labels of the parent category. By follow-
ing this strategy, three datasetsorgsvspeople, orgsvsplaces
and peoplevs placesare constructed. We randomly select
50% labeled data from the source domain, and35% unla-
beled data from the target domain. Evaluation is based on
the (out-of-sample) testing of the remaining65% unlabeled

data in the target domain. This is repeated10 times and the
average results reported.

Similar to the experimental setting on WiFi localization,
we conduct a series of experiments to compare TCA with
KPCA, KMM, KLIEP and SCL. Here, the support vector ma-
chine (SVM) is used as the classifier. The evaluation crite-
rion is the classification accuracy (the higher the better). We
experiment with both the RBF kernel and linear kernel for
feature extraction or re-weighting used by KPCA, TCA and
KMM. The kernel used in the SVM for final prediction is a
linear kernel, and the parameterµ in TCA is set to0.1.

As can be seen from Table 3, different from experiments
on the WiFi data, sample selection bias methods, such as
KMM and KLIEP perform better than KPCA and PCA on the
text data. However, with the feature presentations learned by
TCA, SVM performs the best for cross-domain classification.
This is because TCA not only discovers latent topics behind
the text data, but also matches distributions across domains in
the latent space spanned by the latent topics. Moreover, the
performance of TCA using the RBF kernel is more stable.

6 Conclusion and Future Work
Learning feature representations is of primarily an important
task for domain adaptation. In this paper, we propose a new
feature extraction method, called Transfer Component Analy-
sis (TCA), to learn a set of transfer components which re-
duce the distance across domains in a RKHS. Compared to
the previously proposed MMDE for the same task, TCA is
much more efficient and can be generalized to out-of-sample
patterns. Experiments on two real-world datasets verify the
effectiveness of the proposed method. In the future, we are
planning to take side information into account when learning
the transfer components across domains, which may be better
for the final classification or regression tasks.
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Table 3: Comparison between Different Methods (number inside parentheses is the standard deviation over10 repetitions).
features #features peoplevsplaces orgsvspeople orgsvsplaces
Original 0.5198 (.0252) 0.6696 (.0287) 0.6683 (.0221)

PCA 5 0.5564 (.0788) 0.5574 (.0760) 0.5653 (.0984)
10 0.5453 (.0911) 0.6470 (.0598) 0.6140 (.0534)
20 0.5424 (.0590) 0.6703 (.0334) 0.6491 (.0391)
30 0.5631 (.0346) 0.6652 (.0549) 0.6114 (.0564)

KPCA (RBF) 5 0.5900 (.0185) 0.5863 (0.0405) 0.5883 (.0185)
10 0.5934 (.0169) 0.5955 (0.0676) 0.6267 (.0814)
20 0.6032 (.0323) 0.5968 (0.0705) 0.6098 (.0315)
30 0.6000 (.0267) 0.5964 (0.0742) 0.6247 (.0438)

TCA (linear) 5 0.5804 (.0528) 0.6397 (.0897) 0.6403 (.0722)
10 0.5495 (.0764) 0.7308 (.0495) 0.7006 (.0527)
20 0.5600 (.0969) 0.7425 (.0579) 0.6720 (.0374)
30 0.5468 (.0635) 0.7330 (.0432) 0.5989 (.0700)

TCA (RBF) 5 0.6129 (.0176) 0.6297 (.0302) 0.6899 (.0195)
10 0.5920 (.0148) 0.7088 (.0251) 0.7042 (.0218)
20 0.5954 (.0201) 0.7196 (.0235) 0.6942 (.0220)
30 0.5916 (.0166) 0.7217 (.0275) 0.6896 (.0203)

SCL 0.5267 (.0310) 0.6834 (.0327) 0.6733 (.0198)
KMM (linear) 0.5836 (.0159) 0.7006 (.0353) 0.6714 (.0263)
KMM (RBF) 0.5836 (.0159) 0.6968 (.0224) 0.6655 (.0245)

KLIEP 0.5758 (.0241) 0.6946 (.0192) 0.6638 (.0112)
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