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Abstract

Detecting abnormal activities from sensor readings
is an important research problem in activity recog-
nition. A number of different algorithms have been
proposed in the past to tackle this problem. Many
of the previous state-based approaches suffer from
the problem of failing to decide the appropriate
number of states, which are difficult to find through
a trial-and-error approach, in real-world applica-
tions. In this paper, we propose an accurate and
flexible framework for abnormal activity recogni-
tion from sensor readings that involves less hu-
man tuning of model parameters. Our approach
first applies a Hierarchical Dirichlet Process Hid-
den Markov Model (HDP-HMM), which supports
an infinite number of states, to automatically find
an appropriate number of states. We incorporate
a Fisher Kernel into the One-Class Support Vector
Machine (OCSVM) model to filter out the activi-
ties that are likely to be normal. Finally, we derive
an abnormal activity model from the normal activ-
ity models to reduce false positive rate in an unsu-
pervised manner. Our main contribution is that our
proposed HDP-HMM models can decide the ap-
propriate number of states automatically, and that
by incorporating a Fisher Kernel into the OCSVM
model, we can combine the advantages from gener-
ative model and discriminative model. We demon-
strate the effectiveness of our approach by using
several real-world datasets to test our algorithm’s
performance.

1 Introduction

In recent years, activity recognition has been drawing grow-
ing interests from both artificial intelligence and pervasive
computing researchers. Activity recognition aims to recog-
nize the states and goals of one or more agents, given the ob-
servations of the agents’ actions in some forms of input and
probably the environmental conditions. Such a problem has
important practical values and the research on activity recog-
nition has witnessed a growing amount of research interest in
past years. In the real world, activity recognition can be used
in a variety of applications, including security monitoring to

detect acts of terrorism [Jarvis et al., 2004], where terrorist
activities are defined as abnormal activities, and helping pa-
tients with cognitive disabilities [Pollack et al., 2003].

In this paper, instead of considering how to perform ac-
curate activity recognition, we consider the problem of de-
tecting abnormal activities, where we follow the definition
used in [Yin et al., 2008] and define “abnormal activities”
as “activities that occur rarely and have not been expected in
advance”. Such a problem may first appear to be very sim-
ilar with the original activity recognition problem in princi-
ple. However, the problem of abnormal activity recognition
is much harder than the original problem since such abnormal
activities, by definition, rarely occur. This difficulty might
become more significant during training phase since we lack
such labeled sequences of abnormal activities. Up to now,
most activity recognition algorithms [Lester et al., 2005] are
systems based on state space-based machine learning models,
which require a significant amount of training data in order to
perform accurate and successful parameter estimation. Nev-
ertheless, in abnormal activity recognition, such requirements
often cannot be satisfied. Most previous research tried to
tackle the abnormal activity recognition problem by also us-
ing state-space models [Yin et al., 2008], like Hidden Markov
Models (HMMs) or Dynamic Bayesian Networks (DBNs).

There exists one serious problem with these state-space
based models, especially HMMs, where one needs to define
an appropriate number of states. Usually such a number is de-
termined through a trial-and-error process. In practice, such
a number is usually difficult to be known beforehand and
the recognition accuracy is usually sensitive to the number
of states chosen. However, in real-world applications, it is
impossible to undergo this trial-and-error process when the
recognizer is attached to humans already and when there is
not enough data to validate the accuracy of the model under
a particular number of states. Therefore, this drawback can
become a major hurdle in real-world activity recognition sys-
tems.

In this paper, we aim to solve the abnormal activity recog-
nition problem via a three-phased approach. We first ap-
ply the Hierarchical Dirichlet Process Hidden Markov Model
(HDP-HMM), which has an infinite number of states and can
automatically decide the optimal number of states. Then, we
incorporate a Fisher kernel into our model and apply a One-
Class Support Vector Machine (OCSVM) to filter out the nor-
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mal activities. Finally, we derive our abnormal activity model
in an unsupervised manner. In this paper, two additional con-
tributions, besides providing an effective and efficient algo-
rithm for solving the abnormal activity recognition problem,
are: (1) we provide an approach to automatically decide the
optimal number of states in state-based methods; (2) combine
the power of generative model (HDP-HMM) and discrimina-
tive power (OCSVM with Fisher Kernel). We demonstrated
the effectiveness of our algorithm through extensive experi-
ments.

One of our previous works [Zhang et al., 2009] also aims to
detect the abnormal events from video sequences using Hier-
archical Dirichlet Processes. Our work differs from this pre-
vious work in several aspects. Firstly, our previous work,
which detects abnormal events in video sequences, relies
heavily upon feature vectors that we extract from video se-
quences. Such features normally contain more “represen-
tative knowledge” compared to sensor-based activity recog-
nition, where sensor-readings can have both continuous and
discrete attributes and understanding the role different sensor
readings play in the feature vector is not direct. Secondly,
instead of using an ensemble learning algorithm to extract
the candidate abnormal events, which might be more heuris-
tic and difficult to explain in principle, in this paper, we in-
corporate the Fisher Kernel into a One-Class Support Vector
Machine model to bring benefit from both generative learning
and discriminative learning. Thirdly, in this paper we perform
more extensive experiments of our algorithm with different
parameters and compare it to different baselines to show each
of our components to be useful in our final abnormal activity
recognition system.

The rest of the paper is organized as follows: In Section
2, we review some previous work related to our abnormal
activity recognition problem. In Section 3, we describe our
three-phase approach in detail. In Section 4, we present our
experimental results using two real-world datasets compared
to state-of-the-art abnormal activity recognition algorithms.
Finally, we conclude our paper and discuss some possible fu-
ture works in Section 5.

2 Related Work

There is much important previous research work done in try-
ing to tackle the problem of abnormal activity recognition.
Due to space constraints, we only review a few related papers
which are most relevant to our approach.

With the recent development of sensor networks, activity
recognition from sensor data becomes more and more attrac-
tive. Many real-world applications require accurate recogni-
tion results [Pollack et al., 2003; Geib et al., 2008]. So far,
among the state-of-the-art learning-based activity recognition
algorithms, state-space based models are quite representative.
State-space based models usually treat the activities and goals
as hidden states, and try to infer such hidden states from the
low-level sensor readings by statistical learning. For example,
[Bui, 2003] employed an Abstract Hidden Markov Memory
Model to represent the probabilistic plans, and used an ap-
proximate inference method to uncover the plans. [Vail et al.,
2007] and [Liao et al., 2007] focused on using Conditional

Random Fields and its variants to model the activity recogni-
tion problem. However, these algorithms are centered on the
recognition of a set of predefined normal activities.

Previous approaches on abnormality detection problem
range from the computer vision area [Duong et al., 2005;
Zhang et al., 2009] to data mining areas of outlier detection
[Lazarevic et al., 2003]. Besides our previous work [Zhang
et al., 2009], the most relevant work to our approach is [Yin
et al., 2008], which also aims to detect a user’s abnormal ac-
tivities from body-worn sensors. We will describe their al-
gorithm detail in brief since we will be using their algorithm
as a baseline. They propose a two-phase abnormality detec-
tion algorithm where a One-Class SVM is built on normal
activities which help filter out most of the normal activities.
The suspicious traces are then passed on to a collection of
abnormal activity models adapted via KNLR (Kernel Nonlin-
ear Logistic Regression) for further detection. However, be-
fore training the One-Class SVM, they need to transform the
training traces that are of variable lengths into a set of fixed-
length feature vectors. To accomplish this task, they trained
M HMMs where M is the number of normal activities, and
then the likelihood between each sensor reading and normal
activity is used as the feature vector. One major drawback of
this model is we need to specify the state number of HMMs
when training, and such a number will affect the overall al-
gorithm performance a lot as we will show in our experiment
section. Thus, their algorithm may not be easy to use in real-
world situations since it is hard for users to tune this parame-
ter easily.

3 Background and Our Proposed Approach

3.1 Overview

We first present an overview of our three-phase approach
for abnormal activity recognition from sensor readings. In
the first step, we extract the significant features from normal
traces, where these features are then used to train an HDP-
HMM-based classifier in a sequential manner. The classifier
can then be used to decide on a suitable model for every fea-
ture automatically. In the second step, we learn a decision
boundary around the normal data in the feature space and
then use the boundary to classify activities as normal or ab-
normal via One-Class SVMs. We intentionally train the One-
Class SVMs so that they can identify normal activities with a
higher likelihood, under the assumption that everything else
is abnormal with a lower likelihood. When choosing a thresh-
old value for the general model, we tend to reduce the false
positive rate. In the third phase, we perform model adaption
to adapt the abnormal activity model to a new model, which
gives each abnormal activity a “second chance” to be classi-
fied as normal activities[Zhang et al., 2005].

In the remainder of this section, we first briefly review HDP
and its Gibbs Sampling methods. We then describe how we
incorporate HDP-HMM with OCSVM model. Finally, we
describe how we build suitable model adaptation techniques.
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3.2 HDP-HMM

Hierarchical Dirichlet Process hidden Markov Model

Consider groups of data, denoted as {{yij}
nj

i=1}
J
j=1, where

nj denotes the number of data in group j, J denotes the to-
tal number of groups thought to be produced by related, yet
unique, generative processes. Each group of data is modeled
via a mixture model. A Dirichlet Process (DP) representa-
tion may be used separately for each of the data group. In an
HDP, the base distribution of each of the DPs are drawn from
a DP, which is discrete with probability 1, so each of the DPs
can share the statistical strength, for instance, this encourages
appropriate sharing of information between the data sets. An
HDP formulation can decide the right number of states for
the Hidden Markov Model (HMM) from its posterior density
function on the appropriate number of mixture components,
to some extent, the number of states in HMM can go to infi-
nite if necessary. Besides, it learns the appropriate degree of
sharing of data across data sets through the sharing of mixture
components.

The HDP can be built as follows (Due to space constraint,
we will omit the detailed explanation of HDP in this paper, in-
terested readers please refer to [Teh et al., 2006] for technical
details.):

G0(θ) =
∞∑

k=1

βkδ(θ − θk)

β ∼ GEM(γ) θk ∼ H(λ) k = 1, 2, . . .

Gj(θ) =
∞∑

t=1

π̄jtδ(θ − θ̃jt)

π̃j ∼ GEM(α) j = 1, . . . , Jθ̃jt ∼ G0 t = 1, 2, . . .

θ̄ji ∼ Gj yji ∼ F (θ̄ji)

j = 1, . . . , J, i = 1, . . . , Nj.

where GEM(·) stands for the stick-breaking process as
follows:

β′k ∼ Beta(1, γ)

βk = β′k

k−1∏
l=1

(1− β′l), k = 1, 2, . . .

HMM can be viewed as a doubly stochastic Markov chain
and is essentially a dynamic variant of a finite mixture model.
Therefore, by replacing the finite mixture with a Dirichlet
process, we can complete the design of HDP-HMM (See Fig-
ure 1 for a graphical representation.)

To better illustrate the construction of HDP-HMM, we in-
troduce another equivalent representation of the generative
model using indicator random variables:

β ∼ GEM(γ) πj ∼ DP (α, β)

zji ∼ Mult(πj) θk ∼ H(λ) yji ∼ F (θzji)

Identifying each G(k) as describing both the transition
probabilities πkk′ from state k to k′ and the emission dis-
tributions parameterized by φk′ , we can now formally define
the HDP-HMM as follows:

β ∼ GEM(γ), πk ∼ DP (α, β), φk ∼ H, (1)

st ∼ Mult(πst−1
), yt ∼ F (φst

) (2)

Figure 1: A graphical representation of the HDP-HMM
Model. [Teh et al. 2006]

The Gibbs Sampler

The Gibbs sampler was the first MCMC algorithm for the
HDP-HMM that converges to the true posterior. [Teh et al.,
2006] proposed three sampling schemes, one of them that is
heuristic to HDP-HMM builds on the direct assignment sam-
pling scheme for the HDP, by marginalizing out the hidden
variables π , φ from Equations 1 and 2 and ignoring the order-
ing of states implicit in β . Thus we only need to sample the
hidden trajectory s, the base DP parameters β and the hyper-
parameters α, γ, for this sampler, a set of auxiliary variables
mjk is needed, we denote mjk as the number of transitions
from state i to state j, and mj·, m·j denote the transitions out
and in of state j, the sampling schemes are listed below:

Sampling β: According to [Teh et al., 2006], the desired
posterior distribution of β is:

p((β1, . . . , βK , βk̄)t, k, y1:T , γ) ∝ Dir(m.1, ..., m.K , γ).

Sampling st: We now determine the posterior distribution
of st:

p(st = k | s\t, y1:T , β, α, λ) ∝

p(st = k | s\t, β, α)p(yt | y\t, st = k, s\t, λ)

According to the property of Dirichlet processes, we have

p(st = k | s\t, β, α) ∝

⎧⎨
⎩

(αβk +m−t
st−1k)(

αβk+n
−t

st−1k
+δ(st−1,k)δ(k,st+1)

α+n
−t

k.
+δ(st−1,k)

) k ∈ 1, . . . , K

αβk̄βst+1
k = k̃.

The conditional distribution of the observation yt given an
assignment st = k and given all other observationsyτ , having
marginalized out θk, is derived as follows:

p(yt | y\t, st = k, s\t, λ) ∝

∫
θk

p(yt | θk)p(θk | {yτ | sτ = k, τ �= t}, λ)dθk

Sampling mjk:

p(mjk = m | njk, β, α) =
Γ(αβk)

Γ(αβk + njk)
s(njk, m)(αβk)

m

where s(n, m) are unsigned Stirling numbers of the first kind.
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3.3 Building One-Class SVM with Fisher kernel

Similar to [Yin et al., 2008], we applied the One-Class SVMs
to learn a decision boundary around the normal data in the
feature space and then use the boundary to classify activi-
ties as normal or abnormal. However, in [Yin et al., 2008]

the author used Gaussian Radial Basis Function (RBF) ker-
nel for the One-Class SVM, but we choose the Fisher Ker-
nel to more effectively combine the strength from both the
generative model (HDP-HMM) and the discriminative model
(One-Class SVM). Such a combination is usually expected
to obtain a robust classifier which has the strengths of each
approach.

Fisher kernel

Fisher kernel is introduced in [Jaakkola and Haussler, 1998].
A kernel that is capable of mapping variable length sequences
to fixed length vectors enables the use of discriminative clas-
sifiers for variable length examples. Fisher Kernel combines
the advantages of generative statistical models (in our frame-
work HDP-HMM) and those of discriminative methods (in
our framework One-Class SVMs), where HDP-HMM can
process data of variable length and automatically select the
suitable model, while One-Class SVMs can have flexible cri-
teria and yield better results. The gradient space of the gener-
ative model is used for this purpose since the gradient of the
log likelihood with respect to a parameter of the model de-
scribes how that parameter contributes to the process of gen-
erating a particular example.

The Fisher Score is defined as the gradient of the log like-
lihood with respect to the parameters of the model:

UX = ∇θ logP (X |θ)

The Fisher kernel is defined as:

K(Xi, Xj) = UT
Xi

I−1UXj

where I is the Fisher information matrix [Jaakkola and Haus-
sler, 1998]and UX is the Fisher score. In [Jaakkola and Haus-
sler, 1998], the Fisher information matrix is proposed for nor-
malization, while we also can use other measures to accom-
plish this task.

One-Class SVM Training

According to [Yin et al., 2008], we first need to convert the
training traces with variable lengths into a set of fixed length
feature vectors, here we adopt a set of HDP-HMMs as de-
scribed in the above section to model the normal traces, one
for each type of M features, using beam sampling methods.
And the feature vectors in our framework are just the log-
likelihood value for each of the N normal traces computed as
follows:

Lj(Yi) = logPj(Yi), 1 ≤ i ≤ N, 1 ≤ j ≤ M

where logPj(Yi) is the log-likelihood of the ith activities

trained from the HDP-HMMs based on the jth feature. In
this way, for each training trace Yi, we can obtain an M -
dimensional feature vector Xi = {L1(Yi), · · · , LM (Yi)} for
One-Class SVM:

max

n∑
i=1

αiK(Xi, Xi)−

n∑
i,j=1

αiαjK(Xi, Xj).

where K(Xi, Xj) is the Fisher kernel described above.
As described in [Yin et al., 2008], a major limitation of

using a One-Class SVM for abnormality detection is the dif-
ficulty in selecting a sensitivity level that is sufficiently high
to yield a low false negative rate and a low false positive rate.
To deal with this problem, we also fit our One-Class SVM
by selecting parameters so that it is biased toward a low false
negative rate. That is, our One-Class SVM can identify, with
high confidence, that a portion of data is normal. The rest of
the data that are deemed suspicious are passed on to the third
phase for further detection. Thus, our One-Class SVM acts as
a filter to a classifier by singling out the normal data without
creating a model for abnormal characteristics.

3.4 Model adaptation

In [Yin et al., 2008], the abnormal events are derived from a
general normal model in an unsupervised manner. The bene-
fit of such an unsupervised manner is that this framework can
address the unbalanced label problem due to the scarcity of
training data and the difficulty in pre-defining abnormal ac-
tivities. More specifically, after the second step we may get
a high false negative rate, i.e., we may have many normal ac-
tivities be incorrectly classified as abnormal activities, so it’s
necessary for us to apply a third phase, that is, to adapt mod-
els for the abnormal events, and use these abnormal classifiers
to reduce the false negative rate. Besides, due to the lack of
negative training data, we cannot directly build models for ab-
normal events. However, we can use adaptation techniques to
get them during the test time or even in future use, that is, we
can dynamically build the model for the abnormal event after
the training phase. Here we briefly introduce the algorithm’s
framework first. The steps are listed as below:

Prerequisites: A well defined general HDP-HMM with
Gaussian observation density trained by all normal training
sequences.

Step 0 : Use the first outlier detected from the former phase -
which is considered to be able to represent a particular
type of abnormal activities - to train an abnormal event
model by adaptation using beam sampler.

Step 1 : Slice the test sequence into fixed length segments, cal-
culate the likelihood of these segments by the existing
normal activity models, if the maximum likelihood is
given by the general model, we predict this trace to be
of a normal activity, then goto Step 4. Else goto Step 2;

Step 2 : If the maximum likelihood is larger than the threshold,
we consider this trace to belong to an existing abnormal
model; then we predict this trace to be possible abnormal
events, go to Step 4, else go to Step 3;

Step 3 : Use adaptation methods to adapt the general model to
a new abnormal activity model, then add this adapted
abnormal model to the set of models and go to Step 4,
here this outlier is regarded to represent one kind of the
certain events.

Step 4 : Go to Step 1 if new outlier comes.

In this procedure, we provide the outlier with a second
chance to be recognized as a normal event, so that normal
events that tend to be unexpected or scarce in the training data

1718



are not misclassified. Thanks to the effectiveness of beam
sampler again, we can do the adaptation effectively without
other special design. Suppose that we have the new param-
eters for the HDP-HMM λ, here we update the HDP param-
eters β, α0, γ, K and HMM parameters π, μ. Notice that in
Step 1, an abnormal activity sequence may be predicted as
normal activities again, thereby decreases the false negative
rate in this Step. And in Step 2, we classify such an abnormal
activity sequence to one abnormal activity in the current ac-
tivity set we are now holding. There may still be cases where
we have not seen this abnormal activity before, and we per-
form Step 3 so that we can create a new abnormal activity set,
and humans can be involved to analyze what this abnormal
activity sequence actually means in real life. Such a frame-
work is useful for real-world deployment of our abnormal ac-
tivity recognition algorithm.

4 Experiments

In this section, we will study the effectiveness of our algo-
rithm by validating it through several real-world abnormal
activity recognition datasets and our algorithm is compared
to the baseline algorithm described in [Yin et al., 2008].

4.1 Datasets, Metrics and Baselines

We use two real-world activity recognition datasets. The first
is the MIT PLIA 1 dataset [Intille et al., 2006], which was
recorded on Friday March 4, 2005 from 9AM to 1PM with a
volunteer in the MIT PlaceLab. The dataset contains 89 dif-
ferent activities and was manually classified into several cat-
egories including: Cleaning, Yardwork, Laundry, Dishwash-
ing, Meal Preparation, Hygiene, Grooming, Personal and In-
formation/Leisure. Due to the fact that “abnormal activities”
are usually hard to define and previous work including [Yin
et al., 2008] and [Zhang et al., 2005] often manually defined
some activities with low probabilities as abnormal activities,
we manually selected some activities with low probabilities
and consider such activities as abnormal activities we aim to
detect from sensor readings. And the second dataset we are
using, referred to as Yin in Table 2 is from [Yin et al., 2008],
where a number of traces of a user’s normal daily activities
in an indoor environment are recorded. In this dataset, the
user was asked to simulate the effect of carrying out several
abnormal activities.

The evaluation metric that we are using in this paper is
the AUC (Area Under Curve) measurement [Bradley, 1997],
since a good abnormal activity recognition system should
have both high detection rate (defined as the ratio of the num-
ber of correctly detected abnormal activities to the total num-
ber of abnormal activities) and low false alarm rate (defined
as the ratio of the number of normal activities that are in-
correctly detected as normal activities to the total number of
normal activities). The ROC curve plots the detection rate
against the false alarm rate and therefore becomes our choice
in such a problem.

The algorithms we plan to analyze in this paper are as fol-
lows: HMM + RBF + KNLR, which is the algorithm dis-
cussed in [Yin et al., 2008]’s paper, HDP + Fisher + Adap-
tation, which is our proposed method by using HDP and

Support Vector Machine with Fisher Kernel, together with
the model adaptation method we proposed, HDP + RBF +
KNLR, which is exactly the original baselines except that we
use a HDP-HMM in the first phase to automatically determine
the optimal number of states in HMM. HDP + RBF + Adap-
tation, same as our algorithm but we use a traditional RBF
kernel to train the OCSVM model. We design these base-
line methods to demonstrate the effectiveness of our frame-
work, and also show that our two main contributions, (1) us-
ing HDP-HMM to optimally decide the optimal number of
states and (2) incorporating Fisher Kernel into the OCSVM
model, are both effective in this problem.

4.2 Experimental Results

In this section we present our experimental results in Table 1.
The AUC score of each algorithm is calculated and the train-
ing set is drawn at random ten times to calculate a variance of
the AUC score. For the baseline methods, since the number
of states in the HMM model Q needs to be manually defined,
we tested the algorithm performance with varying numbers
of Q from 2 to 8.

Algorithm PLIA1 AUC (Variance)

HMM + RBF + KNLR (Q = 2) 0.683(0.025)

HMM + RBF + KNLR (Q = 3) 0.764(0.027)

HMM + RBF + KNLR (Q = 4) 0.793(0.025)
HMM + RBF + KNLR (Q = 5) 0.721(0.018)

HMM + RBF + KNLR (Q = 6) 0.657(0.030)
HMM + RBF + KNLR (Q = 7) 0.642(0.019)

HMM + RBF + KNLR (Q = 8) 0.631(0.016)

HDP + RBF + KNLR 0.811(0.032)
HDP + RBF + Adaptation 0.835(0.017)

HDP + Fisher + Adaptation 0.857(0.028)

Table 1: Performance Comparison of our algorithm and the
baseline methods on the MIT PLIA Dataset

Algorithm Yin’s AUC (Variance)

HMM + RBF + KNLR (Q = 2) 0.713 (0.028)

HMM + RBF + KNLR (Q = 3) 0.725 (0.021)

HMM + RBF + KNLR (Q = 4) 0.748 (0.010)
HMM + RBF + KNLR (Q = 5) 0.785 (0.015)

HMM + RBF + KNLR (Q = 6) 0.732 (0.017)

HMM + RBF + KNLR (Q = 7) 0.718 (0.013)
HMM + RBF + KNLR (Q = 8) 0.707 (0.019)

HDP + RBF + KNLR 0.792 (0.018)

HDP + RBF + Adaptation 0.813 (0.021)
HDP + Fisher + Adaptation 0.834((0.029)

Table 2: Performance Comparison of our algorithm and the
baseline methods on the dataset from [Yin et al.,2008]

From Table 1 and Table 2, we can see that our framework
HDP + Fisher + Adaption outperforms the baseline algo-
rithm and some other baselines that we have set. When we
set Q from 2 to 8, we can see that the AUC score varies
between 0.683 and 0.793 in PLIA1 dataset, and the AUC
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score varies between 0.713 and 0.785 in [Yin et al., 2008]’s
dataset, which clearly indicates the difficulty of choosing an
appropriate number of states and the impact of a non-optimal
state on the final recognition accuracy cannot be neglected.
When using HDBP + RBF + KNLR, we notice that its per-
formance already outperforms that of HMM-based models.
Therefore, adopting HDP-HMM in our model can automat-
ically determine the appropriate number of states and algo-
rithm performance will not be affected since we avoid a step
of trial-and-error process. We can also see that using HDP
+ RBF + Adaptation is not as good as our proposed method
which uses Fisher kernels on the two datasets we’ve tested,
which suggests that our proposed approach for incorporating
Fisher kernel into this framework will have stronger predic-
tive strengths compared to incorporating the commonly-used
RBF Kernels.

Therefore, in this section, by reporting the performance
of our algorithm on two activity recognition datasets and by
comparing the performance of our algorithm with the base-
line algorithms, we have demonstrated empirically that our
framework is useful at each step, and that introducing HDP
and Fisher Kernel can improve the overall performance.

5 Conclusion and Future Work

In this paper, we have presented a novel framework for
tackling the problem of abnormal activity recognition. Our
method does not suffer the problem of hard to determine an
optimal number of states as previous state-based approaches
do. We applied an HDP-HMM model that can automati-
cally select the suitable model with the optimal number of
states. We analyzed the efficiency and effectiveness of intro-
ducing beam sampling in the HDP-HMM model. We also
combined the powers of both generative models and discrim-
inative models by using the Fisher Kernel in the One-Class
SVM model in the second step. Finally, we described a model
adaptation approach so that we can detect unseen abnormal
activities. In the future, we wish to explore some effective
online inference algorithms for us to tackle the abnormal ac-
tivity recognition problem in a more natural way to meet the
need of real-world applications.
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