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ABSTRACT
In activity recognition, one major challenge is huge manual
effort in labeling when a new domain of activities is to be
tested. In this paper, we ask an interesting question: can
we transfer the available labeled data from a set of existing
activities in one domain to help recognize the activities in
another different but related domain? Our answer is “yes”,
provided that the sensor data from the two domains are re-
lated in some way. We develop a bridge between the activi-
ties in two domains by learning a similarity function via Web
search, under the condition that the sensor data are from the
same feature space. Based on the learned similarity mea-
sures, our algorithm interprets the data from the source do-
main as the data in the domain with different confidence lev-
els, thus accomplishing the cross-domain knowledge trans-
fer task. Our algorithm is evaluated on several real-world
datasets to demonstrate its effectiveness.
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INTRODUCTION
With the proliferation of sensor technologies, the task of rec-
ognizing human’s activities from a series of low-level sensor
readings has drawn many interest in AI, user modeling and
ubiquitous computing areas [24, 7]. Early activity recogni-
tion algorithms are based on logic, in which conclusions are
deducted from the observations and “closed world” assump-
tions [12]. As the sensor data became available, recent ac-
tivity recognition research focuses more on reasoning under
uncertainty. For example, Bui introduced abstract Hidden
Markov Model to represent the user’s activity hierarchy [2].
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Liao et al. applied a hierarchical Markov model to estimate a
user’s locations and transportation modes [14]. Yin et al. ap-
plied a dynamic Bayesian network to infer a user’s actions
from raw WiFi signals, and an N-gram model to infer the
users’ high-level goals from actions [30]. Similarly, Patter-
son et al. also applied a dynamic Bayesian network to rec-
ognize fine-grained activities by aggregating the abstract ob-
ject usage [17]. Hu and Yang used a skip-chain Conditional
Random Field and an activity correlation graph to model the
concurrent and interleaving activities [8, 9]. In a recent work
[10], Hidden Markov Models with an infinite state space was
also used to detect abnormal activities from sensor readings.

Although much work has been done in activity recognition,
a major challenge still remains: given a new domain of ac-
tivities, it usually requires a lot of human efforts to label the
sensor data for training a recognition model. Data labels are
usually meaningful activity terms associated with the data
vectors, such as the sensor readings. If the labeled data for
the target activities are few, then the trained activity recog-
nizer may not perform well. Such an issue has become a crit-
ical challenge for apply activity recognition systems to prac-
tice. In the real world, users may only have a small amount
of time and effort to set up an activity recognition system;
otherwise, they are quite likely to quit using such a recogni-
tion system. Furthermore, users usually do not have the ex-
pertise in activity recognition research. Therefore when we
try to design some activity recognition algorithm, we should
make the algorithm as simple as possible. In terms of data
labeling effort, we wish to ensure that the users need not la-
bel all activities; if they have done some labeling, it is best
for our system to automatically transfer the labeled knowl-
edge to help recognize other different, but related activities.
In this paper, we show how to transfer the available labeled
data from a set of activities to help train a recognizer for
another set of different, but related activities.

Consider an example in Figure 1. The taxonomy is an activ-
ity taxonomy extracted from the MIT PLIA1 dataset [11, 8],
representing the common daily activities. Suppose that some
user wants to set up an activity recognition system at his/her
home to recognize the activities in the taxonomy. However,
the user only wants to spend very little amount of time and
effort to label the sensor data, where labels corresponds to
activity names such as ’washing dishes’. A user may not
be able to label the sensor data associated with all activities
described in the taxonomy. For example, the user may only
label the sensor data from the activities in the “Cleaning In-
door” category, and leave unlabeled the sensor data from the



Figure 1. An example of cross-domain activity recognition.

other categories’ activities (e.g. in “Laundry”, “Dishwash-
ing”). So in our problem, we have a source domain of ac-
tivities that has the labeled sensor data from activities in the
“Cleaning Indoor” category. We also have some target do-
main that has the unlabeled sensor data from the activities in
some other category such as “Laundry” (denoted as “Target
Domain 1”) or “Dishwashing” (denoted as “Target Domain
2”). Then, we ask the following fundamental questions:

1. Is it possible for us to use the labeled data in the source
domain to help train an activity recognizer in the target
domain? For example, can we use the sensor data from
the “Cleaning Indoor” category in training an activity rec-
ognizer for the “Laundry” category?

2. Under what conditions can domain transfer work for ac-
tivity recognition?

In this paper, we answer the above questions by present-
ing a novel algorithm for cross-domain activity recognition
(CDAR), which can transfer the labeled data from a source
domain to a target domain under the condition that (1) the
activities in the source and target domains are related by
some Web pages and thus we can build a mapping between
them using the Web, and (2) the underlying feature spaces
are identical between the source and target domains (they
use the same set of sensors, although activity labels can be
different). We observe that although the activities in the
source domain and the target domain are different, some of
them are similar in semantics as well as the corresponding
sensor data. For example, in the above Figure 1, one may
transfer useful information from activity “Washing-laundry”
to “Hand-washing dishes”, considering that, although these
two activities are different, the underlying physical actions
one performs for these two activities are similar, i.e. hand-
washing. Therefore, if we have sensors attached to the body
arms or hands, the accelerometer values or other motion val-

ues detected should be similar for us to transfer the knowl-
edge from the source domain to the target domain. Intu-
itively, we use similar activities in the source domain to help
enrich the labeled data for the target domain. Specifically,
we first learn a similarity function between activities in both
domains by exploiting Web search and applying information
retrieval techniques. We then train a (multi-class) weighted
Support Vector Machine (SVM) model with different proba-
bilistic confidence weights learned from the similarity func-
tion. Experiments on real world data sets show that the trans-
ferred activity recognizer can indeed improve performance
by using the auxiliary data and outperform some other state-
of-the-art algorithms.

RELATED WORK
Activity recognition aims to infer a user’s behaviors from
the observations such as sensor data, and has various appli-
cations including medical care [19], logistics service [13],
robot soccer [25], plan recognition [12], etc. However, most
of the proposed activity recognition algorithms are focused
on only data from one domain, and usually require a lot of
labeled data in order to train the recognition model.

Our work exploits the Web to connect two domains. In the
past, some previous research works had considered learning
common sense knowledge from the Web (such as ehow and
KnowItAll [5, 23]) to assist model training. For example,
Perkowitz et al. proposed to mine the natural language de-
scriptions of activities (e.g. “making-tea”) from ehow.com
as labeled data, and translated them into probabilistic col-
lections of object terms (e.g. “teacup”, “teabag”, etc.) [18].
Then, they use these probabilistic collections as input data to
train a dynamic Bayesian network model for prediction. Wy-
att et al. also proposed to mine recipes of the activities from
the Web as the labeled data, but they only use this knowl-
edge as a prior and trained a Hidden Markov Model from
the unlabeled RFID sensor data [29]. Wang et al. further
improved this work by utilizing personal activity data from
wearable sensors [28]. They first extracted the actions from
the wearable sensors, and then incorporated the actions with
the object usage to finally predict the activities. Most pre-
vious approaches either exploited only object-usage infor-
mation or required explicit action modeling. Few of them
exploited auxiliary source domains for activity recognition.

As we aim to transfer the labeled data across domains, our
work is also related to transfer learning, which is a state-
of-art learning paradigm in machine learning [3]. Transfer
learning aims at transferring knowledge from some source
domains to a target domain. In general, the data from the
both domains may follow different distributions or be repre-
sented in different feature spaces. There are several main
approaches to transfer learning in the past. The first ap-
proach can be referred to as the instance-transfer [22], where
the training examples in a source domain are weighted for
better learning in a target domain. The second approach
can be referred to as the feature-representation-transfer [21],
which finds a “good” feature representation that reduces dif-
ference between both domains for training. The third ap-
proach is parameter-transfer [6], which discovers shared pa-



rameters or priors between the models in both domains. The
fourth approach is the relational-knowledge-transfer, which
builds the mapping of relational knowledge between both
domains [16]. Our work can be seen as an instance-transfer
approach. However, our work is different from the most pre-
vious works, because they usually assume that the domains
can have different feature spaces but share the same label
space. In our work, we consider that the domains can share
the same feature space (e.g. a same set of sensors at a home),
but have different label spaces (i.e. different activities). We
also notice that, Kasteren et al. have tried to apply trans-
fer learning to help train an activity recognition model in a
new house [26]. But they also considered the two domains
(houses) have the same label space, which is different from
our work.

PROBLEM FORMULATION
We consider two domains that have the same set of sensors
spanning a feature space but have different activity (label)
spaces. Specifically, we have a source domain with a set
of activities Asrc = {a1, ..., am}, and a target domain with
another set of activities Atar = {am+1, ..., an}. Asrc and
Atar do not overlap, i.e. Asrc

∩
Atar = ∅. In other words,

we have two sets of activities, one of which called source
domain and the other of which is called target domain. In
the source domain, the sensor readings are all labeled with
activity names, and they will be used as training data. In the
target domain, we don’t have any labeled data for training,
but we know how many activities are in the target domain
and what their names are. Our aim is that, given some sensor
readings (i.e. test data) from the target domain, we can use
the labeled training data from the source domain to learn a
recognizer and thus recognize their activity labels.

Notice that we are constraining our training data in the source
domain whereas the test data is in the target domain. We will
not test the sensor readings drawn from the source domain in
the testing phase. Such a setting is reasonable due to two rea-
sons. First, as the source domain has plentiful labeled data,
using traditional learning approaches such as Naive Bayes,
decision tree or support vector machines would be enough
to recognize the source domain’s activities. So in this paper,
we are more focused on recognizing those activities from
the target domain without any labeled data. Second, it is
not hard for us to identify whether a sensor reading is drawn
from the source domain or the target domain, by using some
external sensor information. For example, we can have a lo-
cation sensor in the house to identify where the user is, so
we can know a sensor reading related to the user belongs to
the source domain’s activities (say, “making-the-bed” in the
bedroom) or the target domain’s activities (say, “laundry” in
the laundry closet).

We also make an underlying assumption that the source do-
main’s activities and the target domain’s activities do have
some kind of relationship. For example, “laundry” and “clean-
ing Indoor” are related because they both involve some kind
of “cleaning”. However, “laundry” and “watching TV/movies”
may only be weakly related, so we may not be able to trans-
fer that much useful knowledge from “laundry” to “’watch-

ing TV/movies” and hence the algorithm may not perform
well. We studied the impact of such domain differences in
the experiment section.

To be more precise, let x ∈ Rk be a k-dimensional sensor
reading (i.e. feature) vector at some time slice, and y be a
random variable whose value represents an activity (i.e. la-
bel). In the source domain, we have plentiful labeled training
data Dtrn

src = {(x(i)
src, y

(i)
src)}T1

i=1, where y
(i)
src ∈ Asrc. In the

target domain, we do not have any training labeled data; in-
stead, we only have some test data Dtst

tar = {x(j)
tar, y

(j)
tar}

T2
j=1,

where y
(j)
tar ∈ Atar are used as ground truth for testing only.

We would note that the source domain’s sensor data and the
target domain’s sensor data share the same feature space in
Rk, but the two domains have different label spaces.

In this paper, we make a simplification; that is, we break
the sequences into time slices each, and omit the possible
sequential information we could take advantage of in deal-
ing with the problem of cross-domain activity recognition.
There are several reasons for this. The first reason is that,
when we constrain ourselves to using training data from only
one subset of activities from the original training data (source
domain), we are already “choosing” the activities in the se-
quences and have damaged the sequential information con-
tained in the original data. The second reason is that, our
paper, being the first paper to tackle the problem of cross-
domain activity recognition formally, would put more em-
phasis on how to transfer useful knowledge between differ-
ent activity sets; or, more loosely speaking, how to calculate
similarities between different activities and demonstrate that
such a simple method is indeed effective in cross-domain ac-
tivity recognition tasks. Therefore, in this paper, we omit the
sequential information and treat each time sequence of sen-
sor readings with length T as T instances in the training or
testing datasets.

PROPOSED APPROACH

Algorithm Overview
Our work belongs to instance-transfer category in transfer
learning framework. In general, the instance-transfer algo-
rithms are motivated by data instance importance sampling
[22]. That is, the training data from a source domain are
weighted to train a model for the target domain, and the
weights can be generally seen as the similarities between the
source domain’s data and the target domain’s data. The more
similar some source domain’s data are to the target domain’s
data, the higher weights the source domain’s data will have
in learning. Different from the previous work on instance-
transfer which measures the similarities from the data (fea-
tures), we show that in our cross-domain activity recognition
problem, we need to measure the similarities from the label
information.

We first present an overview of our cross-domain activity
recognition (referred to as CDAR below) algorithm to pro-
vide the readers with a high-level sense of our algorithm.
Our CDAR algorithm can be generalized into three steps.



In the first step, we aim to learn a similarity function between
different activities by mining knowledge from the Web. In
particular, we will use Web search to extract related Web
pages for the activities, and then apply information retrieval
techniques to further process the extracted Web pages. After
that, we will use some similarity measure, such as Maximum
Mean Discrepancy in Eq. (2), to calculate the similarities
between any pair of activities from source domain and target
domain. Such similarities will be used later to propagate
labels for domain transfer.

In the second step, given the assumption that we only have
labeled training data in the source domain but no labeled
training data in the target domain, it is impossible to fol-
low supervised learning methods to train a recognizer for
the target domain’s activities. Therefore, by using the simi-
larity values we have learned in the first step, we aim to gen-
erate some pseudo training data for the target domain with
some confidence values. Here “pseudo training data” are the
training data with the same feature values as in the source
domain, but relabeled with the activity labels in the target
domain. Such data relabelings will be assigned with some
confidences, whose values equal to the similarities we cal-
culated in the first step; and these confidences will measure
how “strong” a particular training data instance in the source
domain can be explained as the data instances in the target
domain.

In the third step, by using the pseudo training data, we can
apply a weighted Support Vector Machine method [4] to
train a classifier, so that we can use it to recognize the ac-
tivities in the target domain.

In the following sections, we would describe each step of
our algorithm in detail.

Learning the Similarity Function
In this section, we will show how to learn a similarity func-
tion for any pair of activities from the source domain and the
target domain. To achieve this, we will novelly exploit the
Web data.

Calculate Similarity from Web Data
With the proliferation of the Web services, there are emerg-
ing Web pages that describe the daily activities. For exam-
ple, we can easily find many web pages introducing how to
make coffee. Such web pages encode the human understand-
ing to the activity semantics, such as what kind of activity
it is, what kind of objects it uses, etc. This semantics can
greatly help in measuring the similarities between the activ-
ities.

In practice, as the activity names are known, we can employ
Web search to extract web pages related to the activities. For
example, for an activity “Vacuuming” defined in the taxon-
omy of Figure 1, we can search on Google with the query
“Vacuuming” as shown in Figure 2. Then we can get a list
of search results on the page. By clicking all search results,
we can get a set of Web pages. Although the Web pages con-
tain a lot of information, only a small amount of it is related

Figure 2. Extract Web data for activities.

to the semantics of the searched activity. So we apply the
information retrieval to retrieve the useful information for
each Web page.

In particular, for each Web page, we first extract all the text
in it, and then treat the extracted text as a document di with
a bag of words. Such a document di can further processed as
a vector xw

i , each dimension of which is the term frequency-
inverse document frequency (tf-idf) [15] of a word t:

tf -idfi,t =
ni,t∑
l ni,l

· log |{di}|
|{di : t ∈ di}|

,

where ni,t is the number of occurrences of word t in docu-
ment di. Besides, |{di}| is the total number of collected doc-
uments, and |{di : t ∈ di}| is number of documents where
word t appears. The terms in the tf-idf equation are ex-
plained as follows:

• The first term ni,t∑
l ni,l

denotes the frequency of the word
t that appears in the document di. If the word t appears
more frequently in the document di, then |{di : t ∈ di}|
is larger, and thus the whole term is larger. For exam-
ple, in the returned Web page of “Vacuuming”, the word
“clean” may appear many times, so its term frequency is
high. It means that such a word encodes some seman-
tics of “Vacuuming”, and it has higher weights in the Web
data’s feature vector.

• The second term log |{di}|
|{di:t∈di}| denotes the inverse doc-

ument frequency for the word t. If the word t appears
in more documents of the corpus, then |{di : t ∈ di}| is
larger, and thus the whole term is smaller. For example,
for the word “the”, it is used in almost all the documents,
but it is a stop word without any meaning. Hence, its in-
verse document frequency will vanish to zero, thus the
whole tf-idf value of the word is zero. It means that such
a word does not encode any semantics of the searched ac-
tivity, so it can be removed from the Web data’s feature
vector.

Therefore, for an activity u (e.g. “Vacuuming”), we can get
a set of documents Dw

u = {xw
i |i = 1, ...,mu}, with each

xw
i as a tf-idf vector. Similarly, for another activity v (e.g.



“Washing-laundry”), we can also Google it and get another
set of documents Dw

v = {zwi |i = 1, ...,mv}, with each zwi
as a tf-idf vector.

After having the extracted Web data Dw
u and Dw

v , now we
will show how to measure the similarity between the activity
u and the activity v. Note that a possible choice to calculate
the similarity between two (Web) data distributions is using
the Kullback-Leibler (KL) divergence as [29] did. However,
generally the Web text data are high-dimensional and it is
hard to model the distributions over the two different data
sets. Hence, we propose to use the Maximum Mean Dis-
crepancy (MMD) [1], which can directly measure the distri-
bution distance without density estimation, to calculate the
similarity.

DEFINITION 1. Let F be a class of functions f : X → R.
Let p and q be Borel probability distributions, and let X =
(x1, ..., xm) and Z = (z1, ..., zn) be i.i.d. samples drawn
from distributions p and q, respectively. Then, the Maximum
Mean Discrepancy (empirical estimation) is

MMD[F ,X ,Z] = sup
f∈F

(
1

m

m∑
i=1

f(xi)−
1

n

n∑
i=1

f(zi)).

Considering the universal reproducing kernel Hilbert spaces
(RKHS), we can interpret the function f as the feature map-
ping function ϕ(·) of a Gaussian kernel [1].

Given the Web data Dw
u = {xw

i |i = 1, ...,mu} for activity
u and the Web data Dw

v = {zwi |i = 1, ...,mv} for activity v,
we can finally have the similarity between u and v as

sim(u, v) = MMD2[Dw
u ,D

w
v ], (1)

where MMD2[Dw
u ,D

w
v ] is the maximum mean discrepancy

defined as:

MMD2[Dw
u ,D

w
v ] =

∥∥∥∥∥ 1

mu

mu∑
i=1

ϕ(xw
i )−

1

mv

mn∑
i=1

ϕ(zwi )

∥∥∥∥∥
2

H

=
1

m2
u

∥Kw
uu∥1 −

2

mumv
∥Kw

uv∥1 +
1

m2
v

∥Kw
vv∥1 ,

(2)
where Kw

uv is the Gaussian kernel defined over the data Dw
u

and Dw
v . Specifically, Kw

uv is a mu × mv matrix, with its
entry at row i and column j defined as

Kw
uv(x

w
i , z

w
j ) = exp(−

∥∥xw
i − zwj

∥∥2
2σ2

),

where σ is the kernel width for the Gaussian kernel function.
In Equation (2), ∥·∥1 is an entry-wise norm which sums up
all the entries in the matrix.

Generating Pseudo Training Data
Now we have the similarity value sim(u, v) for each pair
of activities u ∈ Asrc and v ∈ Atar. How can we gener-
ate a new training data set defined over the label space of
the target domain? Recall that, in the source domain, we
have the training labeled data Dtrn

src = {(x(i)
src, y

(i)
src)}T1

i=1,

where y
(i)
src ∈ Asrc. For each training instance (x

(i)
src, y

(i)
src)

with y
(i)
src = u where u ∈ Asrc, we will relabel it to get a

set of pseudo training data as {(x(i)
src, vj , sim(u, vj))|vj ∈

Atar}|Atar|
j=1 . Here, the similarity sim(u, vj) between activ-

ity u and vj is used as the confidence of such a relabeling.
In other words, we duplicate each training instance |Atar|
times; and each duplication will be relabeled using one ac-
tivity category in the target domain with some confidence.
Finally, these relabeled training data duplications, which we
call “pseudo” training data, are then used for training classi-
fiers to classify activities in the target domain.

Weighted SVM Method
Now we have a pseudo training data set on the target domain
where each data instances in the dataset contains not only a
category label but also a confidence value. The confidence
value is defined as the similarity value we calculate between
two activities. Therefore, the larger the value is, the more
similar the two activities are, and the more confident we are
when interpreting such a training data instance to this activ-
ity in the target domain.

However, training support vector machines with confidence
values attached to training instances is a non-trivial task and
we apply the method proposed in [4] to accomplish our goal.
Interested readers can follow the original paper for technical
details. Here we will briefly introduce the weighted SVM
model for multi-class classification.

In [4], a “one-against-one” approach is employed for multi-
class classification. Given the N classes (in our case, each
activity in the target domain is a class, so N = |Atar|), this
approach constructs N(N − 1)/2 classifiers, each of which
trains the data from two different classes. For training data
from the ith and the jth classes, the weighted SVM model
solves the following two-class classification problem:

min
wij ,bij ,ξij

1

2
(wij)Twij + Ci

t

∑
yt=i

(ξij)t + Cj
t

∑
yt=j

(ξij)t

s.t. (wij)Tϕ(xt) + bij > 1− ξijt , if yt = i,

(wij)Tϕ(xt) + bij 6 −1 + ξijt , if yt = j,

ξijt > 0.
(3)

Here, xt is the tth data instance, yt is its class label. ϕ(xt)
is a feature mapping to xt. wij is the model parameter,
bij is the bias term, and ξij is the slack variable denoting
the classification error. Ci

t and Cj
t are the weights for the

tth instance of ith and jth classes respectively. Ct
i and Cj

t
are derived using the similarity function learned from the
previous step; and they reflect the confidence values of the
data instances xt interpreted as being from the ith class (i.e.
activity) in the target domain. In other words, the pseudo
training data point xt is from the ith class with confidence
value of Ci

t . Therefore, in Eq. (3), the first term makes
sure that in training the support vector machine the mar-
gin is maximized; the second and third terms controls the
weighted classification errors for both classes. Intuitively,
if the weight Ci

t is higher, the pseudo training data instance



xt from the ith class are more trusted in training the SVM
model.

After the optimization in Eq. (3) is solved, [4] uses a vot-
ing strategy for multi-class classification. In particular, each
binary classification for the ith and the jth classes is con-
sidered to be a vote. Then, the votes can be cast for all data
instances xt, and in the end each xt is designated to be in
a class with maximum number of votes. In case that two
classes have identical votes, the one with the smallest class
index is simply chosen.

Cross-Domain Activity Recognition (CDAR) Algorithm
Finally, we summarize our CDAR method in Algorithm 1.
As shown in Algorithm 1, at the first 3 steps, we extract
the Web pages for each activity from both domains, and ap-
ply the information retrieval technique to transform the Web
pages into tf-idf vectors. At step 4, after having the Web
data (i.e. a set of tf-idf vectors) for each activity, we com-
pute a similarity matrix for each pair of activities between
the source domain and the target domain. At step 5, based
on the learned similarities, we generate the pseudo training
data by relabeling each training instance with the activity la-
bels from the target domain. Each relabeled training instance
is assigned with some confidence (weight), which equals to
the similarity between its original activity label (from the
source domain) and the newly given activity label (from the
target domain). At step 6, we train the CDAR model using
a weighted Support Vector Machine. At step 7, we use the
trained weighted SVM classifier to performing testing on the
target domain’s data.

EXPERIMENTAL RESULTS
In this section, we plan to validate the effectiveness of our al-
gorithm through experiments on several real-world datasets.
We would plan to answer the following questions we had
posed out in our previous sections.

• Firstly, is it possible for us to transfer useful knowledge
between source domain and the target domain with our
proposed approach on sensor readings?

• Secondly, how accurate can it be when we propagate the
labels between two domains using Web knowledge?

• Thirdly, how would the choice of activities in the source
domain affect the algorithm performance when testing in
the target domain?

• And finally, how would our algorithm parameters, such
as the similarity function we use and the number of top
ranked pages we pick out in the searching step, affect our
algorithm performance?

In this section, we propose to answer these questions to pro-
vide a systematic view over the performance of our algo-
rithm.

Datasets, Evaluation Criteria and Implementation Details

Algorithm 1 Algorithm for CDAR
Input: Source domain has T1 labeled training data Dsrc =

{(x(i)
src, y

(i)
src)}T1

i=1, where y
(i)
src ∈ Asrc. Target domain does

not have any labeled training data; instead it has T2 test
data Dtar = {(x(j)

tar, y
(j)
tar)}

T2
j=1, where y

(j)
tar ∈ Atar are the

ground truth labels for testing only.
Output: Predicted labels on the test data in target domain.
begin

1: For each activity u ∈ Asrc, extract a list of Web pages
from some search engine (such as Google);

2: For each u’s Web pages, apply information retrieval
technique and transform each Web page to a tf-idf vec-
tor, and form a Web data set Dw

u ;
3: Similar to the above two steps, extract a Web data set

Dw
v for each activity v ∈ Atar;

4: For any two activities u ∈ Asrc and v ∈ Atar, calculate
the similarity sim(u, v) = MMD2(Dw

u ,D
w
v ) using the

maximum mean discrepancy in Eq.(2);
5: Generate pseudo training data as follows: each train-

ing instance (x
(i)
src, y

(i)
src) with y

(i)
src = u where u ∈

Asrc, is relabeled to get a set of pseudo training
data as {(x(i)

src, vj , sim(u, vj))|vj ∈ Atar}|Atar|
j=1 with

sim(u, vj) as the confidences.
6: Train the model CDAR with a weighted SVM [4] on the

generated pseudo training data.
7: Testing by the trained weighted-SVM classifier.

end

In this paper, we use three real-world activity recognition
datasets to validate our algorithm. Our first dataset (Ams-
terdam in short) 1 is from [27] where a dataset is recorded
in the house of a 26-year-old man, living alone in a three-
room apartment where 14 state-change sensors are installed.
Locations of sensors include doors, cupboards, refrigerators
and a toilet flush sensor. Sensors were left unattended and
collected data for a period of 28 days, resulting in 2120
sensor events and 245 activity instances with seven differ-
ent activities annotated: “Leave house”, “Toileting”, “Show-
ering”, “Sleeping”, “Preparing breakfast”, “Preparing Din-
ner”, “Preparing Beverage”. The second dataset we use is
the MIT PLIA1 dataset 2 [11], which was recorded on March
4, 2005 from 9AM to 1PM in the MIT PlaceLab. The dataset
contains 89 different activities and was manually classified
into several categories such as “Cleaning”, “Yardwork”, etc.
The third dataset is from [17] and is provided by Intel Re-
search Lab (Intel in short), which aims to recognize 11 rou-
tine morning activities.

The evaluation criteria we use in this paper is rather stan-
dard and simple, since we are omitting all possible sequen-
tial information we might use in the dataset and therefore we
just calculate the accuracy we achieve on the test data set, in
other words, the number of correctly predicted activities di-
vides the total number of activities.

1http://staff.science.uva.nl/∼tlmkaste/research/software.php
2http://architecture.mit.edu/house n/data/PlaceLab/PLIA1.htm



We also briefly describe how we handle the Web pages we
crawled from the search engine. Using the activity names
(e.g. preparing breakfast, cleaning misc, etc.) as queries, we
submit these queries to Google and then the top K results
are retrieved from, where K is a parameter we will tune in
the next sections to show the relationship between algorithm
performance and the number of Web pages we retrieve for
each query. Next, data preprocessing has been applied to the
raw data where all letters in the text are converted to lower
case and the words are stemmed using the Porter stemmer
[20]. Furthermore, stop words are removed. The SVM im-
plementation we used is the LIBSVM package [4].

Algorithm Performance
We report the performance of our algorithm on three datasets
with different source domain’s activities and target domain’s
activities. We will also describe the way we choose the ac-
tivities in the source domain and how we choose our target
domain for testing in detail.

In our first dataset, there are only 7 activities. Therefore, we
use training data from 3 activities for training (source do-
main), and using the remaining 4 activities for testing (target
domain). All sensor events with their activities in the source
domain are used as training data and the rest used as testing
data. The process of selecting different activities is repeated
ten times and we report the average accuracy and standard
deviation we get under different parameters K. Here K is
the number of top ranked Web pages we extract from the
search engine results. We use a similar way of choosing ac-
tivities in the source domain and the target domain in the
dataset [11], while we use 5 activities in the source domain
and the remaining 6 activities in the target domain. Again,
the algorithm is repeated ten times to report a mean accuracy
and standard derivation value. Detailed results are shown in
Table 1 below. The row “Supervised” indicates the accu-
racy we achieve using SVM classifier with normal 10-fold
cross validation on the target domain when we could acquire
labeled data on them, in other words, the performance of
SVM classifier under the traditional supervised learning set-
ting on the target domain. Such a result could be used as
a baseline and an upper-bound to understand how good the
performance of our cross-domain activity recognition sys-
tem is.

K Amsterdam Acc(Std) Intel Acc(Std)
K = 5 40.2% (21.7%) 39.8% (19.7%)
K = 10 53.7% (22.8%) 47.3% (20.2%)
K = 20 65.8% (22.1%) 58.1% (20.7%)
K = 50 66.7% (21.2%) 63.2% (23.5%)
K = 100 66.0% (22.4%) 63.1% (20.7%)

Supervised 72.3% (20.7%) 78.3% (17.6%)

Table 1. Algorithm Performance on Amsterdam and Intel Dataset.

In the MIT PLIA1 dataset, since there are many activities
included in this dataset and a taxonomy could be built to
describe these activities [8, 11]. Therefore, in MIT PLIA1
dataset, we analyze how the performance will be when we
use the activities under the same category as activities in the

source domain and construct training data, and then do the
testing on another set of activities under the same category
in the target domain.

Examples are shown in Figure 1, when we use activities un-
der the node of “Cleaning Indoor” as activities in the source
domain and activities under the node of “Laundry” or “Dish-
washing” as activities in the target domain. Therefore, we
are using all sensor events with activities “Sweeping, Swif-
tering, Mopping, Vacuuming, Dusting, Making the bed, Putting
things away, Disposing Garbage, Taking out trash, Cleaning
a surface, Scrubbing, Cleaning misc, Cleaning background”
as training data and the testing data might be composing
of all sensor events with activities “Washing laundry, Dry-
ing laundry, Washing laundry background, Drying laundry
background, Folding laundry, Putting away laundry, Ironing,
Laundry misc”. 3

The reason for us to choose the source domain’s activity set
and the target domain’s activity set in such a way is as fol-
lows: we would like to analyze the performance of our al-
gorithm to transfer from a more “categorized” set of activi-
ties to another set of activities, which is more similar rather
than chosen at random, as we had done in the previous two
datasets. We report the performance of our algorithm tested
on different pairs of source activity sets and target activity
sets, with mean accuracies and standard deviations calcu-
lated over ten independent runs. Results are reported below
in Table 2 with various settings of parameter K.

From Table 1 and Table 2, we can observe that our cross do-
main activity recognition (CDAR) algorithm could achieve
comparable performance to supervised learning classifiers
when evaluated on the target domain’s activities and trained
on source domain’s activities. Especially, we find that when
we evaluate SVM classifier under a supervised learning sce-
nario on the Amsterdam dataset, the accuracy is around 72%,
whereas we could achieve a performance of 66% using our
cross-domain activity recognition algorithm, which is very
close to the upper bound.

We also observe that with the increasing value of K being
introduced in the algorithm, the performance generally in-
creases. Such an observation follows our intuition, which
means more information is being extracted from the top Web
pages and generally the MMD value calculated is more ac-
curate, thereby improving the performance of the algorithm
overall. Here we make another special note of how the choice
of value K would affect our algorithm performance. From
Table 1 and Table 2, we could observe that a good value
of K, around 20 or 50, would give us the optimal results.
The reason is that, when K is too small, the Web page data
is sparse and hence we could not learn much useful infor-
mation for calculating similarity function and when K is
too large, it may probably add noise into the Web page we
had crawled and therefore it may degrade the overall perfor-
mance of our algorithm.

3Some activities, although defined in the activity taxonomy, do not
appear in the MIT PLIA1 dataset, e.g. “Mopping”.



Source Target K = 5 Acc (Std) K = 10 Acc (Std) K = 20 Acc (Std) K = 50 Acc (Std)
Cleaning Laundry 40.4% (21.2%) 53.4% (19.2%) 57.3% (18.7%) 58.9% (20.5%)
Cleaning Dishwashing 38.9% (22.8%) 43.2% (18.7%) 49.3% (23.0%) 53.2% (20.7%)
Cleaning Hygiene 42.4% (21.7%) 48.3% (22.8%) 52.4% (17.6%) 58.3% (20.7%)
Cleaning Information / Leisure 43.1% (23.0%) 45.7% (17.9%) 52.8% (20.7%) 54.9% (22.8%)
Laundry Cleaning 41.2% (19.2%) 52.8% (20.5%) 53.2% (20.7%) 60.2% (20.0%)
Laundry Dishwashing 43.2% (20.2%) 53.2% (20.7%) 58.3% (20.5%) 61.2% (21.2%)
Laundry Hygiene 49.3% (19.5%) 46.3% (19.2%) 49.5% (23.0%) 58.3% (21.4%)
Laundry Information / Leisure 32.7% (19.2%) 40.2% (20.7%) 48.3% (20.5%) 49.2% (22.6%)

Dishwashing Cleaning 45.3% (21.2%) 48.3% (20.5%) 53.2% (21.7%) 59.2% (19.2%)
Dishwashing Laundry 44.8% (20.5%) 50.1% (21.7%) 54.8% (21.9%) 60.8% (22.6%)
Dishwashing Hygiene 43.2% (20.2%) 52.7% (22.1%) 57.3% (20.7%) 59.2% (16.7%)
Dishwashing Information / Leisure 39.3% (20.2%) 43.7% (21.7%) 48.3% (18.7%) 50.3% (19.2%)

Hygiene Cleaning 44.7% (20.5%) 45.8% (20.5%) 49.7% (20.7%) 52.9% (19.5%)
Hygiene Laundry 41.8% (20.7%) 43.7% (20.2%) 53.8% (23.0%) 53.7% (17.0%)
Hygiene Dishwashing 42.9% (22.6%) 42.8% (19.2%) 47.1% (22.8%) 51.2% (18.7%)
Hygiene Information / Leisure 30.7% (19.5%) 33.8% (20.5%) 38.3% (20.2%) 42.3% (21.2%)

Table 2. Algorithm Performance on MIT PLIA1 Dataset

Therefore, our experimental results on three datasets could
validate the effectiveness of our algorithm.

Choice of Similarity Functions
The Maximum Mean Discrepancy (MMD) function in our
proposed approach seems to be an ad hoc choice, and it is
natural for one to ask the question about whether it is chosen
deliberately to improve the performance of our algorithm or
whether other similarity functions would also achieve com-
parative performance, compared to MMD? To answer this
question, we also evaluated our algorithm using another sim-
ilarity function that is also popular in calculating the similar-
ity in information retrieval, i.e. the cosine similarity [15].

In short, the cosine similarity is defined as the cosine of the
angle between two vectors, defined as:

similarity = cos(θ) =
A ·B
|A||B|

, (4)

where A and B are two vectors and for text matching. Such a
value is easy to calculate based on the Webp ages we crawled.
In our case, we generate A and B by merging the term-
frequency (tf) vectors of the documents for the two candidate
activities. For example, given the K Web pages extracted for
some activity aA, we will add up all the corresponding K tf
vectors to get such a vector A. Similarly, we can get the
vector B for some activity aB , so that we can compute the
Eq. (4). Using similar approaches except the MMD function
replaced with the cosine similarity function, we report our
results for the Amsterdam dataset [27] and the Intel dataset
[17] in Table 3.

In Table 3, the left two columns are results using cosine sim-
ilarity functions and the right two columns are results using
MMD functions, which is the same as results reported Table
1. We could see that although the results using cosine simi-
larity functions are slightly worse than the results we report
using MMD functions, it still achieves comparable perfor-
mance to MMD. Therefore, we could make the conclusion

that by incorporating other “meaningful” and “reasonable”
similarity functions, our cross-domain activity recognition
algorithm could still achieve reasonable performance.

In addition, one particular characteristic of our algorithm is
that, the standard deviations of the experimental results are
large. The reason is that in each round of training and test-
ing, it is possible that we are selecting quite different sets of
activities. In some rounds the activities drawn in the source
domain are more similar to the activities in the target domain
compared to the other rounds, thus making the prediction ac-
curacy not as stable.

Discussion of Experiments
Here we briefly discuss and summarize some characteristics
of the results we report from our experiments.

• Firstly, our algorithm CDAR, could successfully trans-
fer knowledge between source domain and target domain
and thus solve the cross-domain activity recognition task.
From Tables 1, 2 and 3, we could see that in most cases,
our algorithm could achieve an accuracy of more than
60% when evaluating on the test domain activity set. Such
a performance is rather promising since (i) we did not
use any sequential information, which had proved to be
of great help in traditional activity recognition tasks; (ii)
we did not use any labeled data in the target domain, such
a feature is especially effective in real world use, since the
activity recognition system will be trained on a predefined
set of activities and then when users use such an activity
recognition system, he may perform activities outside of
the predefined activity set. Therefore, such an algorithm
that could perform cross-domain activity recognition and
does not acquire training data in the target domain would
be especially useful.

• Secondly, the number of K Web pages we extract from
the search engine results would affect the algorithm per-
formance but would be rather close to the optimal results
or converge when K is larger than 50. This means that



Cosine Similarity MMD Similarity
K Amsterdam Acc(Std) Intel Acc(Std) Amsterdam Acc(Std) Intel Acc(Std)

K = 5 48.7%(19.5%) 42.4% (20.5%) 40.2% (21.7%) 39.8% (19.7%)
K = 10 53.2%(20.7%) 45.3% (20.2%) 53.7% (22.8%) 47.3% (20.2%)
K = 20 58.3% (20.2%) 52.1% (20.7%) 65.8% (22.1%) 58.1% (20.7%)
K = 50 62.1% (19.2%) 57.3% (19.0%) 66.7% (21.2%) 63.2% (23.5%)
K = 100 65.3% (16.7%) 62.3% (21.7%) 66.0% (22.4%) 63.1% (20.7%)

Table 3. Algorithm Performance on Amsterdam and Intel Dataset with Cosine Similarities and MMD Similarities.

we could approximate the underlying similarity score be-
tween different activities by using around 50 related Web
documents. Another advantage is that the cost of perform-
ing such a Web search would not be heavy to put into real
world usage.

• Thirdly, the choice of similarity functions would not affect
our algorithm performance that much as long as a reason-
able similarity function that approximates the underlying
similarity would be used. In our experiments we have al-
ready validated this conclusion through the usage of both
MMD and cosine similarity functions and from the com-
parison between these two functions, we arrive at such a
conclusion.

• Fourthly, whether the cross-domain activity recognition
performance would be successful or not depends not only
on the algorithm but on some underlying characteristics
of the activity set. In Table 2, we could note that some ac-
tivity pairs perform worse than others, for example, when
we are transferring knowledge from activities under the
subcategory of “Hygiene” (Source Domain) to activities
under the subcategory of “Information / Leisure” (Target
Domain), we could only achieve an accuracy of around
42% at the best. (Corresponding to the last row in Ta-
ble 2.) Such a result might be of the reason that there
is a relatively larger distance between “Hygiene” activi-
ties and “Information/Leisure” activities. In contrast, we
could also find that when we use activities in the “Dish-
washing” subcategory as the source domain and activi-
ties in the “Cleaning” or “Laundry” subcategory as the
target domain, the accuracy we achieve is much higher,
suggesting that these two kind of activities have closer re-
lationships, which also follows our intuition. Thus, one
interesting topic to study is to determine when we could
successfully “transfer the knowledge” between the source
domain and the target domain, or, if we had known the
activity set in the target domain in advance, what source
domain would be best for us to use to ensure that the al-
gorithm performance can be guaranteed? One possible
choice can be using some activity ontology and shrinkage
based approach to combine data from similar activities for
training the classifier [23].

CONCLUSION AND FUTURE WORK
In this paper, we have proposed a simple yet effective ap-
proach to solve the cross-domain activity recognition prob-
lem. The basic setting of our problem lies in that we have
labeled training data in the source domain but no labeled
training data in the target domain; and our goal is to predict

the activities in the target domain. Furthermore, the activi-
ties in the source and target domain do not overlap, which
means that traditional supervised learning approaches can-
not be applied under this scenario. Our proposed approach
makes use of top ranked Web pages returned by search en-
gines to mine the similarities between the activities in the
two domains. Such an assumption makes it possible for us
to “interpret” the labeled data in the source domain using the
label space of the target domain. We validate our approach in
several real-world sensor-based activity recognition datasets,
and achieve results comparable to those of traditional activ-
ity recognition algorithms based on supervised learning.

In the future, we aim to extend our work in several directions
which would dig deeper alongside the problem of cross-
domain activity recognition. Firstly, we aim to discuss cases
where not only the labeled space, but also the feature spaces
in two domains are different, so that an innovative approach
for bridging the two feature spaces must be proposed as well.
Secondly, since we omit the sequential information in the
current approach for simplicity reasons, we plan to propose
new approaches for cross-domain activity recognition which
could make better use of sequential information. Thirdly, we
aim to investigate into the intrinsic question of “whether the
activities in two domains can be transferred or not” and “if
we cannot acquire training data for activities in the target do-
main, what activities would be best for us to use as training
data in the source domain”? Such questions are the possible
directions along which we could extend in the future.
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