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Abstract. Most existing transfer learning techniques are limited to
problems of knowledge transfer across tasks sharing the same set of class
labels. In this paper, however, we relax this constraint and propose a
spectral-based solution that aims at unveiling the intrinsic structure of
the data and generating a partition of the target data, by transferring the
eigenspace that well separates the source data. Furthermore, a clustering-
based KL divergence is proposed to automatically adjust how much to
transfer. We evaluate the proposed model on text and image datasets
where class categories of the source and target data are explicitly dif-
ferent, e.g., 3-classes transfer to 2-classes, and show that the proposed
approach improves other baselines by an average of 10% in accuracy. The
source code and datasets are available from the authors.

1 Introduction

Traditional supervised and semi-supervised learning work well under the strict
assumption that the labeled training data and unlabeled test data are drawn
from the same distribution and have shared feature and category spaces. In many
real world applications, however, this assumption may be violated. In fact, we
often encounter the situations where we do not have sufficient labeled training
examples in the target learning task. Examples include spam filtering, biological
sequence annotation, web searching, and the like. To acquire more labels could
usually be expensive or infeasible. For example, in the field of computational
biology, many expensive and time-consuming experiments are needed to provide
the labels for even a small number of examples. As an alternative solution,
transfer learning was proposed to help extract some supervisory knowledge from
� Part of the work was done when the author was a visiting student at HKUST.
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related source data to help learn the target task (e.g., [3,4,16,22]). Existing
transfer learning techniques implicitly assume that there is sufficient overlap
between the source data and the target data, and categories of class labels are the
same, in order to allow the transfer of knowledge. However, this can significantly
limit the applicability of transfer learning, as it is not always possible to find
labeled data satisfying these constraints. In order to improve its applicability, we
study how to transfer knowledge across tasks having different class categories.

For example, can the text documents labeled in “wikipedia” help classify those
documents in “ODP1” even though they have different index systems? Can the
labeled source image data in Fig 1(a) help classify the target data in Fig 1(b)
given that they are images of different objects? The problem formulation is to
partition an unlabeled target data, by the supervision from a labeled source data
that has different class categories. To solve the problem, two issues need to be
addressed:

1. What and how to transfer? Since the source and target data have differ-
ent class labels, we can not directly take advantage of the class conditional
density p(x|y) or posterior p(y|x) to construct the model, and thus most of
the previous transfer learning methods do not work. A new transfer learning
strategy independent of class labels is needed.

2. How to avoid “negative transfer”? Given that the source and target data do
not share class labels, they may come from significantly different domains.
Thus, it is also necessary to avoid negative transfer (or accuracy worse than
no transfer) when the source and target data are unrelated.

We propose a spectral-based solution that uses eigenspace to unveil the intrinsic
structure similarities between source and target data. The key idea is that, re-
gardless of their class category naming, if the source and target data are similar
in distribution, the eigenspace constructed from the source data should be also
helpful to reflect the intrinsic structure of the target data. We illustrate the in-
tuition in Fig 1. Although the target data (Fig 1(b)) and source data (Fig 1(a))
have totally different class labels, the eigenspace Fig 1(c) constructed with the
supervision from Fig 1(a) still helps group the target data. On the one hand, the
images about homer-simpson are similar to the images about cartman because
they are all cartoon characters; on the other hand, the shape of real bear is sim-
ilar to teddybear, and the background of real bear may contain plants similar to
palm tree. Thus, the eigenspace that well separates Fig 1(a) also helps separate
Fig 1(b) even though their class labels are different.

To be specific, the proposed model finds an eigenspace through a combination
of two optimization objectives. The first is to find the eigenspace that well sep-
arates the source data: the labeled data with the same class categories will be
grouped together. The second objective is to maximize the marginal separation
of the unlabeled target data. Moreover, to avoid negative transfer, we also derive
a clustering-based Kullback-Leibler divergence to measure the difference in dis-
tribution between two finite datasets more effectively (see Lemma 1). We then
1 “Open Directory Projects” (http://www.dmoz.org/). Both “wikipedia” and “ODP”

are systems categorizing large amount of documents.
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(a) Labeled Source Dataset (b) Unlabeled Target Dataset

(c) Solution in eigenspace

Fig. 1. An example on two image datasets with totally different class labels. Fig 1(c)
is the eigenspace constructed with the supervision from the source dataset, and we
plot a sub set of examples to illustrate the intuition. In this example, the eigenspace
learnt from source dataset (Fig 1(a)) can also reflect the structure of the target dataset
(Fig 1(b)) though their class labels are different.

make use of the measure to define “transfer risk” to regulate the effects of the two
objectives. When the two datasets are very different, the effect of the first objec-
tive (or the supervision from source task) automatically decreases to minimize
the risk of negative transfer. We provide a PAC bound for the proposed method
in Theorem 1. In addition, the proposed algorithm is tested in several datasets
where target and source data have very different class categories. For instance,
in one of the experiments, we apply the 4-classes document sets “Graphics vs.
Hardware vs. Politics.mid vs. Religion.misc” to supervise the partition of the
binary document datasets “Comp vs. Rec”. The proposed model achieves an
accuracy 98%, while the accuracy of the baseline that does not apply transfer
learning is only 74%.

2 Problem Formulation

We consider the problem to find a good partition of the unlabeled target data,
possibly with the supervision from the labeled source data having different class
labels, only when the supervision is helpful. We denote the source data as L =
{l1, l2, ..., ls}, and the target data as U = {u1,u2, ...,ut}, where s and t are
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the sample size for the source and target data, respectively. Both L and U are
drawn from the same feature space Rd under different distributions L ∼ PL and
U ∼ PU . We also denote that the class labels of L are Y = {y1, y2, ..., yr} where
r is the number of categories of L, while the number of class labels of U is k.
And we do not assume the class labels of source and target data are the same.

No Transfer: To generate a partition C = {c1, c2, ..., ck} of the target data U ,
we find a clustering decision function N : U �→ C to minimize ε[N (U)], where
ε[∗] is a cost function to measure the quality of the partition. Example of such
a function is Normalized Cut [19].

Transfer Learning: We learn the partition U �→ C by making optional use of
the knowledge from the source data. There are many interpretations of transfer
learning strategies, e.g., [3,4] reviewed in Section 5. One straightforward strategy
is formulated as follows. We first learn a decision function F : L �→ Y on the
feature space Rd that correctly reflects the true label of the source data L. A
simple transfer learning strategy can be T (U) = M(F(U)), where M : Y �→ C.

Negative Transfer: Since the source and target data have different class labels,
they may be from very different domains. Thus, one of the main challenges is
how to avoid negative transfer when the source and target data are too different.
Formally, L and U may be very different so that the performance after transfer
learning is worse than no transfer. Formally,

ε[N (U)] < ε[T
(
U)] (1)

where ε[∗] is the cost function to measure the partition quality. There can be
other criteria such as error rates in classification problem. When Eq (1) holds,
it is said to have negative transfer [17].

3 Risk-Sensitive Spectral Partition

We propose an improved spectral partition model to transfer the eigenspace
that well separates the source data, in order to generate a good partition of
the target data. Importantly, source and target data have different class labels.
Since negative transfer may happen, we use the “risk of negative transfer” to
automatically decide when and how much to transfer.

3.1 Divergence Measure and Transfer Risk

We first derive a new formula of the KL-divergence and propose a clustering-
based approach to calculate it, in order to quantify the difference between source
and target data more effectively. Normally, given two probability distributions
P and Q, the KL divergence KL

(
P ||Q

)
is defined as follows2:

KL
(
P ||Q

)
=

∑

x

P (x)
(
logP (x) − logQ(x)

)
(2)

2 KL can be also written in terms of probability density in a continuous form, which
is difficult to estimate without prior knowledge [1].
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On finite datasets, one usually calculates P (x) and Q(x) for every value of
x via Eq (3).

P (x = a) =
|{x|x = a ∧ x ∈ DP }|

|{x|x ∈ DP }|

Q(x = a) =
|{x|x = a ∧ x ∈ DQ}|

|{x|x ∈ DQ}|

(3)

where DP ∼ P and DQ ∼ Q are the datasets generated from the distributions P
and Q, respectively. However, small changes to the datasets, such as those sparse
ones typically found in text mining, can result in significant changes by the above
approximations, making it difficult to distinguish different distributions [1]. To
resolve this problem, we derive another format of the KL divergence and propose
a clustering-based approach to calculate it. We first perform a clustering on the
combined dataset DP ∪DQ. We then directly employ some basic statistics of the
clustering results as shown in Lemma 1.

Lemma 1. Given two distributions P and Q, the KL divergence can be rewritten
with a new formula as3:

KLc

(
P ||Q

)

=
1

E(P )

(∑

C

(
P ′(C)S(P ′, C)log

S(P ′, C)
S(Q′, C)

)

+
∑

C

(
P ′(C)S(P ′, C)log

P ′(C)
Q′(C)

))
+ log

E(Q)
E(P )

(4)

where C is the cluster generated from the combined dataset, and

S(P ′, C) =
|DP ∩ C|

|C| , P ′(c) =
|DP ∩ C|
|DP ∪ DQ|

,

E(P ) =
|DP |

|DP ∪ DQ|

(5)

Likewise are the definitions of S(Q′, c), Q′(c) and E(Q) (by replacing DP with
DQ in the nominator).

Proof. Define P ′(x = a) = |{x|x=a∧x∈DP}|
|{x|x∈DP∨x∈DQ}| , E(P ) = |DP |

|DP∨DQ| . We then have

P (x) = P ′(x)/E(P )

Q′(x = a) and E(Q) are defined in a similar way. Note that the first step of
the proposed calculation is to perform clustering on the combined dataset. We
expect a reasonable clustering approach can guarantee that the instances with
the same value are assigned to the same cluster. In other words, {x|x = a ∧ x ∈
3 To distinguish the new formula with the original formula of KL, we denote the new

version as KLc (Clustering-based KL). Their difference is explained after the proof.
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DP ∧ x ∈ c} = {x|x = a∧ x ∈ DP } where c is a cluster and x ∈ c. This property
can be valid for many clustering approaches, such as K-means. We then have

P ′(x=a, c)=
|{x|x = a ∧ x ∈ DP ∧ x ∈ c}|

|{x|x ∈ DP ∨ x ∈ DQ}|
=

|{x|x = a ∧ x ∈ DP }|
|{x|x ∈ DP ∨ x ∈ DQ}|

=P ′(x=a)

With these equations, the KL divergence in Eq (2) becomes:

KLc

(
P (x)||Q(x)

)

=
∑

x

P (x)log
P (x)
Q(x)

=
∑

x

P ′(x)
E(P )

log
P ′(x)E(Q)
Q′(x)E(P )

=
∑

x

P ′(x)
E(P )

log
P ′(x)
Q′(x)

+ log
E(Q)
E(P )

∑

x

P ′(x)
E(P )

∑

c

∑

x∈c

P (x, c)log
P (x, c)
Q(x, c)

=
1

E(P )

(∑

c

∑

x∈c

(
P ′(x|c)P ′(c)log

P ′(x|c)P ′(c)
Q′(x|c)Q′(c)

))
+ log

E(Q)
E(P )

=
1

E(P )

(∑

c

(
P ′(c)

∑

x∈c

P ′(x|c)log
P ′(x|c)
Q′(x|c)

)

+
∑

c

(
P ′(c)log

P ′(c)
Q′(c)

∑

x∈c

P ′(x|c)
))

+ log
E(Q)
E(P )

Recall that the instances assigned to the same cluster are very similar to each
other. We can then assume that in the same cluster, the expectation of instances
from distribution P is the same as expectation of instances from Q:

Ex∈DP ,x∈c[x] = Ex∈DQ,x∈c[x]

⇒
∑

x∈c

x
P ′(x|c)

∑

x∈c
P ′(x|c) =

∑

x∈c

x
Q′(x|c)

∑

x∈c
Q′(x|c)

⇒
∑

x∈c

x(
P ′(x|c)

∑

x∈c
P ′(x|c) − Q′(x|c)

∑

x∈c
Q′(x|c) ) = 0

Note that this property can be guaranteed to be satisfied by applying clustering
techniques such as bisecting k-means [18], with |Ex∈P,x∈c[x] − Ex∈Q,x∈c[x]| < θ
as the termination condition, where θ set close to 0. In other words, if the
condition does not satisfy in one of the clusters, a binary clustering procedure
can be performed to divide the cluster smaller, until each cluster satisfies the
condition. This process also adaptively decides the number of clusters. Since x
can take any value, to validate the above equation, we let

P ′(x|c)
∑

x∈c
P ′(x|c) =

Q′(x|c)
∑

x∈c
Q′(x|c)
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Eq (2) can then be rewritten as

KLc

(
P (x)||Q(x)

)

=
1

E(P )

( ∑

c

(
P ′(c)

∑

x∈c

P ′(x|c)log

∑

x∈c
P ′(x|c)

∑

x∈c
Q′(x|c)

)

+
∑

c

(
P ′(c)log

P ′(c)
Q′(c)

∑

x∈c

P ′(x|c)
))

+ log
E(Q)
E(P )

=
1

E(P )

( ∑

c

(
P ′(c)S(P ′, c)log

S(P ′, c)
S(Q′, c)

)

+
∑

c

(
P ′(c)S(P ′, c)log

P ′(c)
Q′(c)

))
+ log

E(Q)
E(P )

�

The main difference between the original version of the KL divergence in Eq (2)
and its new formula KLc in Lemma 1 is that they are calculated in different ways
in practice. The original version of KL in Eq (2) is usually calculated by Eq (3)
because its formula requires to know every specific values of each variable x.
However, with the new formula in Lemma 1, we can calculate the KL divergence
by the clustering result on the whole dataset with several advantages. First, the
clustering-based KL divergence in Lemma 1 can be computed efficiently and
easily, because it only uses some basic statistics of the clustering. For example,
S(P ′, C) in Eq (5) represents the proportion of examples in the cluster C origi-
nally generated from the distribution P . Second, we do not explicitly calculate
the marginal distribution P (x), which is normally difficult to approximate with
a limited number of instances. Third, “high-level structures” (clusters) of the
datasets are applied as a bridge to learn their differences, which are normally
a more effective way to reflect the divergence. Other than the proof, we also
empirically study the proposed version of KL in the experiment.

It is important to note that the KL divergence is asymmetric. In other words,
KLc(PL||PU ) is not necessarily equal to KLc(PU ||PL), where L ∼ PL, U ∼ PU .
However, we keep this property because we are only interested in the “risk” of
learning the unlabeled data U based on the concept learnt from the labeled data
L. In other words, we use the risk of coding U based on the encoding from L, as
reflected by KLc(PU ||PL). With Lemma 1, we define the “transfer risk” �(L;U)
in the logistic form, to regularize it into [0, 1] and it is consistent with the known
form of probability distribution:

�(L;U) =
(
1 + exp(λ − KLc(PU ||PL))

)−1 (6)

where L ∼ PL, U ∼ PU , and λ = e2 is a deviation to make the minimum
value of �(L;U) close to 0. We then incorporate the transfer risk �(L;U) into
the proposed optimization function to automatically regulate the objectives to
avoid negative transfer.
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3.2 Objective Function

To generate a partition of the target data, the proposed algorithm finds an
eigenspace where the target data can be clearly separated through a combination
of two objectives. The first is to ensure the labeled data with the same class
labels will be grouped together, and the second is to adapt the feature space
to cater to the target data. Importantly, the transfer risk �(L;U) (Section 3.1)
automatically regulates the two goals.

Formally, the proposed optimization function, based on graph partition, can
be written as

min
Y

J (L,U) = Cut(GL∪U , Y ) + β
((

1 −�(L;U)
)
TL + �(L;U)TU

)
(7)

where Cut(GL∪U , Y ) is a cost function of the partition Y on a graph GL∪U
generated from the combined data L ∪ U . Examples of such cost functions are
Normalized Cut [19], MinMax Cut [6], and so on. Note that TL and TU are the
two objectives formulated as partition constraints; β is a parameter to control
the overall effect of the constraints. On one hand, TL is directly derived from
the “must-link” constraint [21] to find a subspace where the instances are close
to each other if they have the same class labels. On the other hand, TU is a
partition constraint defined on the pre-clustering result of U to reflect its natural
separation. To construct TU , we first perform unsupervised spectral clustering
on the target data U individually by Ncut [19]. The proposed algorithm then
prefers to find a subspace to “gather” the instances closer if they are in the
same pre-cluster. This constraint is defined to “reinforce” the natural manifold
structure of U by maximizing its marginal separation.

We describe a partition constraint as TL or TU in Eq (7). To do this, we
construct a constraint matrix M as follows:

M = [m1,m2, ...,mr]T (8)

where each md is a (s + t) × 1 matrix (s + t is the total size of the combined
dataset L ∪ U). Each md represents a constraint on the dataset. For example,
if m1 has an entry of +1 in the ith row, −1 in the jth row and the rest are all
zero, it represents data i and data j are constrained to be close to each other.
There are a total of r constraints on the dataset. Then, let ML and MU denote
the constraint matrix of TL and TU , respectively. We have

TL = ‖MLY ‖2

TU = ‖MUY ‖2
(9)

where Y is the partition indicator. Now consider normalized cut [19] as the graph
partition cost function, the proposed optimization function in Eq (7) becomes:

min
Y

J (L,U) =
Y T (D − W )Y

Y T DY
+ β

((
1 −�(L;U)

)
‖MLY ‖2 + �(L;U)‖MUY ‖2

)

(10)
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where Y is the partition indicator, W is the similarity matrix of the combined
dataset L ∪ U , and D = diag(W ·e) (� is a vector with all coordinates as 1).
In Eq (10), the first term reflects the partition quality derived from normalized
cut, and the second term consists of two constraints (‖MLY ‖2 and ‖MUY ‖2),
representing the two objectives; β is the parameter to control the overall effect
of the constraints. The transfer risk �(L;U) serves as the pivotal component to
balance the two constraints.

Then, if the transfer is too risky, or �(L;U) is large, the effect of the first
constraint decreases, and the optimization step prefers to satisfy the second
constraint more in order to maintain the natural manifold structure of the target
data and to avoid negative transfer. It is also important to emphasize that the
parameter β is not the essential component to avoid negative transfer. When
negative transfer is likely to happen, the constraint will mainly come from the
target data regulated by �(L;U). In this case, the partition constraint does
not include supervision from source data, and thus negative transfer is avoided
regardless of the value of β. The effect of β is also studied in the experiment.

3.3 Optimization

We introduce a key step to solve the proposed optimization function Eq (10).
First, we denote

A = D − W + β
((

1 −�(L;U)
)
M

T
LML + �(L;U)MT

UMU
)

(11)

and Z = D
1
2 Y/‖D 1

2 Y ‖. Then we have:

J (L,U) =ZT D− 1
2 (D − W )D− 1

2 Z

+ β
((

1 −�(L;U)
)
‖MLD− 1

2 Z‖2

+ �(L;U)‖MUD− 1
2 Z‖2

)

=ZT D− 1
2 AD− 1

2 Z =
Y T D− 1

2 AD− 1
2 Y

Y T Y

(12)

It is easy to prove that A is symmetric, because D, W , M
T
LML and M

T
UMU are all

symmetric while A is a liner combination of these symmetric matrices. When we
relax Y to take the real values similar to other spectral clustering methods [10],
we can use the k smallest orthogonal eigenvectors of D− 1

2 AD− 1
2 to generate the

partition.
The proposed algorithm is described in Fig 2. The algorithm first prepares

the partition constraint matrices ML and MU as Eq (8), and the transfer risk
�(L;U) according to Eq (6). Moreover, we also construct the similarity matrix
W by a distance function like cosine distance, and then construct the correspond-
ing diagonal matrix D. With these terms, we can get a matrix A according to
Eq (11). Then, we use the k smallest eigenvectors of D− 1

2 AD− 1
2 to generate

the eigenspace. Finally, we can perform clustering on the projected target data
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Fig. 2. Risk-sensitive Spectral Partition. Input: labeled dataset L, target dataset U
(number of clusters k); constraint parameter β.

XU . Note that although clustering is a straightforward approach to generate the
partition, we can also use classifiers, such as KNN, to generate the partition if
the class labels of source and target data are the same. The target data marked
with the same class labels are assigned to the same cluster.

3.4 PAC Bound

The PAC-Bayes error bound in [14] is adopted with new terms to explain the
behavior of the proposed model.

Theorem 1. Let PU and PL be the distributions of target and source data re-
spectively, and s be the sample size of source data. Let δ ∈ (0, 1) be given. Then,
with probability at least 1 − δ, the following bound holds,

εU(N ) ≤ εL(N ) +

√
KL(PU ||PL) − lnπ(N ) − η − lnδ

2s

where N is the partition function, and π(N ) is a prior distribution of N that is
usually based on domain knowledge, and η is a normalization constant[14].

In the proposed algorithm, we apply semi-supervised spectral clustering to gen-
erate the partition. The goal is to minimize the expected partition cost εU (N ),
similar to the expected error in classification. Like other PAC methods, we can
minimize the empirical partition cost εL(N ) on the given source data L. In our
case, we apply the “must-link” constraint to achieve this goal, by encouraging
the labeled instances with the same class categories grouped together. However,
observed from the second term of the right hand side, the bound also depends
on the divergence of the two distributions PU and PL. Thus, we apply the su-
pervisory knowledge of source data L only when their divergence KL(PU ||PL)
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is small. Moreover, in order to distinguish the distribution divergence more ef-
fectively, we apply the clustering-based formula KLc(PU ||PL) to calculate the
KL divergence. With small partition cost εL on the labeled data, and small KL
divergence, the strategy minimizes the upper bound of the expected cost εU (N ).

4 Experiments

We empirically study the proposed method RSP (Risk-sensitive Spectral Part-
ition) with two goals: (1) testing whether RSP can transfer across tasks having
different class labels; (2) testing whether RSP can judiciously avoid negative
transfer.

4.1 Experiment Setup

Datasets : We first conduct experiments on the text datasets as shown in Table 1.
They are generated from 20-newsgroup and Reuters-21578 as in [5]. Each set
of experiments contains one labeled source dataset and a corresponding target
dataset. In addition, both the target dataset and the source dataset may come
from different categories of documents, or even different document corpus. For
example, the target dataset is from Reuters-21578, and the source dataset may
be from 20-newsgroup. Thus, the class categories and data distributions of the
two datasets may be significantly different. Each category contains around 1,500
documents. To speed up the optimization process, we first perform clustering on
the target and source dataset respectively by Cluto [24] to generate 100 clusters
each. We then choose the center of each cluster as the new data point. Finally,
we label the whole cluster by its center.

Table 1. Text Datasets

Target Comp1 VS. Rec1 Target Org1 VS. People1

2 classes: Comp2 VS. Rec2 2 classes: Org2, People2
4 classes: Graphics, Hardware, 3 classes: Place2, People2,

Source Politics.mid, Religion.misc Source Org2

3 classes: Sci.crypt, Sci.med, 3 classes: Sci.crypt, Sci.med,

Politics.guns Politics.guns

Note: Comp1 and Comp2 are different datasets with different distributions
[5], likewise the other dataset with different superscripts.

Table 2. Image Datasets

Target Homer-simpson VS. Real-bear Target Cartman VS. Palmtree

2 classes: Superman, Teddybear 2 classes: Superman, Bonsai

3 classes: Cartman, Palmtree, 3 classes: Homer, Bonsai,

Source Teddybear Source Rear Bear

4 classes: Laptop, Pram, 4 classes: Laptop, Pram,

Keyboard, Soccer Keyboard, Umbrella
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In addition, we conduct experiments on image datasets in Table 2. Similar
to the setting of text data, we also generate 6 sets of experiments, where each
set contains one labeled dataset and one unlabeled target dataset. All the data
are generated from the Caltech-256 image corpus [9] as shown in Table 1. Each
category contains around 100 image instances.

Baseline Methods: To verify the effectiveness of the proposed model, an unsu-
pervised spectral partition approach using normalized cut [19] is set as the first
baseline method abbreviated as “No-T”. This baseline directly generates the
partition of the target data without transfer learning. Furthermore, we design
another baseline method, abbreviated as “Full-T”, by setting the transfer risk
�(L;U) = 0 in the optimization function in Eq (10) to fully apply the knowl-
edge transferred from labeled data to learn the target data. This model does not
include any strategy to avoid negative transfer. In the baseline methods and the
proposed model RSP, the parameter β (Eq 10) is set to be 0.6. The effect of this
parameter is studied in another set of experiment.

Evaluation Criteria: Note that the outputs of the proposed model and the
baseline methods are actually clusters. Thus, to compare the models, we define
their accuracy by the purity of each cluster similar to [11]. The purity of a cluster
c can be defined as maxP (yi|c), and P (yi|c) = |{x|x∈c,y(x)=yi}|

|{x|x∈c}| , where yi is a
class label, and y(x) denotes the true label of x. The purity can be regarded as
the accuracy when we label the whole cluster by its majority label. As a result,
the accuracy is defined to be the weighted sum of the purity in all clusters; that
is

∑
c
|{x|x∈c}|

|x| max P (yi|c).

4.2 Empirical Analysis

Tables 3 and 4 show the performance given by the baseline methods and the
proposed model RSP in average accuracy on ten runs. We answer the following
questions using three results:

(1) Can RSP transfer knowledge across tasks having different class
labels? From the experimental result, RSP can achieve a higher accuracy than
the strategy of “No-Transfer” especially when the source and target data are
detected to be similar in distribution. For example, when the target dataset is
“Org1 VS. People1” and the source dataset is a 3-classes document sets “Place2,
etc”, the clustering-based formula of KL divergence is 0.51, implying that the
target and source data are similar in distribution. In this case, RSP achieves an
accuracy of 78% while the accuracy of “No-Transfer” is only 65%. It is clear that
transfer learning helps improve the accuracy. More specifically, we plot Fig 3 to
illustrate that the final eigenspace transferred from the 3-classes datasets also
helps separate the binary target data.

(2) Can the proposed model avoid negative transfer? When the source
dataset is the 3-classes document sets “Sci.crypt, etc” and the target dataset
is “Comp1 VS. Rec1”, the accuracy of full transfer (Full-T) is only 51%, close
to random guessing. With the same setting, the accuracy of no transfer (No-T)
is 74%. It is clear that negative transfer happens because the accuracy of the
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Table 3. Experiment Result on Text Datasets

Target Source KLt KLc Full-T No-T RSP

Comp1 Comp2 VS. Rec2 0.21 0.37 0.99 0.74 0.99±0.00

VS. 4 classes: Graphics, etc 0.01 1.17 0.94 0.74 0.98±0.01

Rec1 3 classes: Sci.crypt, etc 0.05 21.4 0.51 0.74 0.74±0.03

Org1 Org2 VS. People2 0.11 0.24 0.80 0.65 0.80±0.00

VS. 3 classes: Places, etc 0.05 0.51 0.73 0.65 0.78±0.02

People1 3 classes: Sci.crypt, etc 0.21 26.5 0.56 0.65 0.65±0.06

Note: “KLt” is the traditional calculation of KL by Eq (3); “KLc” is the KL calculated by clus-
tering according to Lemma 1. “Full-T” denotes the method applied transfer learning without
considering the divergence between domains, while “No-T” denotes the traditional normalized
cut without the strategy of transfer learning.

Table 4. Experiment Result on Image Datasets

Target Source KLt KLc Full-T No-T RSP

Homer Superman VS. Teddy 0.62 0.17 0.85 0.72 0.85±0.02

VS. 3 classes: Cartman, etc 0.88 0.29 0.81 0.72 0.81±0.01

Real-bear 4 classes: Laptop, etc 0.11 10.3 0.53 0.72 0.72±0.01

Cartman Superman VS. Bonsai 0.12 0.07 0.87 0.55 0.87±0.00

VS. 3 classes: Homer, etc 0.43 0.55 0.92 0.55 0.92±0.01

Fern 4 classes: Laptop, etc 0.54 1.58 0.61 0.55 0.68±0.01

transfer learning models are worse than no transfer. In the same situation, the
proposed model RSP can judiciously avoid negative transfer and still obtains an
accuracy of 74%.

(3) How the proposed model avoids negative transfer? In the above
example, we observe that the KL divergence calculated by “Lemma 1” is 21.4,
implying that the transfer is very risky according to Eq (6). In this case, the
proposed model automatically decreases the effect of the first objective to avoid
negative transfer. From the experimental result, it is also important to note that
the clustering-based version KLc is a more effective KL to reflect distribution
divergence. It is also one of the reasons the proposed model RSP outperforms
the baseline models.

Parameter Sensitivity: We plot Fig 4 to study the effect of the parameter β on
the performance of the proposed model RSP (Fig 2). It is important to emphasize
again that β is not the essential component to avoid negative transfer. Instead,
it is the transfer risk �(L;U) that decides where the partition constraint comes
from (from source data or target data). Thus, if negative transfer may happen,
the partition constraint will mainly come from the target data regulated by the
transfer risk �(L;U), and negative transfer is avoided regardless of the value of
β. In Fig 4, for each unlabeled target dataset in Table 1 and Table 2, the first
source dataset is selected to report the result. The best performance appears at
around β = 0.6. In real world practice, there are various ways to select the best
value for β. For instance, partition cost functions, such as normalized cut [19],
can be directly applied to evaluate the partition quality, by which one can choose
the value of β with the best performance.
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Fig. 3. Projection on the eigenspace

Fig. 4. Parameter Sensitivity of RSP

5 Related Work

Spectral Method. Various unsupervised spectral clustering algorithms have been
proved effective in applications such as image segmentation (e.g., [6,12,19]), and
the like. Moreover, several works about supervised spectral methods have been
proposed to apply the labeled examples to help find the eigenspace of the target
data drawn from the same or very similar distributions, such as [11,15,23]. Unlike
most of these works, in this paper, we generate a partition of the unlabeled
data by transferring knowledge from the given labeled data that may have very
different distributions and class categories with the target data.

Transfer Learning. Transfer learning is proposed to extract knowledge from
source data to help learn the target data. One of the main issues in transfer
learning is how to transfer knowledge across different data distributions. A gen-
eral approach is based on re-sampling (e.g., [3]), where the motivation of it is
to “emphasize” the knowledge among “similar” and discriminating instances.
Another line of work is to transfer knowledge based on the common features
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found in a subspace (e.g., [5]) or a projected feature space where the different
tasks are similar to each other (e.g., [2]). There are also some other solutions like
model-combination based (e.g., [8]), transfer across similar learning parameters
(e.g., [13]), and so on.

Different from these works, we mainly study the problem to transfer knowl-
edge across tasks having different class labels. One important sub-issue of the
problem is how to avoid negative transfer [17], which happens when the source
data and the target data are significantly different. Previous works like [7,20] are
proposed to solve negative transfer in the supervised setting where there are a
few labeled examples in the target data. The general idea is to build a classifier
with the labeled data from the target task, which is applied to identify the harm-
ful knowledge by classification confidence or decrease of accuracy. However, in
our problem to transfer knowledge over different class labels, we can not directly
apply statics dependant on class labels (e.g., posterior) to select those harm-
ful knowledge. Thus, different from these works, we solve the negative transfer
problem in the unsupervised setting where the target data does not have any
labeled examples at all.

6 Conclusions

We proposed a spectral partition based model to transfer knowledge across
tasks having different class labels. The main framework is to find the optimal
eigenspace to partition the target data by regulating two objectives. The first
is to find the eigenspace where the source data of the same class labels will
be close to each other, and the second is to maximize the marginal separation
of the unlabeled target data. Importantly, a transfer risk term, as defined on
the basis of an effective clustering-based KL divergence, is applied to regulate
these two objectives to avoid negative transfer. These two objectives are formu-
lated as partition constraints to construct a symmetric matrix, similar to graph
Laplacian, to find the optimal solution given the objective function. The most
important advantage of the proposed model is that it can automatically avoid
negative transfer when the source data is very different from the target data,
while still benefiting from transfer learning even when the source and target data
have totally different class labels.

We evaluated the proposed model on text datasets and image datasets. For
example, in one of the experiments, a 3-classes image dataset was used to super-
vise the partition of a binary-class dataset. Even though the two datasets have
totally different class labels, the proposed method still achieved an accuracy of
81%, while the baseline model that does not apply transfer learning has accuracy
of only 72%.
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