
Artificial Intelligence 174 (2010) 1540–1569
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Learning complex action models with quantifiers and logical implications

Hankz Hankui Zhuo a,b, Qiang Yang b,∗, Derek Hao Hu b, Lei Li a

a Department of Computer Science, Sun Yat-sen University, Guangzhou, China, 510275
b Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 January 2010
Received in revised form 4 September 2010
Accepted 5 September 2010
Available online 29 September 2010

Keywords:
Action model learning
Machine learning
Knowledge engineering
Automated planning

Automated planning requires action models described using languages such as the Planning
Domain Definition Language (PDDL) as input, but building action models from scratch is a
very difficult and time-consuming task, even for experts. This is because it is difficult to
formally describe all conditions and changes, reflected in the preconditions and effects of
action models. In the past, there have been algorithms that can automatically learn simple
action models from plan traces. However, there are many cases in the real world where
we need more complicated expressions based on universal and existential quantifiers,
as well as logical implications in action models to precisely describe the underlying
mechanisms of the actions. Such complex action models cannot be learned using many
previous algorithms. In this article, we present a novel algorithm called LAMP (Learning
Action Models from Plan traces), to learn action models with quantifiers and logical
implications from a set of observed plan traces with only partially observed intermediate
state information. The LAMP algorithm generates candidate formulas that are passed to a
Markov Logic Network (MLN) for selecting the most likely subsets of candidate formulas.
The selected subset of formulas is then transformed into learned action models, which can
then be tweaked by domain experts to arrive at the final models. We evaluate our approach
in four planning domains to demonstrate that LAMP is effective in learning complex action
models. We also analyze the human effort saved by using LAMP in helping to create action
models through a user study. Finally, we apply LAMP to a real-world application domain for
software requirement engineering to help the engineers acquire software requirements and
show that LAMP can indeed help experts a great deal in real-world knowledge-engineering
applications.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Automated planning systems achieve goals by producing sequences of actions from the given action models that are
provided as input [14]. A typical way to describe the action models is to use action languages such as the Planning Domain
Definition Language (PDDL) [13,11,14] in which one can specify the precedence and consequence of actions. A traditional
way of building action models is to ask domain experts to analyze a task domain and manually construct a domain de-
scription that includes a set of complete action models. Planning systems can then proceed to generate action sequences to
achieve goals.

However, it is very difficult and time-consuming to manually build action models in a given task domain, even for
experts. This is a typical problem of the knowledge-engineering bottleneck, where experts often find it difficult to articulate
their experiences formally and completely. Because of this, researchers have started to explore ways to reduce the human

* Corresponding author.
E-mail addresses: zhuohank@mail.sysu.edu.cn (H.H. Zhuo), qyang@cse.ust.hk (Q. Yang), derekhh@cse.ust.hk (D.H. Hu), lnslilei@mail.sysu.edu.cn (L. Li).
0004-3702/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.artint.2010.09.007

http://dx.doi.org/10.1016/j.artint.2010.09.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:zhuohank@mail.sysu.edu.cn
mailto:qyang@cse.ust.hk
mailto:derekhh@cse.ust.hk
mailto:lnslilei@mail.sysu.edu.cn
http://dx.doi.org/10.1016/j.artint.2010.09.007

H.H. Zhuo et al. / Artificial Intelligence 174 (2010) 1540–1569 1541
effort of building action models by learning from observed examples or plan traces. Some researchers have developed
methods to learn action models from complete state information before and after an action in some example plan traces [4,
15,31,50]. Others, such as Yang et al. [51,39] have proposed to learn action models from plan examples with only incomplete
state information. Yang et al. [51,52] have developed an approach known as Action Relation Modeling System (ARMS) to learn
action models in a STRIPS (STanford Research Institute Problem Solver) [10] representation using a weighted MAXSAT-based
(Maximum Satisfiability) approach. Shahaf et al. [39] have proposed an algorithm called Simultaneous Learning and Filtering
(SLAF) to learn more expressive action models using consistency-based algorithms.

Despite the success of these learning systems, in the real world, there are many applications where actions should be
expressed using a more expressive representation, namely, quantifiers and logical implications. For instance, consider the
case where there are different cases in a briefcase1 planning domain, such that a briefcase should not be moved to a place
where there is another briefcase with the same color. We can model the action move in PDDL as follows.2

action: move(?c1 - case ?l1 ?l2 - location)
pre: (:and (at ?c1 ?l1)

(forall ?c2 - case (imply (samecolor ?c2 ?c1)(not (at ?c2 ?l2)))))
effect: (:and (at ?c1 ?l2) (not (at ?c1 ?l1)))

That is, if we want to move the case c1 from the location l1 to l2, c1 should be at l1 first, and every other case c2 whose
color is the same with c1 should not be at l2. After the action move, c1 will be at l2 instead of at l1. Likewise, consider a
pilot could not fly to a place where there are enemies. We can model the action model fly as follows.

action: fly(?p1 - pilot ?l1 ?l2 - location)
pre: (:and (at ?p1 ?l1)

(forall ?p2 - person (imply (enemy ?p2 ?p1)(not (at ?p2 ?l2)))))
effect: (:and (at ?p1 ?l2) (not (at ?p1 ?l1)))

We can see that in these examples, we need universal quantifiers as well as logical implications in the precondition part of
the action to precisely represent this action and compress the action model in a compact form.

As another example, consider a driver who intends to drive a train. Before he can start, he should make sure all the
passengers have gotten on the train. After that, if there is a seat vacant, then he can start to drive the train. We represent
this drive-train action model in PDDL as follows.

action: drive-train(?d - driver ?t - train)
pre: (free ?d) (forall ?p - passenger (in ?p ?t))
effect: (:and (when (exist ?s - seat (vacant ?s)) (available ?t))

(driving ?d ?t)(not (free ?d)))

That is, if a driver ?d makes sure all the passengers ?p are in the train ?t and is free at that time, then he can drive the
train ?t. Furthermore, if there is a seat ?s vacant, as a consequence of this action drive-train, the train will be set as available
to show that more passengers can take this train. Besides, the driver ?d will be in the state of driving the train, i.e., (driving
?d ?t), and not free. Such an action model needs a universal quantifier in describing its preconditions and an existential
quantifier for the condition “(exist ?s - seat (vacant ?s))” of the conditional effect “(when (exist ?s - seat (vacant ?s))(available
?t))”. More examples that require the use of quantifiers and logical implications can be found in many action models in
recent International Planning Competitions, such as the domains in IPC-53: trucks, openstacks, etc. These complex action
models can be represented by PDDL, but cannot be learned by existing algorithms proposed for action model learning.

Our objective is to develop a new algorithm for learning complex action models with quantifiers (including conditional
effects) and logical implications, from a collection of given example plan traces. The input of our algorithm includes: (1)
a set of observed plan traces with partially observed intermediate state information between actions; (2) a list of action
headings, each of which is composed of an action name and a list of parameters, but is not provided with preconditions or
effects; (3) a list of predicates along with their corresponding parameters. Our algorithm is called LAMP (Learn Action Models
from Plan traces), which outputs a set of action models with quantifiers and implications. These action models ‘summarizes’
the plan traces as much as possible, and can be used by domain experts, who need to spend only a small amount of time, in
revising parts of the action models that are incorrect or incomplete, before finalizing the action models for planning usage.

Compared to many previous approaches, our main contributions are: (1) LAMP can learn quantifiers that conform to the
PDDL definition [13,11], where the latter article shows that action models in PDDL can have quantifiers. (2) LAMP can learn
action models with implications as preconditions, which improves the expressiveness of learned action models. We require

1 http://www.informatik.uni-freiburg.de/~koehler/ipp/pddl-domains.tar.gz.
2 A symbol with a prefix “?” suggests that the symbol is a variable; e.g. “?c1” suggests that “c1” is a variable that can take on certain constants as values.
3 http://zeus.ing.unibs.it/ipc-5/domains.html.

http://www.informatik.uni-freiburg.de/~koehler/ipp/pddl-domains.tar.gz
http://zeus.ing.unibs.it/ipc-5/domains.html

1542 H.H. Zhuo et al. / Artificial Intelligence 174 (2010) 1540–1569
that existential quantifiers can only be used to quantify the left-hand side of a conditional effect, which is consistent with
the constraints used in PDDL1.2 and PDDL2.1 [13,11]. (3) Similar to some previous systems such as the ARMS system [51,
52], LAMP can learn action models from plan traces with partially observed intermediate state information. This is important
because in many real world situations, what we can record between two actions in a plan trace is likely to be incomplete;
e.g., when using only a small number of sensors, we can record a subset of what happens after each action is executed.
In such a case, the number of sensors cannot cover all possible new information sources and events after each action.
Therefore, the state information we observe is only incomplete.

One might further ask the question of whether a large number of plan traces could be provided when the full descrip-
tion of action models are unavailable. Here we provide several examples to demonstrate the validity of such requirements
in some real-world applications. One example is batch commands in an operating system that consist of the name of each
command along with some partial information about directory location, structure and content. If we view such an applica-
tion as a planning application, a batch command is a list of actions. We can easily get the action headings (action names
and its parameters) by using the UNIX history command. However, we cannot get the full intermediate state information
between these commands by reading the batch command file alone. This corresponds to an example of plan traces with
partial intermediate state information. In this domain, we do not have the full specification of action models, but we can
easily get a large number of batch commands, viewed as plan examples, together with partial state information.

Another example is activity recognition [56], which is an active research area that integrates pervasive computing, ma-
chine learning and wireless sensor networks. Activity recognition aims to identify actions and goals of one or more agents
from a series of observations on the agents’ actions and environmental conditions. One scenario is sensor-based activity
recognition [60,19], where we can use the sensor readings in a pervasive computing environment to understand what
activities are being carried out by collecting a large number of sensor reading sequences. We can then perform activity
recognition by mapping these sensor-reading sequences to the corresponding activity sequences. These activity sequences
can then act as the input to action-model learning algorithms to obtain action models, which can further improve the accu-
racy of activity recognition. However, due to the uncertainty of sensor readings, we may only have partial knowledge about
the activities learned. Thus, the state information in the activity sequences learned may sometimes be only partially observ-
able. Therefore, in an activity-recognition domain, we may have a large number of plan sequences with partially observed
intermediate state information, without knowing about what the model of each action is.

A third example comes from Web services, where many planning researchers have attempted to automate the process of
linking Web services to achieve complex tasks [17]. Standard description languages such as SOAP [57] (Simple Object Access
Protocol) are used to describe both the syntax and semantics of the services. However, although the standard protocols
such as SOAP can describe the syntax of the Web services, it is rather difficult if we rely on Web-service providers to label
the semantic content of each service, especially when we consider the case that the Web services may come from many
different sources. However, it is easy to check the log data and acquire a large number of examples, which can then be used
to learn the Web service behaviors from examples [42]. Similarly, in this scenario, we can get a large number of logs as plan
traces, and use them to learn the Web service behaviors or action models, even when we do not have precise descriptions
of all events happening after a service is executed.

We now give an overview of the LAMP algorithm. At the high level, the LAMP algorithm can be described in four
steps. Firstly, we encode the input plan traces, including observed states and actions (represented as state transitions), into
propositional formulas. Secondly, we generate candidate formulas according to the predicate lists and domain constraints.
Thirdly, we build a Markov Logic Network (MLN) by learning the corresponding weights of formulas to select the most likely
subset from the set of candidate formulas. Finally, we convert this subset into the final action models.

We conduct experiments on four planning domains to show that LAMP is effective in learning action models with
quantifiers and logical implications. These action models may still be incorrect and incomplete. Thus, we define a quality
measure for the learned action models. We show that these learned action models are very close to the hand-crafted
action models that support quantifiers and logical implication. Furthermore, by conducting user studies, we demonstrate
that human experts only need to spend a relatively small amount of time revising these learned action models, compared
to writing these action models from scratch. Finally, we apply LAMP to a software requirement engineering domain to
illustrate real-world applications of the proposed method.

The rest of the paper is organized as follows. We will first discuss some related works in the field of action model
learning. In particular, we will discuss ARMS and SLAF in detail. Since this paper is related to Markov Logic Networks
(MLNs), we will also review some papers on both the theoretical foundations and applications of MLNs. Next, we will give
the definition of our problem and describe the detailed steps of our LAMP algorithm. We then evaluate our algorithm in four
planning domains to learn the action models and show some desirable properties of these learned action models. Finally,
we will conclude paper and discuss our future works.

2. Related work

2.1. Learning with full intermediate state information

Recently, some methods have been proposed to learn action models from plan traces automatically. The first one is to
learn action models from plan traces with full intermediate state information [6,15,31,50,37,32,33]. Gil et al. [15] describe

H.H. Zhuo et al. / Artificial Intelligence 174 (2010) 1540–1569 1543
a system called EXPO, bootstrapped by an incomplete STRIPS-like domain description with the rest being filled in through
experience. Oates et al. [31] use a general classification system to learn the effects and preconditions of actions, identifying
irrelevant variables. Schmill et al. [37] try to learn operators with approximate computation in relevant domains by assuming
that the world is fully observable. Wang [50] describes an approach to automatically learn planning operators by observing
expert solution traces and refine the operators through practice in a learning-by-doing paradigm. It uses the knowledge
naturally observable when experts solve problems. Chrisman [6] shows how to learn stochastic actions with no conditional
effects. In [32,33], a probabilistic, relational planning rule representation can be learned which could compactly model noisy,
non-deterministic action effects. Holmes et al. [18] model synthetic items based on experience to construct action models.
Walsh and Littman [42] propose an efficient algorithm for learning action schemas for describing Web services. Among these
methods, one of their limitations is all the intermediate observations need to be known. However, in many real applications
such as activity recognition from wireless sensor networks, biological applications of AI Planning, intelligent user interfaces
and Web services [14,24,16,12], sometimes we cannot obtain full intermediate state information.

2.2. Learning with partial intermediate state information

In the past, solutions have been developed to learn action models where the intermediate state information is not fully
observable. These are the partially observable cases. In this area, two important algorithms are ARMS and SLAF.

ARMS [51,52] can automatically discover action models from a set of successfully observed plan traces. Unlike previous
work in action model learning, it does not assume complete knowledge of states in the middle of observed plan traces.
ARMS works when partial intermediate states are given. These plan traces are obtained by an observation agent who does
not know the logical encoding of the actions and the full state information between the actions. Specifically, ARMS gathers
knowledge from the statistical distribution of frequent sets of actions in plan traces. It builds a weighted propositional
satisfiability problem and solves it using a weighted MAX-SAT solver. It extracts constraints from plan traces and STRIPS
models by itself, and further deals with these constraints with weighted MAXSAT [5]. Finally, it attains STRIPS models from
the output of weighted MAXSAT. ARMS can handle cases when intermediate observations are difficult to acquire, but it
cannot learn action models with quantifiers or implications, which are more complex than STRIPS models.

While ARMS can learn STRIPS actions from plan traces, it is not designed to learn complex action models. The precondi-
tions (or effects) of a STRIPS action model are literals, which makes it easy to build action/plan constraints (on PRE/ADD/DEL
lists) and assign weights to them, as what was done in ARMS. However, the formulas can contain universal or existential
quantifiers, which make the number of literals affected by these formulas unfixed and can be extremely large. One natural
example is the way we handle wildcard characters in an operating system. Such wildcard characters like “*.*” can corre-
spond to all files under a directory, which makes learning especially difficult and slow. Thus, in contrast to ARMS, we choose
to build our LAMP algorithm based on a more natural approach for learning first-order logic formulas using a Markov Logic
Network (MLN) [23].

Amir et al. [1,39,38,30] present a tractable, exact system SLAF for the problem of identifying actions’ effects in partially
observable STRIPS domains. It resembles version spaces and logical filtering and identifies all the models that are consistent
with observations. It maintains and outputs a relational logical representation of all possible action-schema models after a
sequence of executed actions and partial observations. To improve the performance, Shahaf et al. [39] propose an efficient
algorithm to learn preconditions and effects of deterministic action models. For the quantifiers, Shahaf and Amir [38] impose
constraints on its learning result so that the existential quantifiers must appear in preconditions and universal quantifiers
appear in effects. In many real-world planning applications, however, existential quantifiers may appear in the effects of
actions and universal quantifiers may appear in the preconditions of some actions, as shown in the examples of “move”
and “graduate” in Section 1. Besides, it cannot learn action models with preconditions that include the form of implications
either, which requires more complex action models in the real world. These action models, as noted in Section 1, are needed
to model agents’ complex behaviors in many real-world applications.

Cresswell et al. [44] present a system called LOCM designed to carry out automated induction of action models from
sets of example plans. LOCM assumes that a planning domain consists of sets (called sorts) of object instances, where each
object behaves in the same way as any other object in its sort [45]. Compared with previous systems, LOCM can learn action
models with action sequences as input, and is shown to work well under the assumption that the output domain model
can be represented in an object-centered representation.

Our previous work [53,54] established the feasibility of learning action models with conditional effects by transferring
knowledge from other planning domains. In [55], we presented an algorithm to learn action models in STRIPS descriptions
and Hierarchical Task Network (HTN) [59] method-preconditions simultaneously. In this paper, we illustrate in further detail
our action-model learning system LAMP, which can learn complex action models including quantifiers, logic implications, as
well as conditional effects. We also present an application example in software engineering [58] to show some real benefit
gained by using the LAMP system.

2.3. Relation to knowledge acquisition and inductive logic programming

In [4], action models are acquired from a human expert via interactions. Simpson et al. [49,46] describe a Graphical
Interface for Planning with Objects (called GIPO) that has been built to investigate and support the knowledge engineering

1544 H.H. Zhuo et al. / Artificial Intelligence 174 (2010) 1540–1569
process in the building of applied AI Planning systems. Winner and Veloso [47] present a DISTILL system to learn program-
like plan templates from example plans, whose aim is to automatically acquire plan templates from example plans, where
the templates can be used for planning directly. The focus of [47] is on how to extract plan templates from example plans as
a substitute for planners. The plan templates represent the structural relations among actions. Another related work is [48]
where a programming by demonstration (PBD) problem is solved using a version-space learning algorithm by acquiring the
normal behavior in terms of repetitive tasks. When a user is found to start a repetitive task of going through a sequence of
states, the system can use the learned action sequence to map from initial to goal states directly. Different from our work,
the aim of the PBD system [48] is to learn action sequences instead of action models.

Another related work is [36], where Sablon and Bruynooghe present a method to learn action models from its own
experience and from its observation of a domain expert. It exploits the idea of concept induction in first-order predicate
logic of inductive logic programming (ILP) [29], which allows it to utilize ILP noise-handling techniques while learning
without losing representational power. Similarly, in [2], a system is presented to learn the precondition of an action for
a TOP operator using ILP. The examples used require the positive or negative examples of propositions held in states just
before each action’s application. ILP can learn well when the positive and negative examples of states before all target
actions are given. However, in our problem, there are only example traces with partial (or empty) states provided as input.
To the best of our knowledge, no work so far has been done to apply ILP to our problem.

2.4. Markov Logic Networks

2.4.1. Summary
We use Markov Logic Networks (MLNs) [35,9,23] to help learn the action models in our work. MLN is a powerful

framework that combines probability and first-order logic. An MLN consists of a set of weighted formulas and provide
a way to soften hard constraints in first-order logic. The main motivation behind MLNs to “soften” these hard constraints
is that when a world violates a formula in a knowledge base, it is less probable, but not impossible. Thus, each formula
should have an associated weight that reflects how strong a constraint is. Each weight can be learned from data using
a variety of methods, including convex optimization of the likelihood or a related function, iterative scaling and margin
maximization [27]. The network structure can also be learned from the input data, typically by performing a greedy search
over conjunctions of variables [21,28,20]. Furthermore, different versions of MLNs have been proposed. For instance, Wang
and Domingos [43] introduce hybrid MLNs, in which continuous properties and functions over them can appear as features;
Singla and Domingos [41] extend Markov logic to infinite domains by casting it in the framework of Gibbs measures.

2.4.2. Weight learning in MLNs
Since one of the major steps in our LAMP algorithm involves learning weights for a set of candidate formulas using

standard techniques in MLNs, we briefly review one of the commonly used weight learning algorithms for optimizing the
pseudo log-likelihood in MLNs.

In this work, we use the idea of weight learning in MLNs as presented in [35]. A brief description of this idea is given
as follows. A Markov Logic Network L is a set of pairs (Fi, wi), where Fi is a formula in first-order logic and wi is a real
number. Together with a finite set of constants C = {c1, c2, . . . , c|C |}, it defines a Markov network ML,C as follows:

1. ML,C contains one binary node for each possible grounding of each predicate appearing in L. The value of the node is
1 if the grounded predicate is true, and 0 otherwise.

2. ML,C contains one feature for each possible grounding of each formula Fi in L. The value of this feature is 1 if the
ground formula is true, and 0 otherwise. The weight of the feature is the wi associated with Fi in L.

We assume that all formulas are in clausal form. Let X be a set of all propositions describing a world, F be a set of all
clauses in an MLN, wi be a weight associated with a clause f i ∈ F . We optimize the pseudo likelihood [3], which is defined
as:

P∗
w(X = x) =

n∏
l=1

P w
(

Xl = xl|MBx(Xl)
)

where Xl is a ground atom in X , MBx(Xl) is the state of the Markov blanket of Xl and n is the number of ground atoms in X .
In a Markov network, the Markov blanket of a node is defined as a set of its neighboring nodes. Similarly, the Markov blanket
of a ground atom is a set of ground atoms that appear in some instantiation of a formula with it. P w(Xl = xl|MBx(Xl)) can
be computed by:

P w
(

Xl = xl|MBx(Xl)
) = C(Xl=xl)

C(Xl=0) + C(Xl=1)

C(Xl=xl) = exp
∑

wi fi
(

Xl = xl,MBx(Xl)
)

f i∈Fl

H.H. Zhuo et al. / Artificial Intelligence 174 (2010) 1540–1569 1545
Fl is the set of ground formulas that Xl appears in, and f i(Xl = xl,MBx(Xl)) is the value (0 or 1) of the feature corresponding
to the ith ground formula when Xl = xl and its Markov blanket is in the state of MBx(Xl). By optimizing the pseudo log-
likelihood using the limited-memory BFGS algorithm [26], we can learn the weights for MLNs.

MLNs have been applied to several real-world applications. For instance, Domingos [7] proposes to apply Markov logic to
model real social networks, which evolve in time with multiple types of arcs and nodes and are affected by the actions of
multiple players; Singla et al. [40] build an integrated solution based on Markov logic to solve the entity resolution problem,
which is about how to determine which records in a database refer to the same entities; furthermore, Poon et al. [34]
propose a joint approach to perform information extraction using Markov logic and existing algorithms, where segmentation
of all records and entity resolution are performed together in a single integrated inference process; Domingos [8] gives
a theoretical discussion on the relationship of data mining and Markov logic; Lowd et al. [22] present an unsupervised
approach to extract semantic networks from large volumes of text by applying Markov logic, etc.

3. Problem definition

A classical planning problem is described as P = (Σ, s0, g), where Σ = (S, A, γ) is a planning domain, S is a set of
states, A is a set of action models, γ is a deterministic transition function: S × A → S , s0 is an initial state, and g is a
goal description. An action model is defined as an action heading with preconditions and effects, where an action heading
is composed of an action name with zero or more parameters. A plan is an action sequence (a0,a1, . . . ,an) which makes a
projection from s0 to g . A plan trace is defined as T = (s0,a0, s1,a1, . . . , sn,an, g), where s1, . . . , sn are partial observations
of intermediate states; that is, each si is a subset of a world state. These partial observations are allowed to be empty. Each
ai is an instantiated action heading in the form of ‘action name(parameters)’ such as ‘move(L1 home)’ (that is, move is the
name of the action, L1 and home are parameters describing two locations).

Our learning problem can be stated as follows. We are given a set of plan traces T , a set of predicates and a set of action
headings A that occur in T . As output, LAMP outputs preconditions and effects of each action heading in A. An example of
the input and desired output of the algorithm LAMP from the briefcase domain is shown in Tables 1 and 2.4

4. The LAMP algorithm

In this section, we give detailed descriptions of our LAMP algorithm. We first give an overview of our algorithm, as
shown in Algorithm 1.

Algorithm 1 Overview of LAMP.
Input: (1) A set of predicates P ; (2) A set of action headings A; (3) A set of plan traces T .
Output: A set of action models A.

1: Encode each plan trace as a set of propositions, denoted as DB (i.e., database), and all the plan traces are denoted as DBs: DBs = encode_traces(T);
2: Generate candidate formulas F according to our correctness constraints F1 to F5: F = generate_formulas(P , A);
3: Learn weights W of all the candidate formulas: W = learn_weights(F ,DBs);
4: Convert the weighted candidate formulas to action models A:

A = attain_models(W , F);
5: return A;

In the following subsections, we will give a detailed description of each step that corresponds to the italic parts in
Algorithm 1.

4.1. Step 1: encode plan traces

In the first step of Algorithm 1, the procedure encode_traces encodes all the plan traces as a set of proposition databases
DBs with plan traces T as input. To encode plan traces as propositional formulas, states and state transitions need be
encoded. A brief description of this procedure is given in Algorithm 2. In the following, we give the detailed description of
two main steps (Steps 5 and 9) in Algorithm 2.

Encode a state as a propositional formula In Step 5 of Algorithm 2, our idea is to use a propositional formula to represent facts
that hold in a state. For instance, consider the briefcase domain in Table 1 where we have an object o1 and a location l1.
The state, describing that the object o1 is in a briefcase and the briefcase is at a location l1, can be represented with
the formula: in(o1) ∧ is-at(l1). If we consider in(o1) and is-at(l1) as propositional variables, the formula is a propositional

4 For clarity and for readers who are not familiar with this domain, here we briefly describe what the predicates and actions in the briefcase domain
mean. In this domain, we have some portable objects and several locations, together with a briefcase which can be used for moving objects between one
place and another. For predicates, (at ?x - portable ?l - location) means the portable object x is at a location l, not necessarily in the briefcase, (in ?x - portable)
means the portable object x is currently in the briefcase and (is-at ?l - location) means the briefcase is at location l. For actions, (move ?m - location ?l -
location) means a person had moved the briefcase from location m to location l, (take-out ?x - portable) means the portable object x is taken out of the
briefcase and (put-in ?x - portable ?l - location) means the portable object x is put into the briefcase and the briefcase is at location l.

1546 H.H. Zhuo et al. / Artificial Intelligence 174 (2010) 1540–1569
Table 1
The input of LAMP.

Input: predicates

(at ?x - portable ?l - location)
(in ?x - portable)
(is-at ?l - location)

Input: action headings

(move ?m - location ?l - location)
(take-out ?x - portable)
(put-in ?x - portable ?l - location)

Input: plan traces

Plan trace 1 Plan trace 2 Plan trace 3

initial state: (is-at l1) (is-at home) (is-at l2)
(at o1 l1) (at o1 l1) (at o1 l2)
(at o2 l2) (not (is-at l1)) (at o2 home)
(not (is-at l2)) (not (at o1 home)) (not (is-at l1))
(not (at o1 l2)) (not (in o1)) (not (at o1 home))
(not (at o2 l1)) (not (at o2 l2))
(not (in o1)) (not (in o1))
(not (in o2)) (not (in o2))

action 1: (put-in o1 l1) (move home l1) (put-in o1 l2)

observation 1: (is-at l1)

action 2: (move l1 l2) (put-in o1 l1) (move l2 l1)

observation 2: (in o1)

action 3: (put-in o2 l2) (move l1 home) (take-out o1)

observation 3: (in o2)
(is-at l2)

action 4: (move l2 home) (move l1 home)

observation 4:

action 5: (put-in o2 home)

observation 5: (in o2)

action 6: (move home l2)

goal state: (is-at home) (is-at home) (is-at l1)
(at o1 home) (at o1 home) (at o1 l1)
(at o2 home) (at o2 l2)

Table 2
The desired output of LAMP.

(move ?m - location ?l - location)

preconditions (is-at ?m)

effects (and (is-at ?l) (not (is-at ?m))
(forall (?x - portable)

(when (in ?x) (and (at ?x ?l)(not (at ?x ?m))))))

(put-in ?x - portable ?l - location)

preconditions (and (at ?x ?l) (is-at ?l))

effects (in ?x)

(take-out ?x - portable)

preconditions (in ?x)

effects (not (in ?x))

formula. A model of the propositional formula is the one that assigns true to the propositional variables in(o1) and is-at(l1).
If we have one more location l2, the above propositional formula should be modified as: in(o1)∧ is-at(l1) ∧ ¬is-at(l2). Notice
that we use ¬p when referring to a logic formula, while (not p) when referring to a PDDL description; e.g., ¬is-at(l2) will
be described as (not (is-at l2)) in PDDL.

Encode an action as a proposition In Step 9 of Algorithm 2, our idea is to encode an action (state transitions) in a plan trace
into a proposition, in a way similar to situation calculus [25]. The behavior of deterministic actions is described by the
transition function γ : S × A → S . For instance, the action move(l1,l2) in Table 2 is described by γ (s1,move(l1, l2)) = s2.

H.H. Zhuo et al. / Artificial Intelligence 174 (2010) 1540–1569 1547
Algorithm 2 Encode plan traces: encode_traces(T).
Input: A set of plan traces T .
Output: A set of databases DBs.

1: Initialize DBs = ∅;
2: for each plan trace pt ∈ T do
3: Initialize DB = ∅;
4: for each state s ∈ pt do
5: Encode s as a formula, which is a conjunction of propositions;
6: Put all the propositions of the conjunction in DB;
7: end for
8: for each action a ∈ t do
9: Encode a as a proposition;

10: Put the proposition in DB;
11: end for
12: Put DB in DBs;
13: end for
14: return DBs;

In s1, the briefcase is at location l1, while in s2, it is at l2. The states s1 and s2 can be represented as: is-at(l1) ∧ ¬is-at(l2)
and ¬is-at(l1) ∧ is-at(l2). These formulas, however, cannot be used to represent the fact that the system evolves from a state
s1 to a state s2. We need a propositional formula to assert that, in state s1, is-at(l1) ∧ ¬is-at(l2) holds, and in state s2, after
executing the action, ¬is-at(l1) ∧ is-at(l2) holds. We need different propositional variables that hold in different states to
specify that a fact holds in one state but does not hold in the other state.

In Step 9 of Algorithm 2, we generate situation-labels si for ground atoms in the following way. We denote each trace
as (s0, a0, . . . , an−1, sn), and assign a situation-label si to a ground atom p if p appears in the state si . Thus, if a ground
atom is-at(l1) appears before an action a1, it is then associated with the situation-label s1, represented as one of the atom’s
parameters, i.e., is-at(l1, s1). The parameters of each candidate formula are determined by the parameters of actions or
predicates; i.e., they are composed of the original parameters of actions or predicates plus the situation-label variable i to
denote si .

By introducing new state parameters si , we can get two different literals: is-at(l1, s1) and is-at(l2, s2), before and after an
action move(l1, l2, s1), respectively. The action states that a briefcase is at a location l1 in state s1, and it is at location l2 in
another state s2 after the action move(l1, l2, s1). Thus, the fact that the system evolves from the state s1 to the state s2 can
be represented by the statement: is-at(l1, s1) ∧ ¬is-at(l2, s1) ∧ ¬is-at(l1, s2) ∧ is-at(l2, s2). This formula encodes the transition
from state s1 to s2.

Furthermore, we represent the fact that it is the action move(l1, l2) that causes the transition by a propositional variable
move(l1, l2, s1), which holds true if the action move is executed in state s1. As a result, we can now represent the function
γ (s1,move(l1, l2)) as

move(l1, l2, s1) ∧ is-at(l1, s1) ∧ ¬is-at(l2, s1) ∧ ¬is-at(l1, s2) ∧ is-at(l2, s2)

Thus, we can naturally encode plan traces as propositional formulas. For instance, we can encode the second plan trace
of Table 1 with the following formula:

is-at(home, s0) ∧ at(o1, l1, s0) ∧ ¬is-at(l1, s0) ∧ ¬at(o1,home, s0) ∧ ¬in(o1, s0)

∧ move(home, l1, s0) ∧ put-in(o1, l1, s1) ∧ in(o1, s2) ∧ move(l1,home, s2)

∧ is-at(home, s3) ∧ at(o1,home, s3)

Since each plan trace can be encoded as a conjunction of grounded literals (also called facts), it is equivalent to encoding
a plan trace as a database (referred to as a DB below). Each record in a DB is a fact. Records are related in a conjunction.
Thus, we can encode different plan traces as different DBs. As an example, the plan traces in Table 1 can be encoded into
DBs as shown in Table 3, where the state symbol si is represented with an integer i. Notice that we do not use closed-
world assumption. The truth value of a proposition not recorded in Table 3 is left as unknown. We will learn the weights
of formulas by counting the number of formulas that are satisfied by the known grounded literals recorded in DBs. We will
give the detailed description in Section 4.3.

Notice that in the above formulation, we are not imposing any constraints on how much the intermediate state infor-
mation needs be observed. Since the proportion of intermediate state information, in our representation, is encoded into
a number of facts in DBs, less intermediate state information will only affect the number of records in DBs. However, as
we show later in our experiments, the proportion of intermediate state information that we have in the input plan traces
will affect how accurately we can learn the action models; as we will show later, in general, the more intermediate state
information we have, the better the learning accuracy will be.

1548 H.H. Zhuo et al. / Artificial Intelligence 174 (2010) 1540–1569
Table 3
Encodings of plan traces into DBs (notice that a proposition preceded by the notation “!” means the
proposition is false, a proposition existing in DB means it is true, and a proposition not existing in
DB means it is unknown), which is consistent with the representation of MLNs’ input.

DB 1 DB 2 DB 3

(is-at l1 0) (is-at home 0) (is-at l2 0)
(at o1 l1 0) (at o1 l1 0) (at o1 l2 0)
(at o2 l2 0) !(is-at l1 0) (at o2 home 0)
!(is-at l2 0) !(at o1 home 0) !(is-at l1 0)
!(at o1 l2 0) !(in o1 0) !(at o1 home 0)
!(at o2 l1 0) (move home l1 0) !(at o2 l2 0)
!(in o1 0) (put-in o1 l1 1) !(in o1 0)
!(in o2 0) (in o1 2) !(in o2 0)
(put-in o1 l1 0) (move l1 home 2) (put-in o1 l2 0)
(is-at l1 1) (is-at home 3) (move l2 l1 1)
(move l1 l2 1) (at o1 home 3) (take-out o1 2)
(put-in o2 l2 2) (move l1 home 3)
(in o2 3) (put-in o2 home 4)
(is-at l2 3) (in o2 5)
(move l2 home 3) (move home l2 5)
(is-at home 4) (is-at l1 6)
(at o1 home 4) (at o1 l1 6)
(at o2 home 4) (at o2 l2 6)

4.2. Step 2: generating candidate formulas

In the previous step, we encoded each plan trace into a propositional formula, which is a conjunction of ground literals
and then represented the formula with a database whose records are facts. In this step, we will describe how to generate
the candidate formulas, which is done by the procedure generate_formulas with a set of predicates P and a set of action
headings A as input.

There are five parts of an action model to be learned: preconditions, positive effects, negative effects, positive conditional
effects and negative conditional effects. Our idea is to describe each part with a set of formulas. Suppose that we describe
the possible preconditions of an action with a set of formulas F . If a formula f ∈ F , in the form of “a → p” holds, then the
action a has a precondition p.

As an overview, our basic algorithm for generating candidate formulas can be described as follows (also see Algorithm 3).

• Impose specific correctness constraints, written in the form of “a → b”, where a is an action, and b is a logical for-
mula. Encode some specific requirements of preconditions, positive and negative effects as well as positive and negative
conditional effects in the form of implications to make sure the formulas we generate can reflect the correctness re-
quirements.

• Enumerate all possibilities to ground the candidate formulas in the previous step. For example, we will replace a propo-
sitional variable with a predicate in the predicate list and enumerate all possibilities of the possible grounding. This
allows us to anticipate all forms of preconditions in an action model.

• Enumerate the cases when the parameters in all candidate formulas might be quantified.

From these steps, we can generate a number of candidate formulas with quantifiers as well as logical implications. We
then employ MLN-learning algorithms to select a subset of these formulas and convert it to action models. These ideas are
described in detail in the following (see formulas F1 to F5 below).

We conform to the requirements in PDDL in that a precondition can be a literal or an implication with or without a
universal quantifier. Preconditions are conjunctive. An action’s effect can be a positive or a negative literal with or without
universal quantifiers. An effect can also be a conditional effect with or without an existential quantifier to quantify its
condition part. The relationship between effects is also conjunctive.

Algorithm 3 Generate candidate formulas: generate_formulas(P , A).
Input: (1) A set of predicates P , (2) a set of actions A.
Output: A set of candidate formulas F .

1: Initialize F = ∅;
2: for each action a ∈ A do
3: Generate candidate formulas according to F1–F5 with a and P ;
4: Put the generated candidate formulas to F ;
5: end for
6: return F ;

We now give a detailed description of Step 3 in Algorithm 3, which is divided into five parts in formulas F1 to F5.

H.H. Zhuo et al. / Artificial Intelligence 174 (2010) 1540–1569 1549
Table 4
Candidate formulas according to formula (1a): encoding
preconditions.

ID Formulas

1 ∀i.p.((take-out o i) → (at o p i))
2 ∀i.x.p.((take-out o i) → (at x p i))
3 ∀i.p.((take-out o i) → (is-at p i))
4 ∀i.((take-out o i) → (in o i))
5 ∀i.x.((take-out o i) → (in x i))

[F1] Preconditions. Any literal p can be a precondition of an action a at a state i before that action in a plan trace. According
to this formula-generation method, we build candidate formulas in the form of formulas (1a) and (1b).

• For each action a and literal p, and each state i just before a, we generate the following formula:

∀i.ξ.
(
a(i) → p(ξ, i)

)
(1a)

where ξ = {x1, x2, . . . , xn} is a set of parameters that do not appear in a’s parameters but exist in p’s parameters (n � 0)
(i.e., ξ represents the free variables in a precondition of an action given the action heading), i is the ith state si (likewise
for formulas (1b)–(5)). For simplicity, we omit a’s parameters and p’s parameters shared by a in this representation.
Corresponding to each formula above, we also generate candidate formulas with universal quantifiers for the precondi-
tions of the action a. Let c be a set of parameters common to both a and p and ξ = {x1, x2, . . . , xn} be parameters of
p that do not appear in a’s parameter list. We can generate “forall ?ξ (p ?ξ ?c)”. When a includes all the parameters
of p, we generate “(p ?c)” as a candidate for the precondition.

• We generate a precondition of an action a as an implication, which is denoted as p1 → p2 (in PDDL, it is equally
denoted as “(imply p1 p2)”). We generate the following formula:

∀i.ξ.
(
a(i) → (

p1(ξ1, i) → p2(ξ2, i)
))

or equivalently,

∀i.ξ.
((

a(i) ∧ p1(ξ1, i)
) → p2(ξ2, i)

)
(1b)

where ξ = ξ1 ∪ ξ2. Likewise, for an implication in the form of “p1 → ¬p2” or “¬p1 → p2”, we will similarly generate
its corresponding formulas accordingly. Corresponding to formula (1b), we can build a precondition with an implication
as “forall ?ξ (imply (p1 ?ξ1 ?c1) (p2 ?ξ2 ?c2))”, where c1 and c2 are two sets of parameters appearing in a’s. We
only consider implications in the form of “p1 → p2”, “¬p1 → p2” or “p1 → ¬p2”, although it is easy to extend an
implication to a more complex form such as p(1)

1 ∧ p(2)
1 ∧ · · · ∧ p(t)

1 → p2 (in PDDL, it is denoted as “(imply (and p(1)
1

p(2)
1 . . . p(t)

1) p2)”).

These formulas are called candidate formulas because only some of them will be chosen in the end as preconditions of
corresponding actions. We will select a subset of these candidate formulas and transform them to action models in Steps 3
and 4. In the following example, we show how to generate candidate formulas according to formulas (1a) and (1b).

Example 1. We generate candidate formulas for the action “take-out” in Table 1 according to formulas (1a) and (1b). The
result is shown in Tables 4 and 5. The initial weights of the generated candidate formulas are zeros. Candidate formulas for
other actions in Table 1 can be generated similarly.

[F2] Positive effects. We generate positive effect formulas as follows. For each literal p, p is a positive effect of an action a
(that is, a literal without a negation symbol) and p is added to the state right after a in a plan trace. For instance, if we
generate a candidate formula for “(is-at ?l)” to be a positive effect of “(move ?m ?l)” in Table 2, then “(is-at l2)” is added
after “(move l1 l2)” is executed in plan trace 1 of Table 1.

To avoid generating lengthy effect lists for action models, we also generate a preference constraint that p does not
already hold when p is added, since otherwise, many effects would be redundantly generated. Of course, there are cases
when this constraint false, and thus we only state this constraint as a preferred one; the preferences are reflected by the
weights attached to these formulas which are to be learned. This is the motivation for us to generate candidate formulas in
the form of formula (2), which means that p(ξ) does not hold in state si and will hold in state si+1.

∀i.ξ.
(
a(i) → ¬p(ξ, i) ∧ p(ξ, i + 1)

)
(2)

Corresponding to this formula, we can generate candidate formulas with universal quantifiers. Recall that both positive
and negative effects, if not conditional effects, do not support existential quantifiers as in PDDL definition. We build positive
effects as follows: “forall ?ξ (p ?ξ ?c)”. When the action a includes all the parameters of the predicate p, we can generate

1550 H.H. Zhuo et al. / Artificial Intelligence 174 (2010) 1540–1569
Table 5
Candidate formulas according to formula (1b): encoding preconditions.

ID Formulas

1 ∀i.x.p.((take-out o i) ∧ (at o p i) → (at x p i))
2 ∀i.p.((take-out o i) ∧ (at o p i) → (is-at p i))
3 ∀i.p.((take-out o i) ∧ (at o p i) → (in o i))
4 ∀i.x.p.((take-out o i) ∧ (at o p i) → (in x i))
5 ∀i.x.p.((take-out o i) ∧ (at x p i) → (at o p i))
6 ∀i.x.p.((take-out o i) ∧ (at x p i) → (is-at p i))
7 ∀i.x.p.((take-out o i) ∧ (at x p i) → (in o i))
8 ∀i.x.p.((take-out o i) ∧ (at x p i) → (in x i))
9 ∀i.p.((take-out o i) ∧ (is-at p i) → (at o p i))

10 ∀i.x.p.((take-out o i) ∧ (is-at p i) → (at x p i))
11 ∀i.p.((take-out o i) ∧ (is-at p i) → (in o i))
12 ∀i.x.p.((take-out o i) ∧ (is-at p i) → (in x i))
13 ∀i.p.((take-out o i) ∧ (in o i) → (at o p i))
14 ∀i.x.p.((take-out o i) ∧ (in o i) → (at x p i))
15 ∀i.p.((take-out o i) ∧ (in o i) → (is-at p i))
16 ∀i.x.((take-out o i) ∧ (in o i) → (in x i))
17 ∀i.x.p.((take-out o i) ∧ (in x i) → (at o p i))
18 ∀i.x.p.((take-out o i) ∧ (in x i) → (at x p i))
19 ∀i.x.p.((take-out o i) ∧ (in x i) → (is-at p i))
20 ∀i.x.((take-out o i) ∧ (in x i) → (in o i))

Table 6
Candidate formulas according to formula (2): encoding positive effects.

ID Formulas

1 ∀i.p.((take-out o i) → (at o p i + 1) ∧ ¬(at o p i))
2 ∀i.x.p.((take-out o i) → (at x p i + 1) ∧ ¬(at x p i))
3 ∀i.p.((take-out o i) → (is-at p i + 1) ∧ ¬(is-at p i))
4 ∀i.((take-out o i) → (in o i + 1) ∧ ¬(in o i))
5 ∀i.x.((take-out o i) → (in x i + 1) ∧ ¬(in x i))

Table 7
Candidate formulas according to formula (3): encoding negative effects.

ID Formulas

1 ∀i.p.((take-out o i) → ¬(at o p i + 1) ∧ (at o p i))
2 ∀i.x.p.((take-out o i) → ¬(at x p i + 1) ∧ (at x p i))
3 ∀i.p.((take-out o i) → ¬(is-at p i + 1) ∧ (is-at p i))
4 ∀i.((take-out o i) → ¬(in o i + 1) ∧ (in o i))
5 ∀i.x.((take-out o i) → ¬(in x i + 1) ∧ (in x i))

positive effects in the PDDL form: “(p ?c)”. Example 2 below illustrates how to generate candidate formulas according to
formula (2):

Example 2. For different literals p and actions a, we can generate different formulas according to formula (2). The initial
weights of the generated candidate formulas are zeros. In Table 6, we list all candidate formulas generated for the action
“take-out”.

[F3] Negative effects. For each action a, we generate p as a negative effect of an action a, and the condition that p will
not be satisfied (will be deleted) in the state after a is executed. As in the case of F2, to limit the action model size, we
also have a preference constraint that p can be deleted only when p exists. For instance, “(is-at ?m)” is a negative effect of
“(move ?m ?l)”, then “(is-at l1)” is satisfied in the state where “(move l1 l2)” is executed and is not satisfied in the state
after that. Thus, we build the corresponding formulas in the form of formula (3).

∀i.ξ.
(
a(i) → p(ξ, i) ∧ ¬p(ξ, i + 1)

)
(3)

Corresponding to this formula, we can generate candidate formulas with universal quantifiers and build negative effects in
the PDDL form of “forall ?ξ (not (p ?ξ ?c))”. When a includes all the parameters of p, we build negative effects in the PDDL
form of “(not (p ?c))”. In the following, Example 3 will show how to generate candidate formulas according to formula (3).

Example 3. According to formula (3), we generate candidate formulas for the action “take-out” in Table 1. The initial weights
of the generated candidate formulas are zeros. The result is shown in Table 7.

H.H. Zhuo et al. / Artificial Intelligence 174 (2010) 1540–1569 1551
Table 8
Candidate formulas according to formula (4): encoding positive conditional effects.

ID Formulas

1 ∀i.x.p.((take-out o i) ∧ (at o p i) → ¬(at x p i) ∧ (at x p i + 1))

2 ∀i.p.((take-out o i) ∧ (at o p i) → ¬(is-at p i) ∧ (is-at p i + 1))

3 ∀i.∃p.((take-out o i) ∧ (at o p i) → ¬(in o i) ∧ (in o i + 1))

4 ∀i.x.∃p.((take-out o i) ∧ (at o p i) → ¬(in x i) ∧ (in x i + 1))

5 ∀i.p.∃x.((take-out o i) ∧ (at x p i) → ¬(at o p i) ∧ (at o p i + 1))

6 ∀i.p.∃x.((take-out o i) ∧ (at x p i) → ¬(is-at p i) ∧ (is-at p i + 1))

7 ∀i.∃x.p.((take-out o i) ∧ (at x p i) → ¬(in o i) ∧ (in o i + 1))

8 ∀i.x.∃p.((take-out o i) ∧ (at x p i) → ¬(in x i) ∧ (in x i + 1))

9 ∀i.p.((take-out o i) ∧ (is-at p i) → ¬(at o p i) ∧ (at o p i + 1))

10 ∀i.x.p.((take-out o i) ∧ (is-at p i) → ¬(at x p i) ∧ (at x p i + 1))

11 ∀i.∃p.((take-out o i) ∧ (is-at p i) → ¬(in o i) ∧ (in o i + 1))

12 ∀i.x.∃p.((take-out o i) ∧ (is-at p i) → ¬(in x i) ∧ (in x i + 1))

13 ∀i.p.((take-out o i) ∧ (in o i) → ¬(at o p i) ∧ (at o p i+1))

14 ∀i.x.p.((take-out o i) ∧ (in o i) → ¬(at x p i) ∧ (at x p i + 1))

15 ∀i.p.((take-out o i) ∧ (in o i) → ¬(is-at p i) ∧ (is-at p i+1))

16 ∀i.x.((take-out o i) ∧ (in o i) → ¬(in x i) ∧ (in x i + 1))

17 ∀i.p.∃x.((take-out o i) ∧ (in x i) → ¬(at o p i) ∧ (at o p i + 1))

18 ∀i.x.p.((take-out o i) ∧ (in x i) → ¬(at x p i) ∧ (at x p i + 1))

19 ∀i.p.∃x.((take-out o i) ∧ (in x i) → ¬(is-at p i) ∧ (is-at p i + 1))

20 ∀i.∃x.((take-out o i) ∧ (in x i) → ¬(in o i) ∧ (in o i+1))

[F4] Positive conditional effects. For each action a we generate positive conditional effects of a as “(when p1 p2)”, meaning
if p1 holds, p2 will also hold after a is executed. We can assert that, if “(when p1 p2)” is a positive conditional effect of
an action a, then p2 holds in the state after a’s execution if p1 holds in the state before a’s execution. We also have a
preference constraint that as in F2, p2 is preferred not to hold before a’s execution. Thus, we build the following candidate
formulas.

∀i.ξ.ξ2.∃ξ1.
(
a(i) ∧ p1(ξ, ξ1, i) → ¬p2(ξ, ξ2, i) ∧ p2(ξ, ξ2, i + 1)

)
(4)

where ξ , ξ1 and ξ2 are sets of parameters not appearing in a’s parameters, and ξ ∩ ξ1 = ∅ ∧ ξ ∩ ξ2 = ∅ ∧ ξ1 ∩ ξ2 = ∅. We
generate a positive conditional effect in this form as shown in formula (4), although it is easy to extend it to other forms
such as “∀i.ξ.ξ1.ξ2.(a(i) ∧ p1(ξ, ξ1, i) → ¬p2(ξ, ξ2, i) ∧ p2(ξ, ξ2, i + 1))”, or more complex forms corresponding to other
positive conditional effects such as “(when (p1

1 ∧ p2
1 ∧ . . .) p2)”.

Corresponding to formula (4), we can generate candidate formulas with both conditional effects, universal quantifiers as
well as existential quantifiers and build positive conditional effects in PDDL, “forall ?ξ ?ξ2 (when (exist ?ξ1 (p1 ?ξ ?ξ1
?c1))(p2 ?ξ ?ξ2 ?c2))”, or “(when (p1 ?c1)(p2 ?c2))” when ξ , ξ1 and ξ2 are all empty sets (notice that each one of them
can be either empty or not, which will correspond to different PDDL forms), where c1 and c2 are two sets of parameters
appearing in a’s. In the following, Example 4 will show how to generate candidate formulas based on formula (4).

Example 4. For the action “take-out” in Table 1, we generate candidate formulas according to formula (4). The initial weights
of the generated candidate formulas are zeros. The result is shown in Table 8.

[F5] Negative conditional effects. Similar to F4, for each action a, we generate negative conditional effects of a of the form
“(when p1 ¬p2)”, meaning that if p1 holds before a’s execution, then p2 will never hold (will be deleted) after a is executed.
Additionally, we add a preference that if p2 is deleted in an action’s effect then p2 exists in the precondition of the action.
We formulate this as follows.

∀i.ξ.ξ2.∃ξ1.
(
a(i) ∧ p1(ξ, ξ1, i) → p2(ξ, ξ2, i) ∧ ¬p2(ξ, ξ2, i + 1)

)
(5)

We generate negative conditional effects of this form as shown in formula (5), similar to F4. Corresponding to formula (5),
we can generate candidate formulas with conditional effects, universal and existential quantifiers and build negative conditional
effects in PDDL, “forall ?ξ ?ξ2 (when (exist ?ξ1 (p1 ?ξ ?ξ1 ?c1))(not (p2 ?ξ ?ξ2 ?c2)))”, or “(when (p1 ?c1)(not (p2 ?c2)))”
when ξ , ξ1 and ξ2 are all empty sets, or other corresponding forms when some of them being empty. Likewise, Example 5
will show how to generate candidate formulas based on formula (5).

Example 5. For the action “take-out” in Table 1, we generate candidate formulas according to formula (5). The initial weights
of the generated candidate formulas are zeros. The result is shown in Table 9.

The above formulas are responsible for generating the space of all possible candidate literals and formulas for action
models, in terms of their preconditions and effects, but constraints are then needed for a learning system to select a set
of consistent formulas that are consistent with the training examples, which are the plan traces. We impose the following
three constraints below.

1552 H.H. Zhuo et al. / Artificial Intelligence 174 (2010) 1540–1569
Table 9
Candidate formulas according to formula (5): encoding negative conditional effects.

ID Formulas

1 ∀i.x.p.((take-out o i) ∧ (at o p i) → (at x p i) ∧ ¬(at x p i + 1))

2 ∀i.p.((take-out o i) ∧ (at o p i) → (is-at p i) ∧ ¬(is-at p i + 1))

3 ∀i.∃p.((take-out o i) ∧ (at o p i) → (in o i) ∧ ¬(in o i + 1))

4 ∀i.x.∃p.((take-out o i) ∧ (at o p i) → (in x i) ∧ ¬(in x i + 1))

5 ∀i.p.∃x.((take-out o i) ∧ (at x p i) → (at o p i) ∧ ¬(at o p i + 1))

6 ∀i.p.∃x.((take-out o i) ∧ (at x p i) → (is-at p i) ∧ ¬(is-at p i + 1))

7 ∀i.∃x.p.((take-out o i) ∧ (at x p i) → (in o i) ∧ ¬(in o i + 1))

8 ∀i.x.∃p.((take-out o i) ∧ (at x p i) → (in x i) ∧ ¬(in x i + 1))

9 ∀i.p.((take-out o i) ∧ (is-at p i) → (at o p i) ∧ ¬(at o p i + 1))

10 ∀i.x.p.((take-out o i) ∧ (is-at p i) → (at x p i) ∧ ¬(at x p i + 1))

11 ∀i.∃p.((take-out o i) ∧ (is-at p i) → (in o i) ∧ ¬(in o i + 1))

12 ∀i.x.∃p.((take-out o i) ∧ (is-at p i) → (in x i) ∧ ¬(in x i + 1))

13 ∀i.p.((take-out o i) ∧ (in o i) → (at o p i) ∧ ¬(at o p i+1))

14 ∀i.x.p.((take-out o i) ∧ (in o i) → (at x p i) ∧ ¬(at x p i + 1))

15 ∀i.p.((take-out o i) ∧ (in o i) → (is-at p i) ∧ ¬(is-at p i+1))

16 ∀i.x.((take-out o i) ∧ (in o i) → (in x i) ∧ ¬(in x i + 1))

17 ∀i.p.∃x.((take-out o i) ∧ (in x i) → (at o p i) ∧ ¬(at o p i + 1))

18 ∀i.x.p.((take-out o i) ∧ (in x i) → (at x p i) ∧ ¬(at x p i + 1))

19 ∀i.p.∃x.((take-out o i) ∧ (in x i) → (is-at p i) ∧ ¬(is-at p i + 1))

20 ∀i.∃x.((take-out o i) ∧ (in x i) → (in o i) ∧ ¬(in o i+1))

[A1] Action-consistency constraint. First, we wish the model learned do not conflict with themselves. Thus, if an action a
has an effect p, then this same action a cannot have an effect ¬p in the same state after a is executed. We formulate this
constraint as follows. For each action a and literal p, if in its effect there are two formulas “ f1 = L1 → p” and“ f2 = L2 →
¬p”, where L1 and L2 are both a conjunction of literals, then we require that L1 and L2 are mutually exclusive. Notice
that either L1 or L2 can be empty, i.e., “ f1 = p” or “ f2 = ¬p”. L1 and L2 are not mutually exclusive when either of them
is empty. For example, “(in ?x)” and “(not (in ?x))” should not be chosen as the effects of the action “(take-out ?x)” at the
same time.

[A2] Plan-consistency constraint. We require that the action models learned are consistent with the training plan traces. This
constraint is imposed on the relationship between ordered actions in plan traces, and it ensures that the causal links in the
plan traces are not broken. That is, for each precondition p of an action a j in a plan trace, either p is in the initial state, or
there is an action ai (i < j) prior to a j that adds p and there is no action ak (i < k < j) between ai and a j that deletes p.
For each literal q in a state s j , either q is in the initial state s0, or there is an action ai before s j that adds q while no action
ak deletes q. We formulate the constraint as follows.

p ∈ PRE(a j) ∧ p ∈ EFF(ai) ∧ ¬p /∈ EFF(ak) (6a)

and

q ∈ s j ∧ (
q ∈ s0 ∨ (

q ∈ EFF(ai) ∧ ¬q /∈ EFF(ak)
))

(6b)

where i < k < j, PRE(a j) is a set of preconditions of the action a j and the state s j is composed of a set of propositions (or
predicates).

For example, for the action “put-in”, since “is-at” is a precondition of “put-in”, if it is not in the initial state, there should
be an action “move” that adds it, and it is never deleted by the actions (if any) between “move” and “put-in”. Otherwise,
the action “put-in” cannot be executed after the action “move”.

[A3] Non-empty constraint. We wish to avoid the extreme situation where in a plan trace, the action models are learned
such that all except one of the actions in the trace have non-empty preconditions and effects. Although such an action
model is not incorrect, it is rather undesirable. To avoid such cases, we require that the preconditions and effects of the
actions we learn should be non-empty. In other words, for each action model a, the following formula should hold:

PRE(a) �= ∅ ∧ EFF(a) �= ∅ (7)

These constraints can be used in the learning phase for building the action models in an MLN, or it can be used as post-
processing constraints for selecting the effects after they are learned in Step 3 (see next subsection). In our experiment,
these constraints are enforced.

4.3. Step 3: learning the weights of candidate formulas

In this section, we describe how to construct Markov Logic Networks [35,23] to learn the weights of the candidate
formulas F based on the constraints A. The formulas with weights larger than a certain threshold will be chosen to represent

H.H. Zhuo et al. / Artificial Intelligence 174 (2010) 1540–1569 1553
preconditions and effects of the learned action models. This step will be done by the procedure learn_weights with candidate
formulas F and databases DBs as input.

At a first glance, it might seem that using a maximum satisfiability-based algorithm would solve the problem of selecting
a good subset of formulas. However, this is not the case. The reason is that a weighted satisfiability-based algorithm will
assign non-uniform weights to a collection of formulas that correspond to instantiations of these formulas, thus they cannot
be grouped into formulas expressing quantifiers or implications, because each of these complex formulas corresponds to
a collection of ground instantiations. The weights on each instantiation will be different, making it impossible to combine
them together to re-construct the first-order formulas. It is more natural to consider the weights of a first-order logic
formula in its entirety. Therefore, a Markov Logic Network is a more appropriate model for us to learn the weights of the
first-order logic formulas in a way to soften these hard constraints.

To learn the weights of formulas F , we exploit the Alchemy System of MLN [35,23] to calculate and optimize the score of
WPLL (i.e., Weighted Pseudo Log-Likelihood) [3]. With respect to the weights w and a database x in DBs (a list of possible
worlds), WPLL is defined as follows.

WPLL(w, x) = log
n∏

l=1

P w
(

Xl = xl|MBx(Xl)
)

=
n∑

l=1

log P w
(

Xl = xl|MBx(Xl)
)

where

P w
(

Xl = xl|MBx(Xl)
) = C(Xl=xl)

C(Xl=0) + C(Xl=1)

and C(Xl=xl) = exp
∑

f i∈Fl
wi f i(Xl = xl,MBx(Xl)). n is the number of all the possible groundings of atoms appearing in all the

formulas F , and Xl is the lth ground atom. MBx(Xl) is the state of the Markov blanket of Xl in x, where x = (xi) is a world
state and xi can be 1 or 0 which denotes the truth value of the corresponding ground atom (true or false, respectively).
A Markov blanket of a ground atom is a set of ground atoms that appear in some grounding of a formula with it. Fl is the
set of ground formulas that Xl appears in, and f i(Xl = xl,MBx(Xl)) is the value (0 or 1) of the feature corresponding to the
ith ground formula when Xl = xl and Markov blanket state MBx(Xl).

For instance, there is only one formula “p(x, y) → q(x)” in F , and x ∈ {A, B}, y ∈ {C, D}. Then all the possible groundings are
{p(A, C), p(A, D), p(B, C), p(B, D),q(A),q(B)}, i.e., n = 6 and Xl (0 < l � n) could be viewed as one of the groundings. F p(A,C) (or
F1) is {p(A, C) → q(A)}, likewise for other Fl . A Markov blanket of p(A, C) is {q(A)}, which can be easily found according to F p(A,C) ,
likewise for Markov blankets of other ground atoms. Given a world state x = (1,1,1,0,1,0), the value of f i(X1 = x1,MBx(X1)) is 1
(note that X1 is p(A, C), x1 is 1 in x, and MBx(X1) = {q(A)} is also 1 in x). As a result,

C(X1=x1) = exp
∑
f i∈F1

wi fi
(

X1 = x1,MBx(X1)
) = ewi

Similarly, we can also calculate C(X1=0) = ewi . Furthermore, we have

WPLL(w, x) =
6∑

l=1

log P w
(

Xl = xl|MBx(Xl)
)

= log
ewi

ewi + ewi
+ · · ·

where w = wi since there is only one formula, and the term log ewi

ewi +ewi is calculated when l = 1. Likewise for other l (1 < l � 6), we
can calculate their corresponding values.

The score WPLL is used to measure the likelihood of all weighted candidate formulas to be satisfied by the training data
DBs. The higher the weight scores, the larger the likelihood will be for the formulas. Thus, to maximize the likelihood, we
try to maximize the score WPLL by choosing the proper weights of candidate formulas. We use a gradient-descent based
algorithm to learn the weights to maximize the WPLL score, as shown in Algorithm 4.

Notice that, in Step 5 of Algorithm 4, x is selected from DBs by a random order. One specific random order corresponds
to |DBs| (the number of elements of DBs) repetitions from Steps 5 to 8, calculating a value of wi+1. In our implementation,
the final result of wi+1 is given by an average of the values attained according to five randomly generated orders. When
computing WPLL, we count the true instantiations from one individual DB, instead of among different DBs (which can be
found from Steps 5–9 of Algorithm 4). Each time after computing WPLL, we will update the weight wi+1 and use another
DB to compute WPLL and do another updating of wi+1, and so forth. In this way, the same objects or state indices among
different plan traces will not affect the counting of true instantiations (since we do the counting only from one individual
plan trace, instead of among different plan traces).

1554 H.H. Zhuo et al. / Artificial Intelligence 174 (2010) 1540–1569
Algorithm 4 Weight learning algorithm: learn_weights(F , DBs, N).
Input: a list of formulas F , A list of databases DBs, the number of iterations N .
Output: Weights of candidate formulas F .

1: Initialize w0 = (0, . . . ,0).
2: set the number of iterations as N .
3: for i = 0 to N − 1 do
4: wi+1 = wi .
5: for Each database x in DBs do
6: Calculate WPLL(wi+1, x).

7: wi+1 = wi+1 + λ · ∂WPLL(wi+1,x)
∂ wi+1 .

8: (Notice that λ is a small enough constant.)
9: end for

10: end for
11: return w N .

Since DBs are attained by Step 1 and formulas F are generated by F1–F5 in Step 2, by using Algorithm 4, we can learn
the weights of the formulas F . Example 6 in the following will demonstrate the weight learning procedure.

Example 6. For simplicity, we use the closed world assumption in this example. Thus, in Table 3, DB2 can be denoted as
{(is-at home 0), (at o1 l1 0), (move home l1 0), (put-in o1 l1 1), (in o1 2), (move l1 home 2), (is-at home 3), (at o1 home 3)}
(other propositions not shown here are viewed as false), where {0,1,2,3} stands for {s0, s1, s2, s3}. Then x can be denoted
as {. . . ,1, . . . ,1, . . . ,1, . . .}, where xi = 0 is not shown here, which means its corresponding proposition does not appear in
DB2, and xi = 1 means its corresponding proposition appears in DB2. We assume that there are two locations {home, l1},
one portable {o1}, and four states {s0, s1, s2, s3}. Then, the number of propositions n = |x| is 48, which can be calculated
by counting all the groundings of {(is-at ?l ?i), (at ?o ?l ?i), (in ?o ?i), (move ?m ?l ?i), (put-in ?o ?l ?i), (take-out ?o ?i)}.
Notice that we use a new parameter “?i” to denote states in each literal. Take the candidate formula “∀i.p.(take-out o i) →
(at o p i)” as an example, assuming that there is only one formula in an MLN. We denote the all groundings that contain the
proposition (take-out o1 0) as F(take-out o1 0) , which is F(take-out o1 0) = {(take-out o1 0) → (at o1 l1 0), (take-out o1 0) →
(at o1 home 0)}. Likewise, we can calculate F(take-out o1 1) , F(take-out o1 2) , F(take-out o1 3) , F(at o1 l1 0) , F(at o1 l1 1) , F(at o1 l1 2) ,
F(at o1 l1 3) , F(at o1 home 0) , F(at o1 home 1) , F(at o1 home 2) , F(at o1 home 3) . When Xl is (take-out o1 0), and Fl is F(take-out o1 0) ,
from

C(Xl=xl) = exp
∑
f i∈Fl

wi f i
(

Xl = xl,MBx(Xl)
)

we have

C((take-out o1 0)=0) = e2wi

C((take-out o1 0)=1) = ewi

where wi is the weight of the candidate formula. Note that in the world state DB2,

f i
(
(take-out o1 0) = 0,MBx

(
(take-out o1 0)

)) = 1

and

f i
(
(take-out o1 0) = 1,MBx

(
(take-out o1 0)

)) = 0

when f i is (take-out o1 0) → (at o1 l1 0), likewise for other f i from F(take-out o1 0) , F(take-out o1 1) , F(take-out o1 2) ,
F(take-out o1 3) , F(at o1 l1 0) , F(at o1 l1 1) , F(at o1 l1 2) , F(at o1 l1 3) , F(at o1 home 0) , F(at o1 home 1) , F(at o1 home 2) , or F(at o1 home 3) .
Finally, we can calculate WPLL(w, x) by

WPLL(w, x) =
n∑

l=1

log
C(Xl=xl)

C(Xl=0) + C(Xl=1)

= log
e2wi

e2wi + ewi
+ log

e2wi

e2wi + 1
+ log

e2wi

e2wi + 1
+ log

e2wi

e2wi + ewi
+ 8 log

ewi

ewi + ewi

where the first four items are attained when Xl = (take-out o1 s0), (take-out o1 s1), (take-out o1 s2), (take-out o1 s3),
respectively; the last item is attained when Xl = (at o1 l1 s0), (at o1 l1 s1), (at o1 l1 s2), (at o1 l1 s2), (at o1 l1 s3),
(at o1 home s0), (at o1 home s1), (at o1 home s2), (at o1 home s2), (at o1 home s3), respectively. Note that wi is the weight
of the candidate formula “∀i.p.(take-out o i) → (at o p i)”, and w is the same as wi since there is only one candidate
formula in the MLN. By setting the weight w with an initial value, we can calculate w iteratively using Algorithm 4.

As an example, the learning result for the formulas in Table 4 is shown in Table 10. Intuitively speaking, the larger the
weight of a formula, the more probable that the formula is true in the world state.

H.H. Zhuo et al. / Artificial Intelligence 174 (2010) 1540–1569 1555
Table 10
An example of the learned weights of formulas generated by F1.

ID Weights Formulas

1 −0.5 ∀i.p.((take-out o i) → (at o p i))
2 −1.2 ∀i.x.p.((take-out o i) → (at x p i))
3 −1.5 ∀i.p.((take-out o i) → (is-at p i))
4 0.8 ∀i.((take-out o i) → (in o i))
5 −0.9 ∀i.x.((take-out o i) → (in x i))

Table 11
The generated action model.

action: take-out(?x - portable)

preconditions: (in ?x)
. . .

effects: . . .

Table 12
The formulas selected from Tables 5, 7 and 8.

ID Selected formulas

1 ∀i.((take-out o i)∧ → (in o i))
2 ∀i.((take-out o i) → ¬(in o i + 1) ∧ (in o i))
3 ∀i.p.((take-out o i) ∧ (is-at p i) → ¬(at o p i) ∧ (at o p i+1))

4.4. Step 4: generating action models

All weights in MLN learning are initialized to zero. The optimization of pseudo log-likelihood ensures that when the
number of true groundings of f i is larger, generally, the corresponding weight of f i will be higher. Hence, the final weight
of a formula in an MLN is a confidence measure of that formula. Intuitively, the larger the weight of a formula, the more
probable that formula will be true in the world description. However, when generating the final action model from these
formulas, we need to determine a threshold δ, based on the accuracy of action models learned to choose a set of formulas
from an MLN. We will describe the steps of generating action models in Algorithm 5.

Algorithm 5 Generate action models: attain_models(W ,F).
Input: A set of candidate formulas F and their weights W .
Output: A set of action models A.

1: Initialize A = ∅;
2: Test and choose a threshold value δ based on the error estimates of the plan correctness (see Section 5.1) in the evaluation criteria using the training

plan traces;
3: Select all the formulas F ′ ∈ F whose corresponding weights in W are larger than δ;
4: Convert F ′ to action models A based on F1–F5;
5: return A;

For instance, if a formula generated by F1 is selected, the predicate p in the formula will be transformed to a precondi-
tion of the action a in the formula. The action model generation process can be seen in Example 7.

Example 7. From the result of Example 6, if we set zero as the threshold, we can select the formulas whose weights are
larger than zero from Table 10. The result is: “∀i.(take-out o i) → (in o i)”, whose weight is 0.8. After converting the formula
to an action model, we get the result shown in Table 11, where the ellipsis represents the preconditions or effects learned
by other formulas but not in Table 10.

Furthermore, to demonstrate how to generate a precondition, a positive/negative effect or a positive/negative conditional
effect from a selected formula (whose weight is larger than the threshold δ), we assume that there is one formula selected
from each of Tables 4, 7 and 8 respectively, which is shown in Table 12. We then convert the formulas to the corresponding
action model as shown in Table 13. The ID numbers in Tables 12 and 13 indicate their corresponding conversion relation.

From Table 13, a precondition “(in ?o)”, can be attained by converting the first formula in Table 12. This precondition
means that if we want to take out a portable “?o” from the briefcase, the portable “?o” should be in the briefcase. Likewise,
we can give an explanation for the effects in Table 13.

Notice that we do not show how to generate a precondition of the action “take-out” in an implication form, since
such a precondition does not exist in the real action model of “take-out”. However, for the domain trucks whose learning
result is shown in Table 20 in the experiment section, a precondition of the action “load(?p-package ?t-truck ?a1-truckarea
?l-location)” in an implication form

1556 H.H. Zhuo et al. / Artificial Intelligence 174 (2010) 1540–1569
Table 13
The generated action model according to Table 12.

action: take-out(?o - portable) ID

preconditions: (in ?o) 1

effects: (and (not (in ?o)) 2
(forall ?p - location (when (is-at ?p)(at ?o ?p))) 3

“
(
forall (?a2-truckarea)

(
imply(closer ?a2 ?a1) (free ?a2 ?t)

))
”

will be learned from the candidate formula “∀i.a2.((load p t a1 l i)∧ (closer a2 a1 i) → (free a2 t i))” (i.e., its weight is high
enough to be selected by LAMP), which is generated from F1. This precondition suggests that, in order to load a package
“?p” into the area “?a1” of the truck “?t”, any other area “?a2” of “?t” close to “?a1” should be free.

4.5. Properties of action models

4.5.1. Action soundness and plan consistency
With the candidate formulas generated by F1–F5 and the constraints A1–A3, we would like to show that certain proper-

ties are satisfied by our LAMP algorithm.

Soundness Consider a set of action models. We say that these actions are sound if whenever we apply a ‘legal chain’ of
action sequence to a consistent initial state, such that all preconditions of actions in the sequence are satisfied in their
preceding states, the resulting end state is consistent; here a state is considered consistent if it does not contain both a
literal p and its negation (¬p). A ‘legal’ action means that all preconditions of that action are satisfied in the state it is
applied to.

Definition 1 (Soundness of action models). An action model is said to be sound if starting from any initial state S , any sequence
P built by using a legal forward chaining of the action models leads to a consistent state.

Theorem 1 (Soundness property). Imposing constraint A1 on the candidate formulas in F1–F5 ensures that the action models learned
are sound.

Proof. This can be proven by induction. First, the initial state S is consistent. Assume that an action a is applicable to S .
Consider the state T after a is applied to S . Then, suppose that T is inconsistent, that is, p and ¬p must be both true
in T . There are two cases. In case one, p is true in S and ¬p is true in T , and p is not removed from T after a’s execution.
However, this would not be possible due to the semantics of PDDL. In the second case, p and ¬p are both on the right-hand
side of some rules in the effect of a, since there are no other domain axioms that can infer p and ¬p. Furthermore, the
left-hand side of these rules L1 and L2 are both true in T . This means that for the rules L1 → p and L2 → ¬p that are both
in effects of a, L1 and L2 are both true. However, we know from the constraint A1 that this is not allowed. Thus, T must be
consistent. By induction, any forward-chaining sequence must lead to a consistent state only. �

Above we have shown that our learned action models are sound. A related question is completeness; that is, whenever a
plan exists for a planning problem, a planner can generate at least one solution to the problem. However, when generating
action models, we cannot guarantee that the models are ‘complete’, since completeness is a property of both a planning
system and an action model together, rather than an action model alone. Thus, we will not consider completeness for our
action models.

Next, we wish to show that our learned action models are sufficiently expressive to ‘explain’ all the training plan traces.
This means that using our action models in the same order of a plan trace in the training set, we can obtain the goal
conditions from the initial conditions. This is known as plan consistency property.

Definition 2 (Plan consistency). We denote a plan trace as {s0,a0, s1, . . . sn,an, g}, where si is a state before the execution of
the action ai , and denote the corresponding action model of ai as M(ai). We say the learned action models are consistent
with a plan trace if and only if the following two conditions are satisfied: for each action ai in the plan trace, where
0 � i � n,

1. all the preconditions of M(ai) are satisfied in state si ; and
2. the goals g can be achieved by executing the action sequence.

Theorem 2 (Plan consistency). The action models learned by LAMP are consistent with the training plan traces.

H.H. Zhuo et al. / Artificial Intelligence 174 (2010) 1540–1569 1557
Table 14
The size of problems.

Domains Predicates Actions Plan traces Average length

Briefcase 3 3 100 13
Elevator 6 3 180 19
Openstacks 9 5 200 31
Trucks 10 4 180 26

Proof. According to Definition 2, we only need to verify the two conditions of consistency are satisfied. From constraint A2,
we know that all preconditions of every action a j in a plan trace will be either added by some action ai prior to it, or exist
in the initial state, and should not be deleted until they are used as preconditions of the action; i.e., they are all satisfied.
Furthermore, every goal literal in the goal state will be either added by some action prior to the goal state, or exist in
the initial state; i.e., the goal can be achieved by executing the action sequence. Thus, from the definition of consistency, it
follows that the conclusion holds. �
4.5.2. Complexity analysis

Comparing our LAMP algorithm with two previous algorithms, ARMS [52] and SLAF [39], in learning action models, we
note that ARMS uses weighted-MAXSAT to learn STRIPS models, which are action models with no quantifier in preconditions
or effects. SLAF imposes quantifiers on its learning result, in particular, existential quantifiers appear in preconditions and
universal quantifiers appear in effects. Such a constraint is rather arbitrary and strong for many real-world action domains.
Our algorithm, LAMP, learns quantifiers in a way which conforms to the definition of PDDL, such that preconditions can
be quantified by universal quantifiers, effects that are literals can be quantified by universal quantifiers and effects that
are conditional effects can be quantified by both existential and universal quantifiers on their condition part, and universal
quantifiers on their effect part. Besides, LAMP learns models with implications as preconditions, which makes the learned
action models more expressive.

We now analyze the time complexity of the LAMP algorithm. The running time of the LAMP algorithm depends on the
running time of each step in the algorithm. In the first step, the running time is O (tlg), where t denotes the number of
plan traces, l denotes the maximum length of plan traces. and g denotes the maximal number of propositions in states
including intermediate states, initial states and goal states. In the second step, the running time is O (apn), where n is the
maximal number of predicates to form a conditional effect or an implication formula, p and a represent the number of
predicates and the number of actions, respectively. It takes O (mntlgf) in the third step, where f denotes the number of
formulas, m denotes the number of iterations. Finally, it takes O (f) in the fourth step. Thus, the total running time of LAMP
is O (tlg) + O (apn) + O (mntlgf) + O (f) = O (mntlgf), where apn is generally much smaller than mntlg f . Likewise, the space
complexity of the fourth steps is O (tlg), O (apn), O (ntlgf) and O (f) respectively. Thus, the space complexity of LAMP is
O (tlg) + O (apn) + O (ntlgf) + O (f) = O (ntlgf), since apn is generally much smaller than O (ntlgf).

Comparing the computational complexity, we note that the complexity of SLAF is O (sk(2|P |)k+1), where s is equivalent
to tl, k is the minimum number such that preconditions are in k-DNF form and P is a set of all possible fluents. P is larger
than g and f . Thus, the time complexity of LAMP is lower than that of SLAF if m is assumed to be a constant.

5. Experiments

5.1. Datasets and evaluation criteria

To evaluate LAMP, we collected plan traces from the following planning domains: briefcase, elevator, openstacks, trucks,
where briefcase was from the homepage of IPP,1 elevator was from the second International Planning Competition (IPC-2),5

openstacks and trucks were both from the fifth International Planning Competition (IPC-5). These domains have the char-
acteristics we need to evaluate in our LAMP algorithm: briefcase and elevator domains have quantified conditional effects,
openstacks and trucks both have quantifiers and implications in preconditions. Using the FF planner,6 we generated 100 plan
traces from briefcase, 180 plan traces from elevator, 200 plan traces from openstacks and 180 plan traces from trucks by
solving planning problems from each domain. Notice that the number of plan traces depends on the number of planning
problems we downloaded from IPP, IPC-2 and IPC-5. We show the size of the learning problems in our experiment in Ta-
ble 14, where the second and third columns are the numbers of different predicates and actions in each domain; the fourth
column is the number of plan traces collected from each domain; the last column is the average length of plan traces in
each domain.

We use all the plan traces as training data to learn action models, and use the corresponding hand-written action models
from IPP, IPC-2 or IPC-5 as the ground truth action models to compare with our learned action models. The comparison gives
us the error rates. This method of evaluation allows us to generate action models using our algorithm and then compare the

5 http://www.cs.toronto.edu/aips2000/.
6 http://members.deri.at/~joergh/ff.html.

http://www.cs.toronto.edu/aips2000/
http://members.deri.at/~joergh/ff.html

1558 H.H. Zhuo et al. / Artificial Intelligence 174 (2010) 1540–1569
results to the hand-crafted ones in the IPC-5 collection. The accuracy thus obtained gives us assurances of the effectiveness
of the action models we learn in the real world, when we only have the observed states and activity sequences from sensors.

We define the error rates of our learning algorithm as the difference between our learned action models and the hand-
written action models that are considered as “ground truth”. If a precondition appears in the precondition list of our
learned action model but not in the precondition list of its corresponding hand-written action model, the error count of
preconditions, denoted by Epre, increases by one. If a precondition appears in the precondition list of a hand-written action
model but not in the precondition list of the corresponding learned action model, Epre also increases by one. Likewise, the
error count in the actions’ effects is denoted as Eeff. Different quantifiers and implications both account for a difference of
one.

Note that the preconditions of an action are conjunctive, which are viewed as a set, where each element is an implication
or a universally quantified literal. We denote the set of all the possible preconditions of an action model as L0

pre, the set of

preconditions of the learned action model as L1
pre, and the set of preconditions of the ground truth action model as L2

pre.

Then, the error count of preconditions is calculated by comparing L1
pre and L2

pre, i.e. Epre = |L1
pre ∪ L2

pre − L1
pre ∩ L2

pre|.
Likewise, the effects of an action model are also conjunctive, which are viewed as a set, each element of which is a

universally quantified literal, or a conditional effect. We denote the set of all the possible effects of an action model as L0
eff,

the set of effects of the learned action model as L1
eff, and the set of effects of the ground truth action model as L2

eff. Then
the error count of effects is calculated by Eeff = |L1

eff ∪ L2
eff − L1

eff ∩ L2
eff|.

Furthermore, we denote the total number of all the possible preconditions and effects of an action model as Tpre and
Teff, respectively. Then we have Tpre = |L0

pre| and Teff = |L0
eff|. Here we constrain implications and conditional effects with

only a constant number of different literals, so that Tpre and Teff are both finite.
In our experiments, the error rate of an action model a is defined as

R(a) = 1

2

(
Epre

Tpre
+ Eeff

Teff

)

where we assume the error rates of preconditions and effects were equally important, and the range of error rate R(a) is
within [0,1]. Furthermore, the error rate of all the action models A in a domain is defined as

R(A) = 1

|A|
∑
a∈A

R(a)

where |A| is the number of A’s elements. Using this definition of error rate, we present our experimental results in the
next subsection. We will evaluate LAMP with respect to the following criteria: (1) the relationship between accuracy and
the percentage of observed intermediate states, (2) the relationship between accuracy and the percentage of propositions in
each state, (3) the relationship between accuracy and the number of plan traces in action-model learning, (4) the running
time, (5) the human effort saved by LAMP, (6) the application of LAMP in software requirement engineering, and (7) the
example output. The detailed description of each criterion is given in the next subsection.

5.2. Experimental results

5.2.1. Relationship between accuracy and the percentage of observed intermediate states
To simulate partial observation between two actions in a plan trace, from the plan traces, we randomly selected observed

states with specific percentage of observations 1
5 , 1

4 , 1
3 , 1

2 , and 1. For each percentage value, e.g., 1
5 , and likewise for other

percentage values, we randomly selected an observation within five consecutive states in a plan trace. We ran the selection
process five times. Each time our LAMP algorithm generated the learned action models, from which we calculated an error
rate. Finally, we calculated an average error rate on the plan traces. The results of these tests are shown in Fig. 1.

Fig. 1 shows the performance of the LAMP algorithm with respect to different threshold values δ used in selecting the
candidate formulas in the last step of algorithm, which were set to 0.01, 0.1, 0.5 and 1.0, respectively. From the results, we
find that the performance is sensitive to the choice of the threshold; the threshold values should neither be too large nor
too small. A threshold that is too large may miss useful candidate formulas, and a threshold that is too small may bring in
too many noisy candidate formulas that affect the overall accuracy of the algorithm. In these experiments, it can be seen
that when the threshold is set as 0.5, the mean average accuracy is optimal (Fig. 1(II)). Furthermore, the error bars, which
show the confidence intervals, show that our algorithm performance is stable.

We also would like to know the relationship between the accuracy of the learned model and the percentage of observed
intermediate states. Since the LAMP algorithm does not require all of the intermediate state information to be seen, it can
still learn useful information from some but not all observations. In our experiment, we chose different percentages of
observations: 1

5 , 1
4 , 1

3 , 1
2 , 1, and produced the corresponding error-rate results. Our experimental results, which are given in

Fig. 1, show that in most cases, the more observations that we have, the lower the error rate will be, which is consistent
with our intuition. However, there are some cases, e.g., when the threshold δ is set to be 1.0, and there are only 1

3 of the

states observed, the error rate is lower than the case when 1
2 of the states are given. These cases are not consistent with our

intuition, but they are possible, however, since when more observations are obtained, the weights of their corresponding

H.H. Zhuo et al. / Artificial Intelligence 174 (2010) 1540–1569 1559
Fig. 1. The error rates with respect to different percentages of observations.

formulas go up and the weights of other formulas may go down when considering the overall learning process. Thus, if the
threshold δ is still set to be 1.0, some formulas which were chosen before are missed out, and the error rate will be higher.
Thus, we conclude that in these cases, we need to reduce the value of the threshold correspondingly for the error rate to
decrease.

5.2.2. Relationship between accuracy and the percentage of propositions in each state
Another aspect of partial observations was simulated by reducing the percentage of propositions known to be true in

each state. In this section, we performed tests on this aspect of partial observation.
We first set the percentage of observations as 1

3 , and tested different percentages of propositions in each state to calculate
their corresponding errors. The propositions in each state were randomly selected for each specific percentage value to
generate the observations. The action models were then learned and evaluated on the ground truth models. The results are
shown in Fig. 2, where a value 20 in the x-coordinate means 20% of propositions in each state are given in a plan trace,
likewise for 40, 60, 80.

From Fig. 2 we find that, on one hand, when setting the candidate-selection threshold value δ to 0.5 (shown in Fig. 2(II)),
the error rate is generally lower than using other thresholds (shown in Fig. 2 (I), (III) and (IV)), which is consistent with
the results of Fig. 1. On the other hand, when the percentage of propositions increases, the error rate generally decreases.
This is explained as: the larger the percentage is, the more information available will be attained by our learning algorithm,
which will help improve the learning result.

From Figs. 1 and 2, we find that the error rate of the domain elevator is generally larger than other domains, which
suggests that it is more difficult to learn than the others. We observe that elevator has actions (e.g., stop), which contain
more conditional effects than others. From F4 (or F5), we know that conditional effects need more literals to represent them
than other conditions (preconditions, positive and negative effects), which can be seen from F1 to F3. This fact will make
conditional effects difficult to learn. That is why the error rate of elevator is larger than the others. The similar result can
also be found from briefcase whose conditional effects are less than elevator but more than openstacks and trucks. Its error
rate is generally larger than that of openstacks and trucks, but smaller than that of elevator.

5.2.3. Relationship between accuracy and the number of plan traces in action-model learning
To see how the error rate was affected by the number of plan traces, we used different number of plan traces as the

training data to evaluate the performance. In our tests, we assumed that each plan trace had 1
5 of fully observed interme-

diate states. These observed states were randomly selected. The process of generating state observations was repeated five
times, where each time an error rate was generated under different selections.

1560 H.H. Zhuo et al. / Artificial Intelligence 174 (2010) 1540–1569
Fig. 2. The error rates with respect to different percentages of propositions in each state.

We show the results in Fig. 3, which suggests that the error rate generally decreases when the number of plan traces
increases. At the beginning, the error rate decreases quickly but eventually it goes down slowly. This means that the error
rate is more sensitive when the number of plan traces is small than when it is large. When comparing the different curves
in a figure, we can see that the error rate is generally lower when the threshold δ is 0.5 than other thresholds, which is
consistent with the result from Fig. 1.

5.2.4. Running time
We also tested the different number of plan traces to obtain the corresponding CPU time for learning. The results is

shown in Fig. 4, where the percentage of observed intermediate states is set by 1
5 . From Fig. 4 (I)–(IV), we can see that, the

CPU time goes up when the number of plan traces increases. To see the relationship between CPU time and the number of
plan traces, we fit the running result of domain briefcase with a nonlinear curve, which is shown in Fig. 5. The functional
form of the curve in Fig. 5 is −0.0010x3 + 0.0795x2 + 14.7737x − 147.5333, which means that the CPU time increases
polynomially with respect to the number of plan traces. A similar result can also be found from three other domains:
elevator, openstacks and trucks.

5.2.5. Human effort saved by LAMP
The next question is: if we use LAMP to create action models, how much human effort will be reduced as compared to

not asking human experts to manually encode the domains from scratch? We invited two groups of people, each having a
size of 10, to build action models. We took care to separate the two groups in our testing.

Case 1 Testers in the first group were not given any initial action models, so that they created action models from
“scratch”;

Case 2 Testers in the second group were given the action models learned by LAMP, and were asked to revise the models.

These two groups of testers consisted of people between 21 and 31 years of age. In the first group, nine people were male
and one was female. In the second group, eight people were male and two were female. Among the ten people in the first
group, six were students and faculties from universities and the remaining four were from companies. In the second group,
seven people were from universities and three were from companies. All these people had some general knowledge on
AI Planning and PDDL language. We were interested in seeing how much difference was there between the groups in the
quality and human effort of action model construction.

H.H. Zhuo et al. / Artificial Intelligence 174 (2010) 1540–1569 1561
Fig. 3. The error rates with respect to different number of plan traces, with the percentage of observed intermediate states as 1
5 .

Fig. 4. The CPU time with respect to different number of plan traces.

1562 H.H. Zhuo et al. / Artificial Intelligence 174 (2010) 1540–1569
Fig. 5. The fitting result of the CPU time of briefcase.

Fig. 6. Time saved and error rate reduced by LAMP.

For each test case, we recorded the testers’ individual times spent on model building, and calculated their corresponding
error rates as compared to the ground-truth models. We present our results in Fig. 6, where “◦” indicates the testing results
for the first case, and “∗” indicates the ones for the second case. Notice that, the results as shown in Fig. 6 are the average
results of ten people in each group. From Fig. 6(I), we find that, the time cost of the first case is much lower than that of
the second case for all four domains briefcase, elevator, openstacks and trucks. Similar results on error rates can also be found
in Fig. 6(II). In summary, from this experiment, we can see that our LAMP algorithm can indeed help reduce the human
effort and improve the model quality in the construction of action models.

5.2.6. Comparison of grounded actions
In order to show that our method of error counting for learned actions with quantifiers and implications is reasonable,

in this section we compare the error rates obtained with that of grounded actions. We test the differences between hand-
crafted action models and learned action models by grounding quantifiers (or implications, conditional effects). The results
are STRIPS action models. For instance, the action model “move” of Table 2 can be grounded in the initial state of plan
trace 2 in Table 1 to the result as shown in the following,

(move home l1)
preconditions: (is-at home)
effects: (and (is-at l1) (not (is-at home)))

where the quantifier and conditional effect are grounded, which results in a STRIPS action. We count the differences
between grounded hand-crafted action models and grounded learned action models and generate error rates as described
in Section 5.1. We no longer need to count the differences between quantifiers and conditional effects.

We learn action models by setting the threshold δ as 0.5 and the percentage of observed intermediate states as 1
5 . We

wish to test differences between the learned action models and hand-crafted action models by grounding them in plan

H.H. Zhuo et al. / Artificial Intelligence 174 (2010) 1540–1569 1563
Table 15
Error rates of actions with quantifiers (R(A)) and error rates of grounded actions (R ′(A)).

Briefcase Elevator Openstacks Trucks

R ′(A) 0.11 0.14 0.08 0.09
R(A) 0.13 0.15 0.10 0.09

traces. We collected 20 testing plan traces with fully observed intermediate states for each domain including briefcase,
elevator, openstacks and trucks, and ground the learned action models and hand-crafted action models in the states. We then
calculate an average error rate (denoted as R ′(A)) over all the STRIPS actions. The result is as shown in Table 15.

In Table 15, R ′(A) gives the error rates generated with grounding, while R(A) gives the error rates generated from the
quantified actions. From Table 15 we can see that the error rate R ′(A) is generally smaller than R(A). We can see from the
table that both methods of error counting result in about the same values for all error rates. This justifies our previously
used error rate calculation method when considering quantified actions.

5.2.7. Applying LAMP to software requirement engineering
To demonstrate the real-world application of our LAMP algorithm, we consider a problem to acquire software requirement

specification for specifying an online-service business process, which can also be found from our previous work [58]. The
software system based on actions learned with LAMP is operational. As an example, we have successfully applied it to a
Bookstore System in Guangxi province of China. A software requirement specification is a complete description of the behaviors
of the system to be developed. It includes a set of user cases that describe all the interactions that users would have with
the system. In this section, our main idea of using LAMP to acquire software requirement specification is given as follows.

1. We first extracted types that objects in the system belonged to, predicates that represented the relations among types,
and action schemas that represented behaviors of the system.

2. After that, we collected plan traces from various business process by communicating with a business personnel.
3. Finally, we learned action models with predicates, action headings and plan traces as input, and converted the learned result

to a software requirement specification.

In the following, we present an example that LAMP is used to acquire the software requirement specification of the Bookstore
Ordering System.

Example 8. A Bookstore Ordering System can be separated by three levels:

1. Client ordering: a client orders his books from a base store based on a list of books, and generates an ini-
tial_ordering_form.

2. Base store ordering: a staff of the base store orders his books from a province store based on initial ordering forms, and
generates a base_ordering_form.

3. Province store ordering: a staff of the province store orders his books from a book supplier, and generates a
province_ordering_form.

The types, predicates and action headings extracted from the Bookstore Ordering System are shown as follows.

(:types
: staff form department - object
: lbook ioform boform poform - form
: bstore pstore sdep - department
)
(:predicates
: (init ?x - form) // the form ?x is in initial state
: (waiting ?x - form) // the form ?x is in waiting state
: (dealt ?x - form) // the form ?x is dealt
: (free ?x - staff) // the staff ?x is free
: (busy ?x - staff) // the staff ?x is busy
: (doing ?x - staff ?y - form) // the staff ?x is dealing with the form ?y
: (belong ?x - staff ?y - department) // the staff ?x belongs to department ?y
)
(:action headings
: (ClientOrder ?x - staff ?y - bstore ?a - ioform)
: (BaseOrder ?x - staff ?y - pstore ?a - boform)
: (ProvinceOrder ?x - staff ?y - sdep ?a - poform)
: (OrderDone ?x - staff ?a - form ?b - form)
)

1564 H.H. Zhuo et al. / Artificial Intelligence 174 (2010) 1540–1569
Table 16
Action models of Bookstore Ordering System.

(ClientOrder ?x - staff ?y - bstore ?a - ioform)

precondition: (free ?x) (init ?a) (belong ?x ?y)
effect: (:and (busy ?x) (not (free ?x)) (not (init ?a)) (doing ?x ?a)

(forall ?b - lbook (when (waiting ?b)
(and (doing ?x ?b)(not (waiting ?b))))))

(BaseOrder ?x - staff ?y - pstore ?a - boform)

precondition: (free ?x) (init ?a) (doing ?x ?a) (belong ?x ?y)
effect: (:and (busy ?x) (not (free ?x)) (not (init ?a))

(forall ?b - ioform (when (waiting ?b)
(and (doing ?x ?b)(not (waiting ?b))))))

(ProvinceOrder ?x - staff ?y - sdep ?a - poform)

precondition: (free ?x) (init ?a) (belong ?x ?y)
effect: (:and (busy ?x) (not (free ?x)) (not (init ?a))

(forall ?b - boform (when (waiting ?b)
(and (doing ?x ?b)(not (waiting ?b))))))

(OrderDone ?x - staff ?a - form ?b - form)

precondition: (dealt ?b) (waiting ?a) (busy ?x) (doing ?x ?a) (doing ?x ?b)
effect: (:and (dealt ?a) (waiting ?b) (free ?x) (not (dealt ?b))

(not (busy ?x)) (not (doing ?x ?a)) (not (doing ?x ?b)))

where staff, form and department are the types of a ‘staff ’, ‘form’, and ‘department’ in the Bookstore Ordering System; lbook,
ioform, boform and poform are the types of ‘a list of book’, ‘an initial ordering form’, ‘a base ordering form’, and ‘province
ordering form’ respectively; bstore, pstore, and sdep are the types of ‘base store’, ‘province store’ and ‘supplier’s department’
respectively. Corresponding to three business processes client ordering, base store ordering and province store ordering, there are
three action headings ClientOrder, BaseOrder and ProvinceOrder. Since executing these actions is a process, we need an action
to stop the process which we call BookDone.

Next, we collected plan traces from the book ordering domain. An example of a plan trace is shown as follows. Notice
that a plan trace we use is only composed of an initial state, an action sequence and a goal, without any intermediate state.
This would save us much time on collecting plan traces.

(:init
(belong staff1 basestore1) (belong staff2 provincestore1) (belong staff3 sdep1) (waiting lbook1) (init ioform1) (init boform1) (init
poform1) (free staff1) (free staff2) (free staff3)
)
(:actions
: (ClientOrder staff1 basestore1 ioform1)
: (OrderDone staff1 lbook1 ioform1)
: (BaseOrder staff2 provincestore1 boform1)
: (OrderDone staff2 ioform1 boform1)
: (ProvinceOrder staff3 sdep1 poform1)
: (OrderDone staff3 boform1 poform1)
)
(:goal
(dealt lbook1) (dealt ioform1) (dealt boform1) (waiting poform1)
)

With the extracted predicates, action headings and 20 plan traces as input, we ran our LAMP algorithm to learn action
models. We show an example of the running result in Table 16, where the part which is italicized and not emphasized
means it should be deleted and the part which is emphasized means it should be added. This action model ‘ClientOrder’
means that, the process of client ordering can be executed only when the staff ?x who belongs to a base store was free, and
the initial ordering form ?a is true in the initial state. As a result of the execution, the staff ?x become busy, and all the book
lists ?b are being dealt with if they are in the state of waiting. Likewise for the statements of other action models. These
statements give a software requirement specification of the Bookstore Ordering System, which means a software requirement
specification could indeed be attained using LAMP.

5.2.8. Example output
To help the reader get an intuitive idea of our learned action models, we present the resulting models learned by our

LAMP algorithm by setting the threshold δ as 0.5 and the percentage of observed intermediate states as 1
5 . The results of

domains briefcase, elevator, openstacks and trucks are shown in Tables 17–20, where a condition in italic means it is needed

H.H. Zhuo et al. / Artificial Intelligence 174 (2010) 1540–1569 1565
Table 17
The action models learned in the domain briefcase.

action: move(?m - location ?l - location)

preconditions: (is-at ?m) (is-at ?l)

effects: (and (is-at ?l) (not (is-at ?m))
(forall (?x - portable) (when (in ?x) (at ?x ?l)))
(forall (?x - portable) (when (in ?x) (not (at ?x ?m)))))

action: take-out(?x - portable)

preconditions: (in ?x)

effects: (and (not (in ?x))
(forall ?l - location (when (at ?x ?l)(is-at ?l))))

action: put-in(?x - portable ?l - location)

preconditions: (not (in ?x)) (at ?x ?l) (is-at ?l)

effects: (and (in ?x) (not (is-at ?l)))

Table 18
The action models learned in the domain elevator.

action: stop(?f - floor)

preconditions: (lift-at ?f)

effects: (and (forall (?p - passenger) (when (and (boarded ?p)
(destin ?p ?f))(not (boarded ?p))))

(forall (?p - passenger) (when (and (boarded ?p)
(destin ?p ?f)) (served ?p)))

(forall (?p - passenger) (when (and (origin ?p ?f)
(not(served ?p))) (boarded ?p)))

(not (lift-at ?f)))

action: up(?f1 - floor ?f2 - floor)

preconditions: (lift-at ?f1) (above ?f1 ?f2)

effects: (and (lift-at ?f2) (not (lift-at ?f1))
(forall ?p (when (boarded ?p)(destin ?p ?f2))))

action: down(?f1 - floor ?f2 - floor)

preconditions: (lift-at ?f1) (above ?f2 ?f1)

effects: (and (lift-at ?f2) (not (lift-at ?f1)) (not (above ?f2 ?f1))
(forall ?p (when (boarded ?p)(origin ?p ?f1))))

in the hand-written domain but is not successfully learned in our learned result, and a condition in bold means it is not
needed in the hand-written domain but is incorrectly learned in our learned result.

In Tables 17–20, the missing conditions suggest that their corresponding weights are not high enough to be selected by
LAMP, since the information constraints provided by training data are not sufficient enough to make the weights high; the
additional conditions suggest that their corresponding weights are too high, such that they are selected wrongly by LAMP,
since there are not enough information constraints to make the weights low. Although the results are not one hundred
percent correct, they are very close to the hand-written action models or the real action models. These results can be
further submitted for human editors to work on by domain analysis. For instance, in Table 17, “(is-at ?m)” and “(is-at ?l)”
would not be the preconditions of “move” at the same time, since a briefcase should not be at two places at the same
time according to domain analysis, which will guide us to remove one of them, and finally remove “(is-at ?l)” via further
analysis of the domain. Because of the low error rates, we can see that human experts do not need to spend a lot of time
on creating a new domain based on the learning result.

5.3. Discussion

In this subsection, we will summarize the major findings from our experimental results.

I In our experiments, we first validated the performance of our LAMP algorithm by varying the proportion of observed
intermediate states. From Fig. 1, we can see that our algorithm performance does not vary significantly when we change
our observed state numbers from 100% to only 20%. In general, the more intermediate states we observe, the better
performance we have. When we validate this experiment from a state perspective, i.e., we only observe a proportion
of propositions, we get similar experiment results. We also vary the percent of propositions true in each state, and
obtained similar results.

1566 H.H. Zhuo et al. / Artificial Intelligence 174 (2010) 1540–1569
Table 19
The action models learned in the domain openstacks.

action: setup-machine(?p - product ?avail - count)

preconditions: (machine-available)(stacks-avail ?avail))(not (made ?p))
(forall (?o - order)(imply (includes ?o ?p)
(started ?o)))

effects: (and (not (machine-available)) (machine-configured ?p))

action: make-product(?p - product ?avail - count)

preconditions: (machine-configured ?p)(stacks-avail ?avail)
(forall (?o - order)(imply (includes ?o ?p)(started ?o)))

effects: (and (machine-available)(not (machine-configured ?p))
(made ?p))

action: start-order(?o - order ?avail ?new-avail - count)

preconditions: (waiting ?o)(stacks-avail ?avail)
(next-count ?new-avail ?avail)
(forall (?p - product)
(imply (includes ?o ?p) (made ?p)))

effects: (and (started ?o)(stacks-avail ?new-avail)
(not (waiting ?o))(not (stacks-avail ?avail)))

action: ship-order(?o - order ?avail ?new-avail - count)

preconditions: (started ?o)(stacks-avail ?avail)(next-count ?avail ?new-avail)
(forall (?p - product)(imply (includes ?o ?p) (made ?p)))

effects: (and (shipped ?o) (stacks-avail ?new-avail)(not (started ?o))
(not (next-count ?avail ?new-avail))
(not (stacks-avail ?avail)))

action: open-new-stack(?open ?new-open - count)

preconditions: (stacks-avail ?open)(next-count ?open ?new-open))
(machine-available)

effects: (and (stacks-avail ?new-open) (not (stacks-avail ?open))
(not (next-count ?open ?new-open)))

Table 20
The action models learned in the domain trucks.

action: load(?p - package ?t - truck ?a1 - truckarea ?l - location)

preconditions: (at ?t ?l) (at ?p ?l) (free ?a1 ?t)
(forall (?a2 - truckarea) (imply (closer ?a2 ?a1) (free ?a2 ?t)))

effects: (and (in ?p ?t ?a1)(not (at ?p ?l))(not (free ?a1 ?t)))

action: unload(?p - package ?t - truck ?a1 - truckarea ?l - location)

preconditions: (at ?t ?l) (in ?p ?t ?a1) (free ?a1 ?t)
(forall (?a2 - truckarea)(imply (closer ?a2 ?a1) (free ?a2 ?t)))

effects: (and (not (in ?p ?t ?a1)) (free ?a1 ?t) (at ?p ?l))

action: drive(?t - truck ?from ?to - location ?t1 ?t2 - time)

preconditions: (at ?t ?from) (connected ?from ?to) (time-now ?t1)
(next ?t1 ?t2)

effects: (and (time-now ?t2) (at ?t ?to) (not (next ?t1 ?t2))
(not (at ?t ?from)) (not (time-now ?t1)))

action: deliver(?p - package ?l - location ?t1 ?t2 - time)

preconditions: (at ?p ?l) (time-now ?t1) (le ?t1 ?t2)(next ?t1 ?t2)

effects: (and (delivered ?p ?l ?t2)(not (next ?t1 ?t2))
(at-destination ?p ?l)(not (at ?p ?l)))

II When we vary the parameter values for candidate selection, the performance varies. Choosing a good threshold value
is important to the overall performance of LAMP, and we can see in general, a threshold value that is too large or too
small can lead to significant reduction in performance (refer to Fig. 1 and Fig. 2). As an empirical result, our experiments
show that the best threshold value is 0.5.

H.H. Zhuo et al. / Artificial Intelligence 174 (2010) 1540–1569 1567
III From Figs. 1 and 2, we notice that some experimental domains, such as elevator, are more difficult to learn than other
domains. This may be because domains such as elevator have actions that contain more conditional effects than others,
and these effects are more difficult to learn.

IV In our third experiment, we validate that the efficiency of LAMP decreases when we have more plan traces (refer to
Fig. 3). We also record the running time we use when different numbers of plan traces are given as input. This running
time information is used to fit a curve which empirically shows that LAMP has a polynomial time complexity (refer to
Fig. 5) with respect to the number of plan traces.

V We also show our LAMP algorithm can help reduce the human efforts on creating action models, which can be seen
from Fig. 6. Furthermore, we give an example application of our LAMP algorithm (refer to Example 8) to show that
LAMP can be applied to real-world domains, such as software requirement engineering.

6. Conclusions and future work

In this paper, we have presented a novel approach to learn action models with quantifiers as well as logical implications,
from a set of observed plan traces where we can support partially observable intermediate states. Our LAMP learning
algorithm makes use of Markov Logic Networks to learn action models automatically. Our empirical tests in four planning
domains show that our LAMP algorithm is rather effective.

We list several possible directions which we could follow for our future work. Our current LAMP algorithm will enumer-
ate all the possible preconditions and effects (or candidate formulas) according to our specific correctness constraints. When
there are many actions and predicates in a planning domain, the candidate formulas will be very many, which can decrease
the efficiency of LAMP. In the future, we will consider how to incorporate more domain knowledge to filter out some “im-
possible” candidate formulas beforehand to make the algorithm much more efficient. Domain analysis can also help reduce
the errors by providing a priori what conditions are important from a domain expert’s point of view. Another direction is
to improve the quality of weight learning in a MLN. Currently we adopt a generative learning approach in LAMP, where we
maximize the weighted pseudo log-likelihood. Other weight learning approaches such as discriminative learning might have
some additional advantages. A third direction is to extend action model learning to learn elaborate action representations,
including resources and functions. Finally, we will consider plan traces that contain false observations on actions and states
and ways to filter out noise from the training data.

Acknowledgements

We thank the support of RGC/NSFC project N_HKUST624/09 for this research. We are grateful for the helpful comments
from the editors and reviewers of the journal.

References

[1] Eyal Amir, Learning partially observable deterministic action models, in: Proceedings of the Nineteenth International Joint Conference on Artificial
Intelligence (IJCAI 2005), 2005, pp. 1433–1439.

[2] Scott Benson, Inductive learning of reactive action models, in: Proceedings of the Twelfth International Conference on Machine Learning (ICML 1995),
1995, pp. 47–54.

[3] Julian Besag, Statistical analysis of non-lattice data, The Statistician 24 (1975) 179–195.
[4] Jim Blythe, Jihie Kim, Surya Ramachandran, Yolanda Gil, An integrated environment for knowledge acquisition, in: Proceedings of the Sixth International

Conference on Intelligent User Interfaces (IUI 2001), 2001, pp. 13–20.
[5] Brian Borchers, Judith Furman, A two-phase exact algorithm for MAX-SAT and weighted MAX-SAT problems, Journal of Combinatorial Optimiza-

tion 2 (4) (1998) 299–306.
[6] Lonnie Chrisman, Abstract probabilistic modeling of action, in: Proceedings of the First International Conference on Artificial Intelligence Planning

Systems (AIPS 1992), 1992, pp. 28–36.
[7] Pedro Domingos Mining, Social networks for viral marketing, IEEE Intelligent Systems 20 (1) (2005) 80–82.
[8] Pedro Domingos, Toward knowledge-rich data mining, Data Mining and Knowledge Discovery 15 (2007) 21–28.
[9] Pedro Domingos, Stanley Kok, Hoifung Poon, Matthew Richardson, Parag Singla, Unifying logical and statistical AI, in: Proceedings of the Twenty-First

National Conference on Artificial Intelligence (AAAI 2006), 2006, pp. 2–7.
[10] Richard Fikes, Nils J. Nilsson, STRIPS: a new approach to the application of theorem proving to problem solving, Artificial Intelligence 2 (3/4) (1971)

189–208.
[11] Maria Fox, Derek Long, PDDL2.1: an extension to PDDL for expressing temporal planning domains, Journal of Artificial Intelligence Research (JAIR) 20

(2003) 61–124.
[12] Krzysztof Z. Gajos, Daniel S. Weld, Jacob O. Wobbrock, Decision-theoretic user interface generation, in: Proceedings of the Twenty-Third AAAI Confer-

ence on Artificial Intelligence (AAAI 2008), 2008, pp. 1532–1536.
[13] Malik Ghallab, Adele Howe, Craig Knoblock, Drew McDermott, Ashwin Ram, Manuela Veloso, Daniel Weld, David Wilkins, PDDL—the planning domain

definition language, http://www.informatik.uni-ulm.de/ki/Edu/Vorlesungen/GdKI/WS0203/pddl.pdf, 1998.
[14] Malik Ghallab, Dana Nau, Paolo Traverso, Automated Planning: Theory and Practice, Morgan Kaufmann, 2004.
[15] Yolanda Gil, Learning by experimentation: incremental refinement of incomplete planning domains, in: Proceedings of the Eleventh International

Conference on Machine Learning (ICML 1994), 1994, pp. 87–95.
[16] Thomas Hernandez, Subbarao Kambhampati, Integration of biological sources: current systems and challenges ahead, SIGMOD Record 33 (3) (2004)

51–60.
[17] Jorg Hoffmann, Piergiorgio Bertoli, Marco Pistore, Web service composition as planning revisited: in between background theories and initial state

uncertainty, in: Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence (AAAI 2007), 2007, pp. 1013–1018.

http://www.informatik.uni-ulm.de/ki/Edu/Vorlesungen/GdKI/WS0203/pddl.pdf

1568 H.H. Zhuo et al. / Artificial Intelligence 174 (2010) 1540–1569
[18] Michael P. Holmes, Charles Lee Isbell Jr., Schema learning: experience-based construction of predictive action models, in: Advances in Neural Informa-
tion Processing Systems, vol. 17 (NIPS 2004), 2004.

[19] Derek Hao Hu, Qiang Yang, CIGAR: concurrent and interleaving goal and activity recognition, in: Proceedings of the Twenty-Third AAAI Conference on
Artificial Intelligence (AAAI 2008), 2008, pp. 1363–1368.

[20] Tuyen N. Huynh, Raymond J. Mooney, Discriminative structure and parameter learning for Markov logic networks, in: Proceedings of the Twenty-Fifth
International Conference on Machine Learning (ICML 2008), 2008, pp. 416–423.

[21] Stanley Kok, Pedro Domingos, Learning the structure of Markov logic networks, in: Proceedings of the Twenty-Second International Conference on
Machine Learning (ICML 2005), 2005, pp. 441–448.

[22] Stanley Kok, Pedro Domingos, Extracting semantic networks from text via relational clustering, in: Proceedings of the Nineteenth European Conference
on Machine Learning (ECML 2008), 2008, pp. 624–639.

[23] Stanley Kok, Parag Singla, Matthew Richardson, Pedro Domingos, The Alchemy System for Statistical Relational AI, University of Washington, Seattle,
2005.

[24] Ugur Kuter, Evren Sirin, Bijan Parsia, Dana Nau, James Hendler, Information gathering during planning for Web Service composition, Journal of Web
Semantics (JWS) 3 (2–3) (2005) 183–205.

[25] Hector J. Levesque, Fiora Pirri, Raymond Reiter, Foundations for the situation calculus, Electronic Transactions on Artificial Intelligence 2 (1998) 159–
178.

[26] Dong C. Liu, Jorge Nocedal, On the limited memory BFGS method for large scale optimization, Mathematical Programming 45 (1989) 503–528.
[27] Daniel Lowd, Pedro Domingos, Efficient weight learning for Markov logic networks, in: Proceedings of the Eleventh European Conference on Principles

and Practice of Knowledge Discovery in Databases (PKDD 2007), 2007, pp. 200–211.
[28] Lilyana Mihalkova, Raymond J. Mooney, Bottom-up learning of Markov logic network structure, in: Proceedings of the Twenty-Fourth International

Conference on Machine Learning (ICML 2007), 2007, pp. 625–632.
[29] Stephen Muggleton, Luc De Raedt, Inductive logic programming: theory and methods, Journal of Logic Programming 19/20 (1994) 629–679.
[30] Megan Nance, Adam Vogel, Eyal Amir, Reasoning about partially observed actions, in: Proceedings of the Twenty-First National Conference on Artificial

Intelligence (AAAI 2006), 2006, pp. 888–893.
[31] Tim Oates, Paul R. Cohen, Searching for planning operators with context-dependent and probabilistic effects, in: Proceedings of the Thirteenth National

Conference on Artificial Intelligence (AAAI 1996), 1996, pp. 865–868.
[32] Hanna M. Pasula, Luke S. Zettlemoyer, Leslie Pack Kaelbling, Learning probabilistic relational planning rules, in: Proceedings of the Fourteenth Interna-

tional Conference on Automated Planning and Scheduling (ICAPS 2004), 2004, pp. 73–82.
[33] Hanna M. Pasula, Luke S. Zettlemoyer, Leslie Pack Kaelbling, Learning symbolic models of stochastic domains, Journal of Artificial Intelligence Re-

search 29 (2007) 309–352.
[34] Hoifung Poon, Pedro Domingos, Joint inference in information extraction, in: Proceedings of the Twenty-Second National Conference on Artificial

Intelligence (AAAI 2007), 2007, pp. 913–918.
[35] Matthew Richardson, Pedro Domingos, Markov logic networks, Machine Learning 62 (1–2) (2006) 107–136.
[36] Gunther Sablon, Maurice Bruynooghe, Using the event calculus to integrate planning and learning in an intelligent autonomous agent, in: Current

Trends in AI Planning, 1994, pp. 254–265.
[37] Matthew D. Schmill, Tim Oates, Paul R. Cohen, Learning planning operators in real-world, partially observable environments, in: Proceedings of the

Fifth International Conference on Artificial Intelligence Planning Systems (AIPS 2000), 2000, pp. 246–253.
[38] Shahaf Dafna, Eyal Amir, Learning partially observable action schemas, in: Proceedings of the Twenty-First National Conference on Artificial Intelligence

(AAAI 2006), 2006, pp. 913–919.
[39] Shahaf Dafna, Allen Chang, Eyal Amir, Learning partially observable action models: efficient algorithms, in: Proceedings of the Twenty-First National

Conference on Artificial Intelligence (AAAI 2006), 2006, pp. 920–926.
[40] Parag Singla, Pedro Domingos, Entity resolution with Markov logic, in: Proceedings of the Sixth IEEE International Conference on Data Mining (ICDM

2006), 2006, pp. 572–582.
[41] Parag Singla, Pedro Domingos, Markov logic in infinite domains, in: Proceedings of the Twenty-Third Conference on Uncertainty in Artificial Intelligence

(UAI 2007), 2007, pp. 368–375.
[42] Thomas J. Walsh, Michael L. Littman, Efficient learning of action schemas and web-service descriptions, in: Proceedings of the Twenty-Third AAAI

Conference on Artificial Intelligence (AAAI 2008), 2008, pp. 714–719.
[43] Jue Wang, Pedro Domingos, Hybrid Markov logic networks, in: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (AAAI 2008),

2008, pp. 1106–1111.
[44] Stephen Cresswell, Thomas Leo McCluskey, Margaret Mary West, Acquisition of object-centred domain models from planning examples, in: Proceedings

of the Nineteenth International Conference on Automated Planning and Scheduling (ICAPS 2009), 2009.
[45] Ron M. Simpson, Diane E. Kitchin, T.L. McCluskey, Planning domain definition using GIPO, Knowledge Engineering Review 22 (2) (2007) 117–134.
[46] T.L. McCluskey, Donghong Liu, Ron M. Simpson, GIPO II: HTN planning in a tool-supported knowledge engineering environment, in: Proceedings of the

Thirteenth International Conference on Automated Planning and Scheduling (ICAPS 2003), 2003, pp. 92–101.
[47] Elly Winner, Manuela Veloso, Analyzing plans with condition effects, in: Proceedings of the Sixth International Conference on AI Planning and Schedul-

ing (AIPS 2002), 2002.
[48] Tessa Lau, Pedro Domingos, Daniel S. Weld, Version space algebra and its application to programming by demonstration, in: Proceedings of the

Seventeenth International Conference on Machine Learning (ICML 2000), Morgan Kaufmann, San Francisco, CA, 2000, pp. 527–534.
[49] R.M. Simpson, T.L. McCluskey, W. Zhao, R.S. Aylett, C. Doniat, GIPO: an integrated graphical tool to support knowledge engineering in AI planning, in:

Proceedings of the European Conference on Planning, Toledo, Spain, September 2001.
[50] Xuemei Wang, Learning by observation and practice: an incremental approach for planning operator acquisition, in: Proceedings of the Twelfth Inter-

national Conference on Machine Learning (ICML 1995), 1995, pp. 549–557.
[51] Qiang Yang, Wu Kangheng, Yunfei Jiang, Learning action models from plan examples with incomplete knowledge, in: Proceedings of the Fifteenth

International Conference on Automated Planning and Scheduling (ICAPS 2005), 2005, pp. 241–250.
[52] Qiang Yang, Wu Kangheng, Yunfei Jiang, Learning action models from plan examples using weighted MAX-SAT, Artificial Intelligence 171 (2–3) (2007)

107–143.
[53] Zhuo Hankui, Qiang Yang, Lei Li, Transfer learning action models by measuring the similarity of different domains, in: Proceedings of the Thirteenth

Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2009), 2009, pp. 697–704.
[54] Zhuo Hankui, Qiang Yang, Lei Li, Transferring knowledge from another domain for learning action models, in: Proceedings of the Tenth Pacific Rim

International Conference on Artificial Intelligence (PRICAI 2008), 2008, pp. 1110–1115.
[55] Zhuo Hankz Hankui, Derek Hao Hu, Chad Hogg, Qiang Yang, Hector Munoz-Avila, Learning HTN method preconditions and action models from partial

observations, in: Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence (IJCAI 2009), 2009, pp. 1804–1810.
[56] Qiang Yang, Activity recognition: linking low-level sensors to high-level intelligence, in: Proceedings of the Nineteenth International Joint Conference

on Artificial Intelligence (IJCAI 2009), 2009, pp. 20–25.

H.H. Zhuo et al. / Artificial Intelligence 174 (2010) 1540–1569 1569
[57] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, Henrik Frystyk Nielsen, Anish Karmarkar, Yves Lafon, SOAP Version 1.2,
http://www.w3.org/TR/soap12-part1/.

[58] Zhuo Hankui, Lei Li, Qiang Yang, Rui Bian, Learning action models with quantified conditional effects for software requirement specification, in:
Proceedings of the Fourth International Conference on Intelligent Computing (ICIC 2008), 2008, pp. 874–881.

[59] Dana Nau, Au Tsz-Chiu, Okhtay Ilghami, Ugur Kuter, Hector Munoz-Avila, J. William Murdock, Dan Wu, Fusun Yaman, Applications of SHOP and SHOP2,
IEEE Intelligent Systems (2005) 34–41.

[60] Jie Yin, Xiaoyong Chai, Qiang Yang, High-level goal recognition in a wireless LAN, in: Proceedings of the Nineteenth National Conference on Artificial
Intelligence (AAAI 2004), 2004, pp. 578–584.

http://www.w3.org/TR/soap12-part1/

	Learning complex action models with quantiﬁers and logical implications
	Introduction
	Related work
	Learning with full intermediate state information
	Learning with partial intermediate state information
	Relation to knowledge acquisition and inductive logic programming
	Markov Logic Networks
	Summary
	Weight learning in MLNs

	Problem deﬁnition
	The LAMP algorithm
	Step 1: encode plan traces
	Encode a state as a propositional formula
	Encode an action as a proposition

	Step 2: generating candidate formulas
	[F1] Preconditions.
	[F2] Positive effects.
	[F3] Negative effects.
	[F4] Positive conditional effects.
	[F5] Negative conditional effects.
	[A1] Action-consistency constraint.
	[A2] Plan-consistency constraint.
	[A3] Non-empty constraint.

	Step 3: learning the weights of candidate formulas
	Step 4: generating action models
	Properties of action models
	Action soundness and plan consistency
	Soundness

	Complexity analysis

	Experiments
	Datasets and evaluation criteria
	Experimental results
	Relationship between accuracy and the percentage of observed intermediate states
	Relationship between accuracy and the percentage of propositions in each state
	Relationship between accuracy and the number of plan traces in action-model learning
	Running time
	Human effort saved by LAMP
	Comparison of grounded actions
	Applying LAMP to software requirement engineering
	Example output

	Discussion

	Conclusions and future work
	Acknowledgements
	References

