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Abstract In this article, I will discuss three challenges in
today’s data mining field. These challenges include: the
transfer learning challenge, the social learning challenge
and the mobile context mining challenge. I pick these
three challenges because I think time is ripe for each of
them to be addressed in a major way in the near future,
given the current technological and societal readiness to
tackle them. I also believe that each of the three challenges
discussed in this article will help move the science and
engineering of data mining forward, and have a great
impact on society.
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1 Overview

Today, the field of data mining has entered a new era
where the type of data is becoming ever more complex
and the scale of data ever larger. At the same time, the
ability to mine useful data quickly and effectively from
large quantities of data has become an issue of corporate
and even national importance. In this article, I pick three
areas of data mining where I believe we will see major
breakthroughs in the near future, and where researchers
are expected to gain new insights, and important
applications are expected to be developed. These three
areas are: data mining via transfer learning, mining social
networks and social data, and mining contextual knowl-
edge in mobile-user generated data.

2 Transfer learning challenge

2.1 Overview

Transfer learning aims to capture the knowledge from one
or more auxiliary tasks in order to help discover patterns
of importance in a different, but related, target tasks. In
transfer learning, the training data from source or auxiliary
domains, and the application or future data in a target
domain, may follow different distributions or be repre-
sented with different features [1]. This problem is
interesting because it violates some of the most funda-
mental assumptions of traditional machine learning and
data mining, which require that the data are from the same
space. Transfer learning is particularly useful in new data
mining domains, where we do not have much labeled or
annotated data to help us build a credible model,
especially when budget or technical issues limit our
ability to acquire new or high quality data labels. This
difficult situation forces us to look elsewhere to find
auxiliary data sources that are related to the target domain
and that have plenty of labeled data, such that the auxiliary
data can take the place of the labeled data in the target
domain. How to ‘mine’ useful knowledge from the
auxiliary data sources, even when they appear to be
different, is a critical challenge today in data mining.We
call this the transfer learning challenge. Below, we give
an overview of development in this direction.
Recently, we have provided a survey of transfer

learning [2], wherein we gave a brief overview of transfer
learning that we summarize here. Informally, transfer
learning can be defined using the notions of domain and
task. A domain consists of a feature space in which to
describe the attributes of the problem, alongside a
marginal probability distribution of the data. In this
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definition, a domain does not involve a label space.
Instead, label space is part of a task; that is, a learning task
consists of a label space and a mapping function to be
learned, which maps from problem features to labels.
Using these concepts, a transfer learning problem can be
defined as follows. Given a source domain and a source
learning task as well as a target domain and a target
learning task, transfer learning aims to enhance the
performance of learning for the target task in the target
domain using the knowledge gained from the source
domain and the source task. What distinguishes transfer
learning from traditional learning is that it is cross domain;
either the source and target domains, the source and target
tasks, or both, are different. A particular form of transfer
learning is multi-task learning [1], which considers the
symmetry between the learning problems among multiple
tasks. In this formulation, each task can learn both from its
own domain and from others’ domains, and learning is
conducted at the same time across domains.
Transfer learning techniques have been explored in

several different application domains. Raina et al., [3] and
Dai et al., [4,5] proposed to mine knowledge about text
data and transfer this across domains to image data. Blitzer
et al., [6] used structural-correspondence learning (SCL)
for solving natural language processing tasks. An
extension of SCL was proposed in [7] and a scaled
version in [8] for solving sentiment classification
problems. Wu and Dietterich [9] proposed to use both
inadequate target domain data and plenty of low-quality
source domain data for image classification problems.
Arnold et al., [10] proposed to use transductive transfer
learning methods to solve name entity recognition
problems. In [11], a novel Bayesian multiple-instance
learning algorithm is proposed, which can automatically
identify the relevant feature subset and use inductive
transfer for learning multiple (conceptually related)
classifiers in a computer aided design (CAD) domain. In
[12], Ling et al., proposed an information-theoretic
approach for transfer learning, to address the cross-
language classification problem from English to Chinese.
[13] proposed to transfer across two domains with
different feature spaces. Transfer learning has also been
applied to important problems in industry. For example,
[8] applied transfer learning to large scale sentiment
analysis problems that arise when classifying users’
feedback on products, where the user labeled data in one
product area can benefit the learning of user feedback in
related areas.

2.2 Applications

In this section, I will highlight a couple of interesting
applications of transfer learning, showing areas where
transfer learning has already made an impact in practice.

2.2.1 Transfer learning in wireless indoor location

estimation

With the proliferation of the wireless technology, many
mobile users’ geolocation data such as GPS and Wi-Fi
data become available. Being able to exploit the Wi-Fi
data for localization has particular advantages over many
other types of sensors, because Wi-Fi is cheap and
pervasive, being available indoors as well as outdoors. If
we can build successful Wi-Fi based location prediction
models, we can then build many higher-level applications
ranging from health care to logistics monitoring [14]. A
machine-learning-based indoor localization model
assumes that the learning happens in two phases. In the
offline phase, labeled training data are used to train a
location-prediction model. In the online phase, the
localization model learned in the offline phase is used to
locate a mobile device online. However, this two-phase
flow is based on the assumption that the data distribution
remains stationary, and this assumption may not hold in
many real-world situations, for several reasons. First, the
data distribution may be a function of time and space,
making it expensive to collect the training data at all
locations in a large building. Second, the data distribution
may be a function of the client devices, making a model
trained for one type of device (say Cisco Aironet 350) to
be invalid when applied to another device (say Huawei
E5830 3G).
To illustrate how transfer learning helps alleviate the

recalibration problem, we consider transfer learning
across devices for a two-dimensional Wi-Fi indoor
localization problem. We denote the Wi-Fi signal data
collected by device A as Da and denote Wi-Fi signal data
collected by device B as Db. We assume Da to be fully
labeled whereas Db to have only a few labeled examples
and some unlabeled ones that can be obtained easily by
quickly walking through the environment without provid-
ing labels on the way. In our empirical test, we collected a
large amount of labeled data Da from device A, whilst
only collecting a little labeled dataDb from device B. Note
that, although the devices may be different from each
other, the learning tasks on these devices are related since

Qiang YANG. Three challenges in data mining 325



they all try to learn a mapping function from their
corresponding signal spaces to the same location space.
This observation allows us to build a bridge between the
devices. In fact, the learning problem is somewhat
symmetric, in that knowledge gained from Da can be
beneficial to learning from Db, and vice versa. This fact
motivated us to solve the problem as a multi-task learning
problem [1], in which each task can be both a source task
and a target task. In particular, we extend the multi-task
learning for multi-device localization problem by only
requiring that the hypotheses learned from a latent feature
space are similar [15,16]. In other words, we look for
appropriate feature mappings, by which we can map
different devices’ data to a well-defined low-dimensional
feature space. In this latent space, new devices can benefit
from integrating the data collected previously by other
devices to train a localization model. Our algorithm combines
both feature representation-transfer and parameter-transfer
for transfer learning.

2.2.2 Transfer learning in bioinformatics

In bioinformatics, many data mining techniques have been
developed to solve biological problems due to the
properties of wet-laboratory experiments. Experimental
approaches are expensive, time-consuming and labor-
intensive, so that there is a large gap between the quantity
of annotated and non-annotated biological data. In these
cases, traditional methods cannot build effective predic-
tive models and thus will not achieve satisfactory
prediction results. We illustrate how transfer learning
can really help in solving the lack of data problem with the
example of protein subcellular localization and protein–
protein interaction.
Briefly, protein subcellular localization is crucial for

genome annotation, protein function prediction and drug
discovery [17]. Proteins perform their appropriate func-
tions as, and only when, they localize in the correct
subcellular compartments. Many methods have been
developed and applied in an attempt to predict protein
subcellular localization. Methods in Refs. [18–20] use
amino acid composition to predict localization. Further-
more, scientists took account of sequence order alongside
amino acid composition to overcome the missing
information problem [21,22]. Supervised learning algo-
rithms such neural networks [23], K nearest neighbor
algorithm [24], support vector machine (SVM) [25] have
been widely applied to solve this problem. Of these

learning-based approaches, SVM is popularly adopted in
bioinformatics and is shown to have better relative
performance than many others.
In practice, we find that there is a large gap between the

number of known and unkown protein subcellular
localizations. For instance, according to the SwissProt
database version 50.0 related on 30-May-2006, the
number of protein sequences with localization annotations
is approximately 14% of total eukaryotic protein entries
[26]. This means that there are approximately 86% of
eukaryotic protein entries without localization labels,
which motivates us to find computational methods to
predict the protein subcellular locations, both automati-
cally and accurately.
Given the lack of data in any one biological domain,

when we consider many different organisms together, we
may gain much effectiveness in predictive performance.
Take Cell-PLoc [27] as an example. This package lists six
predictors: Euk-mPLoc, Hum-mPLoc, Plant-PLoc, Gpos-
PLoc, Gneg-PLoc and Virus-PLoc, and these are
specialized for predicting for eukaryotic, human, plant,
Gram-positive bacteria, Gram-negative bacterial and viral
proteins, respectively. We note that these classifiers are
trained separately from one another, even though there is
much common knowledge that can be shared among
them. This observation motivates us to formulate a multi-
task learning framework [1] to overcome the lack of
annotated data problem. Our experimental results show
that, by leveraging learning across different organisms for
protein subcellular localization, the multi-task approach
can indeed provide additional performance gain [28].

2.3 Summary

As mentioned above, transfer learning techniques are
aimed at solving practical problems when we have
insufficient annotated or labeled data in a domain of
interest, and we also have insufficient resource to obtain
such quality data. By looking for and making use of
knowledge in related domains, we are able to transfer
previously found knowledge from auxiliary or source
domains to our target domains. One particularly useful
scenario is when we have some noisy annotated data in a
target domain, and are unsure how to filter this data. For
example, we may hire some employees to label the data
and annotate some search clickthrough log data in a search
engine application, but due to different levels of training
and other factors, the resultant labeled data may not be of
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high enough quality. In this case, it might be useful to
transfer the filtering knowledge from related textual or
clickthrough log data in order to obtain clean target data.
A major task for transfer learning in the future is to

produce a solid theoretical characterization of when
transfer learning is expected to work. It is found that in
some situations, even when the source domain data appear
related to the target domain data, the result of transfer
learning is negative; that is, it is better off not to transfer
any knowledge from the source domain than to transfer.
The mechanism of this phenomenon should be explored
further. Another challenging task is to characterize the
types of knowledge that are shared among many tasks,
so that the transfer learning algorithms can be developed
in a more systematic way. Yet another task is to explore
how to scale the transfer learning applications so that
real world benefits can be quantified and easily applied
not only by researchers, but also practitioners. With
more and more applications of transfer learning being
studied, I am sure that new lights will be shed on these
questions.

3 Social learning challenge

Social networks and social media are changing the
landscape of both society and computation [29]. Services
such as Facebook, Twitter, Flickr, etc., allow millions of
users to get online and share information. How do we
discover the underlying dynamics of these data as they
evolve? How do we make use of individually sparse data,
collectively, to make accurate predictions on user linkage
to other users, products, and communities? How do we
mix human, crowd, and computing power to build better
computational models of user behavior? These issues can
be collectively referred to as social learning.

3.1 Collaborative filtering and link prediction

Given a large number of users and products linked in a
social graph, where each user might have expressed
linkage to other users and preferences on some products,
the link prediction problem is: given the users’ and
products’ historical and current linkage information, how
likely it is that a particular user might be interested in a
link to another user, or be willing to purchase a particular
product, at a later time? In a graph setting, this problem
has been explored in detail in many papers, such as Refs.
[30,31]. One challenge is that each particular user might

have only a very limited purchasing history, or a user
might be linked to a small number of other users; this
would make the prediction for future items extremely
difficult. A key approach to solving this problem is to
draw upon crowds of users with similar interests, and
combine their wisdom in a weighted manner [32].
Applications of link prediction are widespread, including
book and movie recommendations, friend recommenda-
tion on a social network as well as targeted advertising.
A popular technique for solving the link prediction

problem is collaborative filtering (CF) [32], based on the
assumption that like-minded users typically choose
similar friends or products. CF can be categorized broadly
as memory-based CF and model-based CF. The memory-
based approach conducts certain forms of nearest
neighbor search in order to predict the rating for particular
user-item pair. Avery common memory-based CF method
is the user-based model, which estimates the unknown
ratings of a target user based on the ratings by a set of
neighboring users that tend to rate similarly to the target
user. A crucial component of the user-based model is the
user-user similarity measure for determining the set of
neighbors. Popular similarity measures include Pearson’s
correlation coefficient (PCC) [31,33] and vector similarity
[34]. An alternative form of the memory-based method is
the item-based model [32,35], which compares items
based on the ratings they received. When there are many
fewer items than users in most applications, an item based
model is more scalable.
Collaborative filtering can be modeled as making

inferences and predictions on an extremely large sparse
graph, and can thus be considered as an instance of link
prediction. Graph algorithms can therefore be brought to
bear to discover new insights in the network of humans
and items, or social and information networks [36].
Inference in such a graph is not only limited to the CF
problem but also other types of inference: how does
information travel in such a graph [37]? Are there
influential nodes that are super-spreaders in the graph
[38]? What are the communities and how do they evolve
[39]? Many of these issues can also be collectively
addressed under the generic topic of link prediction in a
network setting.
A main future focus will be on how to effectively solve

the network sparsity problem. Typical networks of users
and products, such as the Netflix movie dataset, have a
sparsity level of having one link per 10000 missing links.
In many other social network applications, this sparsity
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level can go up to one link per 100000 missing links. To
alleviate the sparsity problem, different techniques have
been proposed to fill in some of the unknown ratings in the
matrix such as dimensionality reduction [40] and data-
smoothing methods [41]. The model-based approach to
CF uses observed user-item ratings to train a compact
model that explains the given data [42–48]. In recent
contests such as the Netflix prize competition, model
based approaches showed superior performance on very
large data sets.
A scenario in which data sparsity can be a problem is

when we handle the new ratings matrix in a new domain.
As an example, when we open a new online service, the
rating matrices are often very sparse, which gives rise to
the so-called cold-start problem. To alleviate these
problems, we can exploit a transfer learning method for
CF by pooling together the rating knowledge from
multiple rating matrices in related but different task
domains. This is the approach taken in [49], which relies
on the observation that many recommendation websites
for recommending similar items, e.g., movies, books, and
music, are often somewhat related. For example, users
who visit an online bookstore can be partitioned into
similar groups as users who visit an online movie store.
Similarly, books can be partitioned into groups just as
movies can. In other words, items share some common
properties (e.g., genre and style) and users share some of
the same population-wide properties as well. Their
intrinsic relationships at the user and item group levels,
can be uncovered using clustering techniques, by which
we can then transfer the rating knowledge from a dense to
sparse rating matrix. In a series of works, we solve this
problem on a small scale by discovering what is common
among multiple rating matrices in related domains in order
to share useful knowledge [49,50].
While completely automated link prediction and CF

solutions are valuable, a new mixed initiative solution that
exploits human computation through massive crowds is
particularly promising. In this approach, each person
provides some feedback to a system via user opinions or
text or image labels and tags. Then, a computer program
combines and filters the collective human labeling results.
Crowd sourcing, as it is known in social computing,
provides enormous commercial opportunities such as
targeted advertisements. Amazon’s Mechanical Turk [51]
invites massive crowds to complete a labeling work for
building classification and prediction models. Many
applications can benefit from crowdsourcing, including

language translation, text transcription, image labeling,
market research, and conducting surveys. However, a
potential problem is that the user produced data are often
of varying qualities. There is much noise to be removed
from this data. As a result, in the social learning area, our
next challenge is: how to effectively integrate the massive,
online, human input while taking care to distinguish
between data of different degrees of quality and useful-
ness?
In the social learning area, yet another challenge is how

to exploit the piecewise knowledge of a huge number of
small and medium-sized recommendation systems to
collectively make better decisions. While large online
sites like Amazon and Google can easily access huge
volumes of user data, the enormous number of smaller
online business sites, which collectively constitute the
long tail of the Web, are much more likely to have very
sparse user data and have difficulty in generating accurate
recommendations. Many different small sites often attract
similar users and/or provide similar items, if not identical
ones, which implies that data about such users and items
can potentially be distributed among different systems.
This idea is similar to distributed link prediction or CF,
where each loosely connected subsystem can make their
own judgments, while collectively a meta level system can
integrate their solutions. In [52], a MapReduce [53] based
implementation of the popular probabilistic latent seman-
tic analysis model is described for collaborative filtering in
online news personalization. The general idea behind
these algorithms is to divide the data into small sections
that can be handled at an individual computing node and
coordinate a large number of computing nodes to achieve
scalability. Thus, our question is: how to effectively
design a distributed coalitional learning framework that
enables a large number of heterogeneous systems to
collectively make superior decisions? How to allow
heterogeneous models to be integrated in a coherent
whole? In addition, while doing all the computation, how
do we effectively protect the privacy of various users and
institutions, so that sensitive information is not leaked to
the public nor exploited by unwanted parties?

3.2 Summary

The development of data mining has uncovered two
opposing trends in computation. One trend is to link
everything together in a linked network of data. Under this
model, social and information networks can be studied,
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where a key problem is to predict the missing links given
the existing, current and historical, link and node
information, even when the networks are sparse. This
has led to increasing research interests in social networks,
link prediction and collaborative filtering. Furthermore,
when we integrate the user generated labeling data into the
networks, we find crowdsourcing to be particularly
attractive. Extending this amalgamation of information,
we find ourselves entering the arena of heterogeneous
social and information networks, where transfer learning,
a challenge discussed in the previous section, can again be
exploited to solving the ‘cold start’ problem. Another,
more or less opposing trend, is to recognize that a
particular graph may be too complex to handle. Thus, a
divide and conquer methodology is adopted in distributed
processing for link prediction. In the near future, we
expect to see more interplay between these two meth-
odologies, and research in social learning will become
more scalable (including the ability to handle extremely
sparse and noisy graphs), heterogeneous and distributed
with increasing attention to protection of user privacy.

4 Mobile-context learning challenge

4.1 Overview

Learning mobile users’ current and past trajectories and
activities, and inferring users’ intent are critical issues in
the field of mobile and online services such as mobile-
based Web search and targeted advertising. As mobile
devices proliferate, data mining for mobile users’
contextual information is gaining very high commercial
and social value. In this section, we discuss the mobile-
context learning challenge, a solution for which can help
address how to provide different services with intelligent
capabilities by mining the mobile users’ activity and
location patterns. These application services include
mobile search, mobile shopping, and long-term, low-
cost healthcare for the elderly and chronically sick
patients, as well as other value-added services such as
mobile targeted advertising.
A mobile user’s context can be defined by their

environment, preceding location and action sequences
and intent. Knowing the context of a mobile user may
allow us to infer the user’s intent more accurately and
provide the needed services on time. Consider the
following application scenarios in a future world.

� Imagine an application where I might use a map
application to help navigate myself through a large
shopping mall. The map application can inform the user
information center of my location, and I can query it to
find various products. When I search with any product
related queries on a phone based search engine, the search
engine can provide me with location information as along
side recommendations for activities based on my context
what I did before sending the queries, the time of day, the
number of people in the mall, etc. Relevant location and
activity dependent results can be returned to me, such as
shops nearby that might be offering a discount.
� I want to take a taxi to the airport and hope to find

someone while avoiding the heavy traffic. I can send a
message with the location tag. On receiving the message,
someone may reply to me so that we can make can keep
each other company in such case.
� I wish to monitor my own health on a long-term basis,

so that when I go to a doctor I can pass my ‘USB disk’ to
them, and they can then read my statistics to get my health
profile. This makes it possible for doctors to provide me
better treatment, especially if I am recovering from an
illness, or for simply monitoring my health for aging
illness such as heart disease.
The above are examples of what added benefits we can

be gained from mobile users’ context information. This
information can only be inferred through a number of data
sources. For example the users’ past actions and location
sequences, the external environmental conditions such as
the weather, the time of year and time of day, as well as
many users’ global movement patterns such as the traffic
conditions. All this information should be fused to obtain
a coherent picture of the users’ environment.
In this area, several challenges remain and are difficult

to solve. Firstly, presently many significant locations have
their corresponding location coordinates, such as GPS,
marked in various kinds of digital maps, but the
functionalities of these locations are still unknown.
Providing such a system that could allow user provided
tags to locations could significantly enrich information
regarding the functions of locations.
Secondly, a context pattern mining system can serve as

a basis for context-aware recommendations to the user.
Sensors integrated on the mobile phone and other sensor
devices can help detect much useful information such as
the location of the user and some possible states the user is
currently in, e.g., based on accelerometer information and
the user’s trajectory. Such information can be used to
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build the user’s context and predict what the user will be
looking for. For example, based on the patterns mined
from the users’ context information, we may determine
that the user is likely to search for a restaurant around
12pm on weekdays.
An important function that can be enabled via context-

mining capability is to provide services for activity
recognition [14]. One important challenge here is how
to obtain an ontology of the actions, so that we can infer
users’ actions at different levels of granularity. When
monitoring a person’s activities or performing activity
recognition, an untouched problem by researchers is how
to automatically build the model of a complicated activity
based on prior or basic activities. For example, if we have
sensors attached to arms or wrists which can detect
sweeping activity and we have RFID sensors attached to
vacuum cleaners which can detect vacuuming activity.
However, how could we integrate and reason from the fact
that the subject is performing activities like ‘sweeping’ or
‘vacuuming’ that the subject is probably doing a more
complicated activity ‘cleaning-the-house’? Such a pro-
blem might benefit from mining the user sensor traces to
obtain the underlying hierarchical taxonomy among
activities.
Understanding and predicting mobile-users’ behavior

requires one to capture the sequential nature of human
activities. Therefore, graphical models are employed to
learn a model which describes the underlying nature of a
subject’s activity [54–56]. Besides, some of our applica-
tion scenarios mentioned above include long-term health
monitoring of people. The underlying problem of such a
health monitoring involves identifying the abnormal
activity patterns of subjects. Our previous research has
already spanned the field of abnormal activity recognition
from sensor readings [57,58].
Besides the research work mentioned above, we also

aim to link activity recognition with recommendation in
some of our recent papers [59,60].

4.2 Potential solutions to mobile context mining

In context learning research, several important challenges
must be met.
First, in order to mine users’ mobile patterns, we must

gain a deeper understanding of a session-based intention
space. Important questions to answer include: How do we
define a mobile user’s activity session? How long should
the window size of the session be? What is a logical way

to extract a user session from a long user trace?What might
be inferred from a user session? What is the ontology of
this space? Can these be automatically learned?
Second, when building a predictive model based on

users’ historical information, we note that a single user’s
data may be very sparse. Is it possible to leverage different
users’ data to gain a better solution for solving the data-
sparsity problem? Is transfer learning applicable to
solving the sparsity problem? What other domains are
also related that can allow effective knowledge transfer for
learning the context of a user?
Third, once we know the low-level sensor inputs and

location traces, how can we perform accurate activity
recognition for users’ intent? Activity recognition aims to
understand a user’s activities from a minimal set of
available sensors at different levels of granularity.
Achieving this goal not only provides a more reliable
and informative set of context features, but also allows for
an effective compression of the user history data for later
use. While some work has been attempted using
specialized sensors in this area [53,54], large scale real-
world applications of activity recognition are still lacking.
The data mining framework for the context mining of a

mobile user’s traces is likely to go beyond traditional
machine learning. This learning process involves issues
related to spatial, temporal, inter-person and inter-sensor
learning [61]. Can we integrate sequential probabilistic
techniques and scalable distributed learning methods that
go beyond the traditional graphical model based methods?
Can we integrate multi-view, multi-instance and multi-
label learning with transfer learning, together with
Markov model learning?
We expect a great impact on society to be made by the

research on mobile users’ personalized context learning in
several aspects. In science, we expect knowledge to be
gained in understanding people’s mobility patterns and in
correlating these patterns with information on public
health, environmental protection and other important
scientific arena. In engineering, we expect much progress
to be made in terms of truly ubiquitous computing based
on context inference that is not necessarily built on
expensive hardware infrastructure but instead built on low
cost, pervasive hardware. In business, many services can
add value to existing business services, for example,
mobile search, targeted mobile advertising, mobile
shopping and so on. We have already seen such a trend
on the iPhone and Android platform. We will see more to
come.
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4.3 Summary

With the advancement of hardware technology, it is
increasingly possible nowadays to detect the location and
activities of a user through sensors. A particularly difficult
but very useful task is to detect the context of a user or
users in a mobile setting, by mining complex data. Mobile
data has a number of characteristics: it is noisy, sequential,
incomplete, heterogeneous and highly unpredictable. To
be able to successfully mine these data is a great challenge.

5 Conclusions

In this article, I have introduced three major challenges
facing data mining research and application today. The
first challenge, the transfer learning challenge, is driven by
algorithmic and methodological concerns. The remaining
two challenges, the social learning and mobile context
learning challenges are application driven. The transfer
learning challenge is motivated by a lack of high-quality
labeled data in data mining, which is a serious problem
facing any data mining practitioner today. The social
learning challenge is brought forward by the fast growth
of social media and social networks, where new means of
computing such as crowd sourced data mining may
become the norm in the not so distant future. Finally, the
mobile context mining challenge is introduced by the
great proliferation of mobile communications and sensor
technology, which holds potential that ranges from online
commerce to health monitoring for the elderly. I believe
that addressing these three challenges will help move the
science and engineering of data mining forward, and
generate enormous impact on society.
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