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Abstract
Recent advances in click modeling have established
it as an attractive approach to interpret search click
data. These advances characterize users’ search behav-
ior either in advertisement blocks, or within an organic
search block through probabilistic models. Yet, when
searching for information on a search result page, one
is often interacting with the search engine via an entire
page instead of a single block. Consequently, previous
works that exclusively modeled user behavior in a single
block may sacrifice much useful user behavior informa-
tion embedded in other blocks. To solve this problem,
in this paper, we put forward a novel Whole Page Click
(WPC) Model to characterize user behavior in multiple
blocks. Specifically, WPC uses a Markov chain to learn
the user transition probabilities among different blocks
in the whole page. To compare our model with the best
alternatives in the Web-Search literature, we run a large-
scale experiment on a real dataset and demonstrate the
advantage of the WPC model in terms of both the whole
page and each block in the page. Especially, we find that
WPC can achieve significant gain in interpreting the ad-
vertisement data, despite of the sparsity of the advertise-
ment click data.

Introduction
Click-through logs in a search engine are considered an
invaluable resource containing user preference informa-
tion on search result or online advertisements. Their anal-
ysis can benefit a wide range of search-related applica-
tions, such as Web search ranking (Yoshiyuki Inagaki 2010),
ads click-through rate prediction (Richardson, Dominowska,
and Ragno 2007), or user satisfaction estimation (Dupret and
Liao 2010). In the process of analyzing the click-through
logs, a central issue is how to infer the user-perceived rel-
evance for each query-document pair. With this relevance
learnt from the massive search click data, a commercial
search engine can understand search users better and pro-
vide more accurate search results. Recently, many attempts
have been made on learning the user-perceived document
relevance from the click-through data, in an effort to for-
malize it as a click modeling problem. Typical works in-
clude dynamic Bayesian network (DBN) model (Chapelle
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and Zhang 2009), user browsing model (UBM) (Dupret and
Piwowarski 2008), click chain model (CCM) (Guo et al.
2009), and session utility model (SUM) (Dupret and Liao
2010).

Although click data are informative, a well-known chal-
lenge for click modeling is position bias, whereby a docu-
ment in higher position is likely to attract more user clicks
even though it may be not as relevant as documents in lower
positions. Thus, the widely accepted metric of using click-
through rate (CTR) cannot be used as a precise measurement
for document relevance. This bias was firstly noticed by
(Granka, Joachims, and Gay 2004) in their eye-tracking ex-
periment. Thereafter, (Richardson, Dominowska, and Ragno
2007) studied the advertisement problem and proposed to
increase the relevance of documents in lower position by a
multiplicative factor. (Craswell et al. 2008) formalized this
idea as the examination hypothesis to model organic search
problem. Most of the subsequent works follow the examina-
tion hypothesis to interpret user click behavior.

In spite of their successes, previous works on click mod-
eling assume that a user only examines the results in a
single block, as shown in Figure 1. Typical models like
DBN and UBM characterize user behavior only in organic
search blocks, while joint relevance examination (JRE)
model (Srikant et al. 2010) and general click model (GCM)
(Zhu et al. 2010) interpret user click behavior exclusively
in ads blocks. In particular, they simply ignore user click
behavior in other blocks. However, it is obvious that carry-
ing out this simplification might sacrifice useful information
in other blocks. For example, a user might perform some
clicks on the organic search block and feel disappointed, and
then switch to make a click on the related searches block to
change to another query. Without taking the click in the lat-
ter block into consideration, it may mislead some previous
click models, such as DBN, to believe that one is satisfied
with the last click in the first block, and thus one can infer
an inaccurate relevance. Moreover, it can be observed from
the logs (Table 1) that the user behavior of interacting with
multiple blocks is common when users seek information in
search engines. Yet few attempts have been made to inter-
pret the click behavior in a whole page with multiple blocks,
nor to explain the click relationship among different blocks.

Contributions. This line of thinking leads to the Whole
Page Click (WPC) model that we present in this paper. We



Figure 1: Blocks in a whole page

design the WPC model as a nested structure. The outer layer
in this nested structure is to learn transition probabilities be-
tween blocks from the data, which is modeled via a Markov
chain. In the inner layer, popular click models designed for
a single block can be integrated into WPC. We use UBM as
the inner model for explanation with a demonstration of the
extension to other click models. Finally, We conduct exten-
sive experiments on a real dataset from a commercial search
engine and evaluate the WPC model in terms of interpret-
ing search click data. We empirically show that WPC is ca-
pable of learning on large-scale data. The experiments are
conducted with about 90 million sessions. Experimental re-
sults demonstrate that the WPC model can outperform previ-
ous works significantly. Especially, with the modeling of the
whole page, we can leverage a huge amount of click data in
organic search blocks to significantly boost the performance
of prediction in the ads blocks, which is believed to be a
challenging problem in click model literature.

In the rest of the paper, we first present preliminaries
about click models and then introduce the WPC model. Af-
ter that we discuss the experimental results and conclude our
work.

Preliminaries

Before delving into modeling details, we introduce some
definitions and background that are used throughout the pa-
per. A user starts a session by issuing a query to a search
engine, which returns a Search Engine Result Page (SERP)
containing multiple blocks. We use dφ(i) to indicate the
document ranked at the position i in a specific block. The
user then examines the SERP and clicks some or none of
the documents. Any subsequent query re-submission or re-
formulation is regarded as initiating a new session.

In click models, examinations and clicks are treated as
probabilistic events. For a particular session, we use a bi-
nary random variable Ei = 1 to indicate that the document
at the position i is examined and otherwise Ei = 0. Simi-
larly, we use Ci = 1 to indicate the document at the position
i in organic search block is clicked and otherwise Ci = 0.
Therefore, P (Ei = 1) indicates the examination probability
for document at position i and P (Ci = 1) is the correspond-
ing click probability.

Examination Hypothesis
The examination hypothesis assumes that a displayed docu-
ment is clicked if and only if this document is both examined
and perceived to be relevant. The relevance of a document is
a query-specific variable which directly measures the prob-
ability that a user will click on document given that it has
been examined by the user. More precisely, given a query q
and a document dφ(i) at position i, the examination hypoth-
esis assumes the probability of the binary click event Ci as
follows:

P (Ci = 1|Ei = 0) = 0 (1)
P (Ci = 1|Ei = 1, q, dφ(i)) = aφ(i) (2)

where aφ(i) measures the degree of relevance between the
query q and the document dφ(i). Obviously, aφ(i) is the con-
ditional probability of a click after examination. Thus, the
Clickthrough Rate (CTR) is represented as

P (Ci = 1) = P (Ei = 1)︸ ︷︷ ︸
position bias

P (Ci = 1|Ei = 1)︸ ︷︷ ︸
document relevance

(3)

where CTR is decomposed into position bias and document
relevance.

Following the examination hypothesis, given the condi-
tion Ei, the relevance of the document is a constant value.
However, a challenge in this decomposition is that whether
a document is examined or not is not observable from click-
through logs, so subsequent click models try to formalize
this examination event as a hidden variable and make differ-
ent assumptions to deduce its probability.

An important extension of the examination hypothesis is
the user browsing model (UBM). It assumes that the exam-
ination event Ei depends not only on the position i but also
on previous clicked position li in the same session, where
li = max{j ∈ {1, · · · , i − 1} | Cj = 1}. It introduces
a series of global parameters βli,i to measure the transition
probability from position li to position i. Formally, the UBM
is characterized by the following equations:

P (Ei = 1|C1:i−1 = 0) = β0,i (4)
P (Ei = 1|Cli = 1, Cli+1:i−1 = 0) = βli,i (5)
P (Ci = 1|Ei = 0) = 0 (6)
P (Ci = 1|Ei = 1) = aφ(i) (7)

Here li = 0 if there are no preceding clicks. The termCi:j =
0 is an abbreviation for Ci = Ci+1 = · · · = Cj = 0.

Cascade Model
The cascade model assumes that users always examine doc-
uments from top to bottom without skipping. Therefore, a
document is examined only if all previous documents are
examined. For an examined document, whether it is clicked
or not still depends on its relevance. But the click events de-
pend on the relevance of all the documents shown above.
Formally, the cascade model can be formalized as following
assumptions:

P (E1 = 1) = 1 (8)
P (Ei+1 = 1|Ei = 0) = 0 (9)
P (Ci = 1|Ei = 1) = aφ(i) (10)
P (Ei+1 = 1|Ei = 1, Ci) = 1− Ci (11)



The fourth assumption above implies that a user abandons
the session if she gets a desired search result; otherwise she
always continues the examination. This simultaneously re-
veals that it can only be applied to the sessions with at most
one click. Yet this is too strict for real logs with multiple
clicks in a session. Thus several models are introduced to
deal with multiple clicks within a session based on cascade
model.

The dynamic Bayesian network (DBN) model (Chapelle
and Zhang 2009) emphasizes that a click does not neces-
sarily indicate a user’s satisfaction with the document. In-
stead, a user may be attracted by some misleading titles or
snippets to trigger a click. Therefore, the DBN model distin-
guishes document relevance as perceived relevance ai and
actual relevance si. Whether a user clicks on a document or
not depends on its perceived relevance, and whether the user
is satisfied with the document depends on the actual rele-
vance. If the user is satisfied with the clicked document, she
does not examine the next document. Otherwise, there is a
probability 1 − γ that the user abandons her session and a
probability γ that she continues her search. Thus, the DBN
model replaces the last assumption in the cascade model by
the following transition equations:

P (Si = 1|Ci = 0) = 0 (12)
P (Si = 1|Ci = 1) = sφ(i) (13)
P (Ei+1 = 1|Si = 1) = 0 (14)
P (Ei+1 = 1|Ei = 1, Si = 0) = γ (15)

where Si is a hidden event indicating if a user is satisfied
with the document dφ(i). The values of ai and si are es-
timated by the Expectation-Maximization algorithm in the
original paper, and there is a probit approach to infer the
model introduced in (Zhang et al. 2010).

Model
In this section, we first introduce the statistics for the whole
page user behavior and let it speak for the motivation. Then
we present the notations to formalize the whole page user
behavior and provide the model specifications.

Previous models focus on a single block in the SERP.
However, after a user issues a query to a search engine, in
reality the search engine returns a whole page containing
multiple blocks. This whole page is composed of five blocks
in general, as shown in Figure 1. To understand the den-
sity distribution of user behavior in each block, we process
one week of log data in a popular search engine and list the
click distribution in Table 1. We can observe from the table
that although organic search block occupies a high percent-
age of the clicks (79.2%), the clicks in other blocks can not
be ignored (16.7%). In particular, the clicks in the adver-
tisement (about 6.7%) are vital since they contribute to the
revenue for commercial search engines; and there are many
specific works focusing on interpreting user click behavior
in the ads blocks, such as JRE and GCM. On the flip side,
we notice that about 16.2% of sessions have clicks in more
than one blocks, which demonstrates that it is common for
users to interact with search engines on a whole page scale

Block Name # Percentage
Organic Search 79.2

Top Ads 5.2
Sidebar Ads 1.5

Related Searches 5.7
Pagination 4.3

Others 4.1

Table 1: Click distribution over different blocks

and perform clicks in more than one block when they are
using search engines.

Let us assume that a user examines a series of blocks
when she interacts with the SERP. The sequence of these
blocks in session s can be regarded as a route, denoted as
Rs. We use Ns to denote the number of blocks in Rs and
number them as a sequence B1, B2, ..., BNs . It should be
noted that whether or not a block is examined by a user
is not observable from logs, which therefore is modeled as
a hidden variable in the inference section. For each block,
we may classify it into two categories based on whether it
has clicks in the logs within the session s. Thus, for the
blocks with clicks in the session s, we denote the blocks
as a sequence Bπ(1), ..., Bπ(ns) where ns is the number of
clicked blocks and π(i) gives the original numbering in Rs.
We use Rπ(s) to represent this subsequence. Additionally,
we use C to represent all the clicks in session s and Ci

to represent the clicks in the i-th block. For any two con-
secutive clicked blocks, Bπ(m) and Bπ(m+1), where m ∈
[1, ns − 1], we use Rs,m to denote all the blocks that a user
examines betweenBπ(m) andBπ(m+1) excludingBπ(m+1);
thusRs,m = {Bπ(m), ..., Bπ(m+1)−1}. Accordingly, we use
Cs,m to denote the clicks within Rs,m. Clearly, Rs,m may
contain zero or more blocks that the user examines without a
click, but this is not observable from the log data. This poses
a challenge in designing a click model for a whole page.

In response to this issue, we design the WPC model as a
two-layer structure. We call the two layers macro and mi-
cro models, respectively.. The macro model characterizes
the user block switch behavior, i.e., user transition behavior
among blocks. The micro model focuses on the user behav-
ior inside a single block, such as user click or skip behavior
of a search result within the organic search block.

When we process one session s in the logs with consid-
eration of the whole page, we may observe all the clicked
blocksBπ(1), ..., Bπ(ns) and all the clicks C in these blocks.
Thus, we may have the following likelihood function:

P (Rπ(s), C) =
∑

Rs⊃Rπ(s)

P (C|Rs)P (Rs) (16)

The goal of the following assumptions and inference is to
maximize this likelihood. The term P (Rs) represents the
transition probability among different blocks in the path Rs.
But neither the number nor the order of blocks in this path
is observable. To address this problem, we first assume that
the block transition in a route Rs is a Markov chain of order



N . With an example of N = 1, we may calculate P (Rs) as:

P (Rs) =

Ns∏
i=0

Pt(Bi+1|Bi, Ci) =
n∏

m=0

P (Rs,m) (17)

P (Rs,m) =

π(m+1)−1∏
k=π(m)

Pt(Bk|Bk−1, C
k−1) (18)

Here we use Pt to denote the transition probability. The
condition Ci separates the transition probability into two
cases according to whether or not there is a click in block
Bi. We observe that if there is a click in a given block, a
user is less likely to examine next block. Moreover, we can
use a padding technique to generalize this equation even fur-
ther. We use B0 as the initial status before one examines the
first block. Thus, Pt(B1|B0) is the probability that one starts
the examination from block B1. Similarly, we use BNs+1

to represent the event that one leaves session s, and thus
P (BNs+1|BNs) is the probability that one leaves the ses-
sion right after examining block Bs,Ns . As a result, from
the definition of Rs,m and Equation 20, it is easy to see that
Equation 19 holds.

Additionally, we make the assumption that each click
solely depends on its current block, i.e., it is not influenced
by other blocks. Thus, for term P (C|Rs) in Equation 18, we
can formalize it as follow

P (C|Rs) =
Ns∏
i=0

P (Ci|Bi) =
n∏

m=0

P (Cs,m|Rs,m) (19)

Here the micro model P (Ci|Bi) only depends on a single
block Bi, thus it can be formalized by general click models
introduced in section Preliminaries . Take UBM as an exam-
ple for a micro model. P (Ci|Bi) is the product among β, α
and (1− β · α).

Inference
To calculate the parameters θ in WPC, both in the macro
model and in the micro model, we need to infer the cor-
responding parameter updating equations. Here we use the
UBM model as an example for micro model and illustrate
the inference in details. The macro model has parameters
Pt(Bi|Bj) and the UBM micro model has parameters α, β,
thus θ = {Pt(Bi|Bj), α, β}.

To estimate these parameters from the logs, we use the
Expectation-Maximization(EM) algorithm to maximize the
likelihood of Equation 18. Based on Equation 19 and 21, we
can compute the complete likelihood in EM, where Rs,m
is regarded as hidden variables. Following the general EM
algorithm in (Dempster, Laird, and Rubin 1977), we get the
expectation of the complete likelihood evaluated for θ as:

Q(θ|θt) = (20)∑
s

n∑
m=0

∑
Rs,m

P (Rs,m|Cs,m, θt) · log(P (Rs,m, Cs,m|θ))

In the E step, we compute the posterior distribution of
P (Rs,m|Cs,m, θt). However, computing this posterior may
involve infinite number ofRs,m since the block examination
event is unobservable from the data. To tackle this problem,

Query Freq. # Query # Document # Session
100 ∼ 101 413,341 4,167,798 2,014,965
101 ∼ 101.5 568,315 3,635,808 2,992,680
101.5 ∼ 102 723,175 10,314,368 10,115,500
102 ∼ 102.5 653,848 10,281,005 30,809,145
102.5 ∼ 103 301,678 5,839,170 42,232,965

Total 2,660,357 32,238,149 88,165,255

Table 2: A summary of the data set

we make an assumption that each block can only appear at
most once for each possible route of Rs,m, that is, the ex-
amination path between clicks cannot involve cycles. Since
we only consider five blocks in the WPC model, the num-
ber of possible Rs,m is limited. When Rs,m contains two
consecutive clicks, it is easy to deduce that there are only
16 possible routes for Rs,m. For the extreme case that Rs,m
contains only one click, which is generated by the padding
technique, there are 64 possible routes for Rs,m. With this
simplification, we may use the current parameter θt and the
observable Cs,m in each block to calculate the probability
of each possible path P (Rs,m|Cs,m, θt). Thus, the proba-
bility of each possible P (Rs,m|Cs,m, θt) when processing a
session s can be updated as follows.

P (Rs,m|Cs,m, θt) =
P (Rs,m, Cs,m|θt)∑

Rs,m
P (Rs,m, Cs,m|θt)

(21)

P (Rs,m, Cs,m|θt) = P (Cs,m|Rs,m, θt)P (Rs,m|θt) (22)

In this procedure, the E step completes an iteration after
processing all sessions and then switch to the parameter up-
dating in M step.

In the M step, we determine the revised parameter θt+1

by maximizing this function:

θt+1 = argmax
θ
Q(θ, θt) (23)

In this paper, we use the UBM model as an example for mi-
cro model and provide the updating equations in the Ap-
pendix. For other micro models, as mentioned above, it is
similar to infer the updating equations by considering spe-
cific P (Cs,m|Bi). After the M step, the EM algorithm uses
the revised parameters to continue the E step in the next it-
eration. It runs for N iterations until all the parameters con-
verge. For the WPC model, we use N = 10 and find that the
model converges under all settings of parameters θ.

Experiments & Discussion
In this section, we conduct experiments to verify the effec-
tiveness of the proposed model by comparing it with two
click models, the DBN model and the UBM model.

Experiment Setups
Click logs data: The session data used to train and evalu-
ate the click models are collected from a commercial search
engine in the U.S. market in English over one week in Oct,
2010. To verify the effect of multiple blocks, we first filter



Model Whole Page Organic Search Top Ads Side Ads Related Search Pagination
DBN 1.088 1.175 1.530 1.084 1.0245 1.010
UBM 1.082 1.163 1.440 1.064 1.0238 1.009
WPC 1.067 1.156 1.213 1.019 1.0211 1.006

Improvement Over DBN 23.8% 10.8% 59.1% 77.0% 13.8% 0.4%
Improvement Over UBM 18.2% 4.3% 51.5% 70.3% 11.3% 0.33%

Table 3: Perplexity in five blocks for three click models.

Figure 2: Perplexity over different positions

queries whose SERP contain less than three blocks. More-
over, in order to prevent the whole dataset being dominated
by the extremely frequent queries, we limit the number of
sessions for each query to be the first 103. We then divide
the whole dataset into 5 subsets based on the frequency of
a query, and split each subset into training set and test set
evenly. In total, we collect 2,660,357 distinct queries and
88,165,255 sessions. The detailed information is summa-
rized in Table 2.

After a click model estimates its parameters in training,
we compare the observed and predicted CTR. The predic-
tion accuracy is evaluated by click perplexity, which has
been widely used to measure the goodness-of-fit of click
models, such as GCM, UBM and BBM. A smaller per-
plexity indicates a better prediction accuracy and the opti-
mal value is one. For a given position i and a set of ses-
sions s1, s2, · · · , sn, we use c1, c2, · · · , cn to denote the bi-
nary click events of the i-th document in each session. Let
q1, q2, · · · , qn denote the predicted click probability by the
click model. The perplexity pi for the position i is:

pi = 2
1
n

∑n
i=1(ci log2 qi+(1−ci) log2 qi) (24)

The perplexity of the entire dataset is averaged over all posi-
tions, and the improvement of perplexity value pa over pb is
calculated as (pb − pa)/(pb − 1)× 100% (Guo et al. 2009).

Discussion
In Table 3, we report the perplexity of DBN, UBM and WPC
on the test dataset in two settings: over a whole page and
over each individual block on the page.. For the whole page,
we consider all the blocks together when calculating the per-
plexity. It is clear to see that WPC can achieve 23.8% and
18.2% relative improvements over DBN and UBM, respec-
tively. This is consistent with the work of (Zhang et al. 2010)
in that UBM is slightly better than DBN in terms of perplex-
ity. We perform the significance test for these improvements,
and find that the p-value of t-test are both less than 0.01%
due to the large-scale dataset. These improvements verify

the necessity of modeling user click behavior in a whole
page to better interpret search click data.

If we look at the third column in Table 3 for the results of
organic search block, we find that the improvements (4.3%
over UBM and 10.8% over DBN) are not as significant as
that in the whole page. This may be attributed to the fact
that organic search block data occupy a large percentage of
the click, as shown in Table 1. For a huge number of queries,
their click data are sufficient for the single block click mod-
els, like UBM, to attain a good accuracy. Yet, even though
the improvements in this block are limited, WPC still out-
performs existing models.

More can be observedd from the improvements in the
fourth and fifth columns of Table 3 for both ads blocks. The
improvements over DBN and UBM are 59.1% and 51.5%
respectively in the top ads block. Compared with the organic
search data, the biggest difference in advertisement data is
the sparsity, since few search users are likely to click on ad-
vertisements. This might indicate that existing click models
are not effective to interpret the advertisement data due to its
sparsity. However, by characterizing the information in other
blocks with larger amount of click information, the whole
page click model can significantly improve the interpretation
of user click behavior in ads blocks. It is not surprising to see
that the improvements on the sidebar ads block (77.0% over
DBN and 70.3% over UBM) are more significant since the
click behavior in this block is more sparse.

To draw a conclusion about the consistency of the im-
provements, we analyze the improvements for above three
blocks in terms of different positions. The experimental re-
sults for top ads block, organic search block and sidebar ads
block are reported in Figure 2 respectively. It illustrates that
WPC can achieve a better or comparable perplexity in al-
most all positions in all blocks. The exception happens in
lower positions, like position 9 or 10, within the organic
search block, where WPC is slightly worse than UBM. This
may be attributed to the fact that in lower positions of or-
ganic search block, the existing information in the current
block, like the click or skip information in above positions,



is already indicative enough to characterize the user click be-
havior. This leads to an intuitive conclusion that providing
information in other blocks is not always beneficial when
the click information in the current block is good enough.
However, the improvements on the ads blocks are consistent
and very significant in all positions. This provides us a clear
confirmation that WPC can bring significant improvements
for interpreting advertisement data.

Conclusion and Extensions
In this paper, we have investigated the necessity of character-
izing search click data via a whole page, instead of a single
block. We have proposed a WPC model that can characterize
user click behavior in multiple blocks and demonstrated that
it can perform better than the DBN and UBM models. Es-
pecially, we have demonstrated that WPC can bring a major
improvement of interpreting advertisement data and verified
our findings by large-scale experiments on a real dataset.

Modeling user behavior in a whole page can be used for
re-ranking or training a better ranker in the future. one ex-
tension is to analyze user behavior in different blocks and
verify whether the position bias varies in different blocks.
Another extension is to use the block switching behavior to
learn the user satisfaction in the whole page. Both are topics
for future work.
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Appendix
Here we provide the detailed deduction of WPC using UBM
as the micro model. Following the UBM paper, we denote
the indices of αl, βk and (1 − βkαl) in the likelihood of
P (Cs,m|Rs,m) as SRs,m,l, SRs,m,k and SRs,m,k,l. Similarly,
the index of P (Bj |Bi, c) is SRs,m,i,j,c. We also define:

Sl =
∑
s

ns∑
m=0

∑
Rs,m

P̃ (Rs,m|Cs,m, θt)SRs,m,l

Sk =
∑
s

ns∑
m=0

∑
Rs,m

P̃ (Rs,m|Cs,m, θt)SRs,m,k

Sk,l =
∑
s

ns∑
m=0

∑
Rs,m

P̃ (Rs,m|Cs,m, θt)SRs,m,k,l

Si,j,c =
∑
s

ns∑
m=0

∑
Rs,m

P̃ (Rs,m|Cs,m, θt)SRs,m,i,j,c

After that we have the explicit expression of Qt+1(θ|θt):

Qt+1(θ|θt) =
∑
l

Sl log(αl) +
∑
k

Sk log(βk)

+
∑
k,l

Sk,l log(1− βkαl) +
∑
i,j,c

Si,j,c log(P (Bj |Bi, c))

s.t.
∑
j 6=i

P (Bj |Bi, c) = 1(∀i, c)

Thus, by maximization Qt+1(θ|θt), the final parameter up-
dating equations are:

αt+1
l =

1

Sl +
∑
k Sk,l

(
Sl +

∑
k

Sk,lα
t
l(1− βtk)

1− βtkαtl

)

βt+1
k =

1

Sk +
∑
l Sk,l

(
Sk +

∑
l

Sk,lβ
t
k(1− αtl)

1− βtkαtl

)

P t+1
t (Bj |Bi, c) =

Si,j,c∑
j 6=i Si,j,c


