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Abstract

Applying learning techniques to acquire action models is an
area of intense research interest. Most previous works in this
area have assumed that there is a significant amount of train-
ing data available in a planning domain of interest, which we
call target domain, where action models are to be learned.
However, it is often difficult to acquire sufficient training data
to ensure that the learned action models are of high quality.
In this paper, we develop a novel approach to learning ac-
tion models with limited training data in the target domain
by transferring knowledge from related auxiliary or source
domains. We assume that the action models in the source
domains have already been created before, and seek to trans-
fer as much of the the available information from the source
domains as possible to help our learning task. We first ex-
ploit a Web searching method to bridge the target and source
domains, such that transferrable knowledge from source do-
mains is identified. We then encode the transferred knowl-
edge together with the available data from the target do-
main as constraints in a maximum satisfiability problem, and
solve these constraints using a weighted MAX-SAT solver.
We finally transform the solutions thus obtained into high-
quality target-domain action models. We empirically show
that our transfer-learning based framework is effective in sev-
eral domains, including the International Planning Competi-
tion (IPC) domains and some synthetic domains.

Introduction

AI planning techniques often require a given set of action
models as input. Creating action models, however, is a dif-
ficult task that costs much manual effort. The problem of
action-model acquisition has drawn a lot of interest from re-
searchers in the past. For instance, McCluskey et al. (Blythe
et al. 2001; McCluskey, Liu, and Simpson 2003) designed
a system to interact with a human expert to generate action
models. Amir (Amir 2005) introduced a tractable and ex-
act technique for learning action models known as Simulta-
neous Learning and Filtering, where the state observations
were needed for learning. Yang et al. (Yang, Wu, and Jiang
2007) presented a framework for automatically discovering
STRIPS (Fikes and Nilsson 1971) action models from a set
of successfully observed plans; Zhuo et al. (Zhuo et al.
2009) proposed to learn method preconditions and action
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models simultaneously for HTN planning, assuming that a
set of hierarchical structures was given, just to name a few.
Despite the success of the previous systems, they are all
based on the assumption that there are enough training ex-
amples for learning high-quality action models.

In this paper, we consider the problem of learning action
models with only limited amount of data. Given just a lim-
ited amount of training data, we make use of action-models
already created beforehand in other related domains, which
are called source domains, to help us learn actions in a target
domain. The motivation for this problem is that, in many sit-
uations, it is usually difficult or expensive to collect a large
amount of training data to learn action models in the target
domain, while it is easier to find related knowledge or infor-
mation in some auxiliary domains. If we can find a bridge
between these domains, transfer learning can then be used
to help learn the action models in the target domain. For
instance, in the NASA rovers planning domain, it is not an
esay task to collect a large number of plan traces for learning
action models for the robotic rovers to explore Mars. How-
ever, there may exist one or more related domains, such as
robots exploring in a coal mine, or driving truck driverlog1,
where action models have already been created. These do-
mains provide helpful knowledge for learning action models
in the rovers planning domain. In this paper, we aim at iden-
tifying similar parts of these source domains to help improve
the learning of the target domains.

A key challenge in this problem is how to bridge the target
and source domains. We observe that although the actions
in the source domain and the target domain are different,
some of them are similar in their semantics. For instance,
the action “navigate” in the rovers1 domain (viewed as the
target domain), is similar to the action “walk” in the driver-
log1 domain (viewed as the source domain). The former
action indicates that a rover navigates from one position to
another, while the latter indicates that a driver walks from
one location to another. Both of them describe the action of
changing locations, and this relationship may have already
been recorded by human editors on some Web sites. As a re-
sult, these two actions are linked through some Web pages,
which allow us to build a mapping between these domains
via Web search. In this paper, we propose to bridge the tar-

1http://planning.cis.strath.ac.uk/competition/
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get domain and a related source domain by searching Web
pages related to the target domain and the source domain,
and then building a mapping between them by calculating
the similarity between their corresponding Web pages.

In this paper, we present a novel algorithm to Learn
Action models with transferring knowledge from a related
source domain via Web search; this system is called LAWS.
We focus on learning STRIPS action models (Fikes and
Nilsson 1971) rather than the full PDDL action models (Fox
and Long 2003). In our algorithm LAWS, we build a similar-
ity function between two sets of Web pages, and then calcu-
lates the similarity between the target domain and a related
source domain using the similarity function after searching
Web pages related to them. After that, we build a set of
weighted constraints, which we call web constraints, based
on the similarity calculated. We also build other constraints
based any available example plan traces in the target do-
main, which we call state constraints, action constraints
and plan constraints, respectively. We solve all the con-
straints (web/state/action/plan constraints) using a weighted
MAX-SAT solver (Borchers and Furman 1998), and gener-
ate target-domain action models based on the solution to the
constraint satisfaction problem.

We organize the paper as follows. We introduce the re-
lated work in the next section, and then give the formulation
of our learning problem. After that, we present our algo-
rithm LAWS and evaluate it in the experiment section. Fi-
nally, we conclude the paper together with the future work.

Related Work
Yang et al. presented the ARMS system (action-relation
modeling system) (Yang, Wu, and Jiang 2007) for auto-
matically discovering STRIPS (Fikes and Nilsson 1971)
action models from a set of successfully observed plans.
The ARMS system automates the process of knowledge
acquisition for action model learning in previous works,
where a computer system interacted with human experts
to generate the needed action models (Blythe et al. 2001;
McCluskey, Liu, and Simpson 2003). Amir (Amir 2005)
presented a tractable and exact technique for learning ac-
tion models known as Simultaneous Learning and Filtering,
where the state observations were needed for learning. Zhuo
et al. (Zhuo et al. 2010) proposed an algorithm called LAMP
to learn complex action models with quantifiers and impli-
cations using Markov Logic Networks (MLNs) (Richardson
and Domingos 2006). Zettlemoyer et al. (Zettlemoyer, Pa-
sula, and Kaelbling 2005) investigated into learning a model
of the effects of actions in noisy stochastic worlds. Despite
the success of these previous learning systems, they learn
action models in one domain with the assumption that there
are large enough training data available in the task domain.
Zhuo et al. (Zhuo, Yang, and Li 2009) studied the way to
learn action models by building mappings between source
domains and the target domain, which focused on syntax-
level mapping. In contast, in this paper, we aim to explore
the semantic mapping using Web searching for action-model
learning.

Our work is related to transfer learning (Pan and Yang
2010; Caruana 1997). We exploit Web search technology to

connect two domains. In the past, some previous research
works considered learning common sense knowledge from
the Web to assist model training, which was inspired by the
research of Etzioni et al. (Etzioni et al. 2004). Bollegala
et al. (Bollegala, Matsuo, and Ishizuka 2009) proposed a
relational similarity measure, using a Web search engine, to
compute the similarity between semantic relations implied
by two pairs of words. Perkowitz et al. (Perkowitz et al.
2004) proposed to mine the natural language descriptions of
activities from ehow.com as labeled data, and translate them
into probabilistic collection of object terms. Zheng et al.
(Zheng, Hu, and Yang 2009) developed a mapping between
activities in two domains by learning a similarity function
via Web search.

The MAX-SAT problem (Borchers and Furman 1998) for
a CNF formula φ is the problem of finding an assignment
of values to propositional variables that minimizes the num-
ber of unsatisfied clauses (or equivalently, that maximizes
the number of satisfied clauses). In propositional logic a
variable xi may take values false or true. A literal li is a
variable xi or its negation x̄i. A clause is a disjunction of
literals, and a CNF formula φ is a conjunction of clauses.
The length of a clause is the number of its literals. The size
of φ, denoted by |φ|, is the number of all its clauses. An as-
signment of truth values to the propositional variables satis-
fies a literal xi if xi takes the value true and satisfies a literal
x̄i if xi takes the value false, satisfies a clause if it satisfies
at least one literal of the clause, and satisfies a CNF for-
mula if it satisfies all the clauses of the formula. An empty
clause, denoted by �, contains no literals and cannot be sat-
isfied. An assignment for a CNF formula φ is complete if
all the variables occurring in φ have been assigned; other-
wise, it is partial. MaxSatz (LI, Manya, and Planes 2007;
LI et al. 2009) implements a lower bound computation
method that consists of incrementing the lower bound by one
for every disjoint inconsistent subset that can be detected
by unit propagation. Moreover, the lower bound computa-
tion method is enhanced with failed literal detection. The
variable selection heuristics takes into account the number
of positive and negative occurrences in binary and ternary
clauses.

Problem Formulation
A planning problem can be described as a triple P =
(Σ, s0, g), where s0 is an initial state, g is a goal, and Σ
is defined by Σ = (S,A, γ), where S is a set of states,
A is a set of action models, and γ is a transition func-
tion defined by γ : S × A → S. A solution to a plan-
ning problem is an action sequence (or a plan) denoted as
(a1, a2, . . . , an), where ai is an action. An action model
is defined as (a, PRE,ADD,DEL), where a is an action
name with zero or more parameters, which is called action
schema, PRE is a precondition list specifying the condition
under which the action a can be applied, ADD is an adding
list and DEL is a deleting list. Notice that in this paper we
focus on the STRIPS action model description.

A plan trace t is an action sequence with partially ob-
served states, i.e., t = (s0, a1, s1, . . . , an, sn), where si can
be a partially observed state and ai is an action. We define
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IN PU T: action schemas, predicates and plan traces from the target 

               domain rovers.

Action schemas:

navigate (?x - rover ?y - waypoint ?z - waypoint)

sample_ soil (?x - rover ?s - store ?p - waypoint)

...

Predicates:

(at ?x - rover ?y - waypoint)  (empty ?x - store) (full ?x - store) ...

Plan traces:

{ (at rover0, waypoint0), (empty store0), }

navigate(rover0, waypoint0, waypoint1) sample_ soil(rover0, store0, waypoint1) 

{ (at rover0, waypoint1) (full store0)}

...

IN PU T: action models from a source domain driverlog.

(:action walk

 :parameters (?driver - driver ?loc-from - location ?loc-to - location)

 :precondition (and (at ?driver ?loc-from) (path ?loc-from ?loc-to))

 :effect (and (not (at ?driver ?loc-from)) (at ?driver ?loc-to))))

...

OU TPU T: action models in the target domain rovers.

(:action navigate

 :parameters (?x - rover ?y - waypoint ?z - waypoint) 

 :precondition (and (can_ traverse ?x ?y ?z) (available ?x) (at ?x ?y) (visible ?y ?z))

 :effect (and (not (at ?x ?y)) (at ?x ?z)))

...

Figure 1: An example of inputs and outputs

our learning problem as: given a set of action schemas, a set
of predicates, a small set of plan traces T from the target
domain Dt, and a set of action models As from a source do-
main Ds, how do we construct a set of action models in the
target domain Dt? We assume that action models from Ds

were already created before, which means they are available
to be used to help learn the unknown action models in the
target domain. Here is an example of our learning problem
in Figure 1 for illustration.

Our Transfer Learning Framework
In this section, we present our algorithm LAWS to learn ac-
tion models. We show an overview of LAWS in Algorithm 1.
We first build a similarity function to bridge a source domain
and the target domain, and generate a set of weighted con-
straints according to the similarity function (steps 1 and 2 of
Algorithm 1). After that, we build a set of weighted con-
straints from the plan traces from the target domain (step 3).
Finally, we solve all weighted constraints with a weighted
MAX-SAT solver, and convert the solving result to a set of
action models (steps 4 and 5).

We will give the detailed description of each step of Al-
gorithm 1 in the following.

Building Constraints via Web Searching

In steps 1 and 2 of Algorithm 1, we aim to build constraints
from a source domain via Web searching. We will first de-
scribe how to build the similarity function (step 1), and then

Algorithm 1 An overview of our LAWS algorithm

input: (1) A set of action models As of a source domain,
(2) an action schema set A and a predicate set P in the target
domain, (3) a set of plan traces T from the target domain.
output: A set of action models At of the target domain.

1: build the similarity function build sim fun(As, A, P );
2: generate weighted constraints according to the similar-

ity function;
3: build weighted constraints according to T ;
4: solve all the weighted constraints;
5: convert the solving result to At;
6: return At;

how to build weighted constraints based on the similarity
function (step 2) in the following two subsections.

Building the Similarity Function For each predicate p ∈
P and each action a ∈ A, if PARA(p) ⊆ PARA(a) holds,
then p is probably a precondition or an effect of a, where
PARA(p) (or PARA(a)) denotes a set of parameters of p (or
a). Thus, we build a set of predicate-action pairs from the
target domain

PAt = {〈p, a〉|p ∈ P ∧ a ∈ A ∧

(PARA(p) ⊆ PARA(a))}.
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Furthermore, we also build sets of predicate-action pairs
from the source domain

PApre
s = {〈p, a〉|a ∈ As ∧ p ∈ PRE(a)},

PAadd
s = {〈p, a〉|a ∈ As ∧ p ∈ ADD(a)},

PAdel
s = {〈p, a〉|a ∈ As ∧ p ∈ DEL(a)}.

For each predicate-action pair t ∈ PAt and s ∈ PApre
s

(or s ∈ PAadd
s , s ∈ PAdel

s ), we can exploit Web searching
to extract Web pages related to them. For instance, using the
example in Figure 1, for a pair 〈at, navigate〉 from the tar-
get domain rovers, where at is a predicate and navigate is an
action, we can search with query “navigate and at”. Then we
can get a list of search results on the page. By clicking all
search results, we can get a set of Web pages. Likewise, we
can extract Web pages by searching a pair 〈at, walk〉 from
the source domain driverlog with query “walk and at”. Note
that we ignore the difference of the searching results from
different predicate-action orders, such as “at and walk” and
“walk and at”. Although the Web pages contain a lot of
information, only a small amount of it is related to the se-
mantics of the searched query. So we apply the informa-
tion retrieval to retrieve the useful information for each Web
page.

In particular, for each Web page, we first extract the plain
text as a document di. Such a document di can be further
processed as a vector xi, each dimension of which is the
term frequency-inverse document frequency (tf-idf) (Jones
1972) of each word w of di:

tf -idfi,w =
ni,w∑
l ni,l

× log
|{di}|

|{di : w ∈ di}|
,

where ni,w is the number of occurrences of the word w in
document di. Besides, |{di}| is the total number of collected
documents, and |{di : w ∈ di}| is the number of documents
where the word w appears. The first term

ni,w∑
l
ni,l

of the tf-

idf equation is called term frequency, which denotes the
frequency of the word w that appears in the document di.
If the word w appears more frequently in the document di,
then ni,w is larger, and thus the whole term is larger. The
second term

log
|{di}|

|{di : w ∈ di}|
is called inverse document frequency, which denotes the
inverse document frequency for the word w. If the word w
appears in more documents of the corpus, then |{di : w ∈
di}| is larger, and thus the whole term is smaller. For exam-
ple, for the word “the”, it is used in almost all the documents,
but it is a stop word without any meaning. Hence, its inverse
document frequency will vanish to zero, thus the tf-idf value
of the word approaches to zero. It means that such a word
does not encode any semantics of the searched keyword, so
it can be removed from the Web data’s feature vector.

Therefore, for a predicate-action pair s, e.g., 〈at, walk〉,
we can search it and get a set of documents

Ds = {xi|i = 1, . . . ,ms}

, with each xi as a tf-idf vector. Similarly, for another pair t,
e.g., 〈at, navigate〉, we can get another set of documents

Dt = {yi|i = 1, . . . ,mt}

, with each yi as a tf-idf vector.

After extracting the Web data Ds and Dt, we measure the
similarity between the action-predicate pairs s and t. Note
that a possible choice to calculate the similarity between two
data distributions is using the Kullback-Leibler (KL) diver-
gence (Kullback and Leibler 1951). However, generally the
Web text data are high-dimensional and it is hard to model
the distributions over the two different data sets. Therefore,
we propose to use the Maximum Mean Discrepancy (MMD)
(Borgwardt et al. 2006) to calculate the similarity, which can
directly measure the distribution distance without the den-
sity estimation.

Definition 1: Let F be a class of functions f : X →
R. Let p and q be Borel probability distributions, and let
X = (x1, . . . , xm) and Y = (y1, . . . , yn) be samples com-
posed of independent and identically distributed observa-
tions drawn from distributions p and q respectively. Then
the Maximum Mean Discrepancy (empirical estimation) is

MMD[F , X, Y ] = sup
f∈F

(
1

m

m∑

i=1

f(xi)−
1

n

n∑

i=1

f(yi)).

Considering the universal reproducing kernel Hilbert spaces
(RKHS), we can interpret the function f as the feature map-
ping function of a Gaussian kernel (Borgwardt et al. 2006),
and we have the following result given by (Borgwardt et al.
2006)

MMD2[F , X, Y ] =
1

m(m− 1)

m∑

i6=j

k(xi, xj) +

1

n(n− 1)

n∑

i6=j

k(yi, yj)−
2

mn

m,n∑

i,j=1

k(xi, yj),

where k(xi, yj) is defined as

k(xi, yj) = exp(−
‖xi − yj‖

2

2σ2
),

where σ is the kernel width for the Gaussian kernel function.

Given the Web data Ds and Dt, we can finally have the
similarity function between s and t defined as

similarity(s, t) := MMD2[F , Ds, Dt].

Generating Web Constraints

After defining the similarity function, we present the pro-
cess of generating the constraints based on the function in
step 2 of Algorithm 1. We call this kind of constraints web
constraints.

For each predicate-action pair s = 〈ps, as〉 in PApre
s , and

each pair t = 〈pt, at〉 in PAt, we generate a constraint,
pt ∈ PRE(at), and associate it with similarity(s, t) as its
weight. Intuitively, similarity(s, t) measures the degree of
the constraint, that pt is a precondition of at, being satisfied,
since ps is a precondition of as in the source domain. Like-
wise, we can generate weighted constraints pt ∈ ADD(at)
and pt ∈ DEL(at) with respect to PAadd

s and PAdel
s .
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Building STRIPS Semantics Constraints

Besides the constraints extracted from the source domain,
we also build constraints based on the plan traces from
the target domain, which is presented by step 3 of Algo-
rithm 1. We will build three kinds of constraints, i.e., state
constraints, action constraints and plan constraints, each of
which will be presented in the following.

State constraints By observation, we find that if a predi-
cate p frequently appears just before an action a is executed,
then p is probably a precondition of a. We formulate this
idea as the constraint

PARA(p) ⊆ PARA(a) ⇒ p ∈ PRE(a),

where PARA(p) (PARA(a)) means a set of parameters of p
(a), the condition of PARA(p) ⊆ PARA(a) is required by
the STRIPS description, that the action should contain all
the parameters of its preconditions or effects. Likewise, if a
predicate p frequently appears just after an action a is exe-
cuted, then p is probably an effect of a. We also formulate
this idea as the constraint

PARA(p) ⊆ PARA(a) ⇒ p ∈ ADD(a).

We calculate the weights of this kind of constraints with
occurrences of them in the plan traces. In other words, if a
predicate p has occurred just before a is executed for three
times in the plan traces, and p’s parameters are included by
a’s parameters, then the weight of the constraint that p ∈
PRE(a) is 3.

Action constraints We would like to ensure that the ac-
tion models learned are consistent, i.e., an action a should
not generate two conflict conditions such as p and ¬p at the
same time. Such an idea can be formulated by the following
constraint,

p ∈ ADD(a) ⇒ p 6∈ DEL(a)

Since we would like to require that this kind of constraints
to be satisfied maximally, we assign the weights of this kind
of constraints with the largest value of the weights of state
constraints.

Plan constraints Each plan trace in the target domain pro-
vides us the information that it can be executed successfully
from the first action to the last one. In other words, actions
in a plan trace are all executable, i.e., their preconditions are
all satisfied before they are executed. This information can
be represented by the following constraint,

p ∈ PRE(ai) ⇒ p ∈ EXE(i − 1)

where p ∈ EXE(i − 1) means p either exists in the
initial state and is not deleted by the action sequence
〈a1, . . . , ai−1〉, or is added by some action a′ prior to ai and
is not deleted by actions between a′ and ai.

Furthermore, consider an observed state oi, which is com-
posed of a set of predicates. We require that each predicate
in oi should either be newly added by actions or exist in the
initial state. Likewise, we formulate the idea with the fol-
lowing constraint,

p ∈ oi ⇒ p ∈ EXE(i− 1)

We also require that this kind of constraints to be maxi-
mally satisfied, and assign the largest value of the weights of
state constraints as the weights of this kind of constraints.

Solving All Constraints

In step 4, we solve all the weighted constraints built by steps
2 and 3 using a weighted MAX-SAT solver (Borchers and
Furman 1998). Before feeding the weighted constraints to
the weighted MAX-SAT solver, we adjust the weights of
web constraints by replacing the original weights (denoted
as wo (0 ≤ wo ≤ 1), which is calculated by the similarity
function), with

γ

1− γ
× wm × wo,

where wm, as the scale factor for wo, is the maximal value
of weights of state constraints, and γ is a parameter to vary
the importance of web constraints. By varying γ from 0 to
1, we can adjust the weights of web constraints from 0 to
∞. We will show the experiment result of varying γ in the
next section. After adjusting the weights, we can solve the
all the weighted constraints using the weighted MAX-SAT
solver. The solving result is an assignment of all the atoms,
e.g., the atom of p ∈ PRE(a) is assigned as true. After that,
we will directly convert the solving result to action models
At in step 4 of Algorithm 1. For instance, if p ∈ PRE(a) is
true, then p will be converted to a precondition of a.

Experiments

We test our learning algorithm LAWS in these domains
rovers1, driverlog1, zenotravel1, laundry and dishwashing.
laundry and dishwashing are created based on the descrip-
tion of these two domains in the MIT PLIA1 dataset2. We
use rovers, zenotravel and laundry as target domains, and
driverlog, and dishwashing as source domains. We collect
75 plan traces from each target domain as training data.

We evaluate our LAWS algorithm by comparing its learned
action models with the artificial action models which are
viewed as the ground truth. We define the error rate of the
learning result by calculating the missing and extra predi-
cates of the learned action models. Specifically, for each
learned action model a, if a precondition of a does not exist
in the ground-truth action model, then the number of errors
increases by one; if a precondition of the ground-truth action
model does not exist in a’s precondition list, then the num-
ber of errors also increases by one. As a result, we have the
total number of errors of preconditions with respect to a. We
define the error rate of preconditions (denoted as Errpre(a))
as the proportion of the total number of errors among all the
possible preconditions of a, that is,

Errpre(a) =
the total number of errors of preconditions

all the possible precondition of a
.

Likewise, we can calculate the error rates of adding effects
and deleting effects of a, and denote them as Erradd(a) and
Errdel(a) respectively. Furthermore, we define the error
rate of all the action models A (denoted as Err(A)) as the

2http://architecture.mit.edu/house n/data/PlaceLab/PLIA1.htm
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average of Errpre(a), Erradd(a) and Errdel(a) for all the
actions a in A, that is,

Err(A) =
1

|A|

∑

a∈A

1

3
(Errpre(a) +

Erradd(a) + Errdel(a)),

and define the accuracy as Acc = 1− Err(A).

Comparison among LAWS, t-LAMP and ARMS

We repeat our LAWS five time calculating the average of ac-
curacy. Each time we randomly select one of each five se-
quential intermediate partial states being observed in plan
traces leaving other states empty, and each partial state is
selected by 50% of propositions in the corresponding full
state (a state is assumed to be represented by a set of propo-
sitions). We compare our LAWS algorithm to the previous
learning system t-LAMP (Zhuo, Yang, and Li 2009) and
ARMS (Yang, Wu, and Jiang 2007), where t-LAMP learns
action models by transferring information from source do-
mains via building syntax mappings between the target and
source domains; and ARMS learns action models without any
information about the source domains. We show the ex-
perimental results in Figure 2, where “driverlog ⇒ rovers”
suggests we learn action models in the domain rovers by
transferring knowledge from the domain driverlog, likewise
for “driverlog⇒ zenotravel” and “dishwashing ⇒ laundry”.
The parameter γ, which is introduced in the previous sec-
tion, is set as 0.5 when running our algorithm LAWS.

From Figure 2, we can see that the accuracy of our al-
gorithm LAWS is higher than the other two, which indicates
that exploiting the semantic information from Web performs
better than building syntax mappings (as t-LAMP does) and
learning without knowledge transfer (as ARMS does). We
can also observe that when the number of plan traces is
small, the difference between our algorithm LAWS and t-
LAMP (or ARMS) is larger. However, when the number
of plan traces becomes large, the gap shrinks. This phe-
nomenon indicates that our algorithm LAWS provides bet-
ter effect on learning the action models when we don’t have
enough plan traces, since when the number of plan traces be-
comes larger, there will be more knowledge available from
the plan traces themselves, which can be enough to learn
the action models. The result also reveals that even when
the number of plan traces is very small (e.g., 15), the learn-
ing accuracy of our algorithm LAWS will be no less than
75%, which means that exploiting the knowledge from Web
searching can really help learning action models.

Ablation Study

Furthermore, we would like to study the interaction between
the impact of the knowledge extracted from Web searching
in the learning framework and the impact of the knowledge
only from the plan traces. We perform this study by cal-
culating the accuracies of the following three cases: (1) the
accuracy of the learned action models just from STRIPS se-
mantics constraints, (2) the accuracy of the learned action
models with the STRIPS semantics constraints and the web
constraints, setting the weights of the web constraints to be

the same, (3) the accuracy of the learned action models with
the full constraint set, defining their weights by the similar-
ity function, (4) the accuracy of the learned action models
with respect to different number of states in plan traces, set-
ting γ = 0.5 and the percentage of propositions in each state
as 50%. The results are shown in Figures 3-4

From Figure 3, we can see that the accuracy of Case III
is generally higher of the other cases. This suggests that
we can get higher accuracies when we exploit the similarity
function, which is consistent with our motivation of measur-
ing the correlation between domains by building the similar-
ity function. Furthermore, the accuracy of Case II is gener-
ally better than the one of Case I, which indicates that the
web constraints is helpful in improving the learning result.
We can also find that the accuracies generally increase when
the number of plan traces increases.
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Figure 4: The accuracy with respect to different ratios of
states

In order to see the accuracy of the learned action models
with respect to different number of states available in plan
traces, we test different ratios of states by setting γ = 0.5.
We perform this test with 60 plan traces and 50% as the ratio
of propositions in each state of plan traces. From Figure 4,
we can see that the accuracy generally increases when the
ratio increases. This is consistent with our intuition, since
the information increases and could help improve the learn-
ing process when the ratio increases.

We varied the value of the parameter γ from 0 to 1 to
see the trend of the accuracy, by fixing the number of plan
traces to 60. We show the results in Figure 5. From Fig-
ure 5, we can see that when γ increases from 0 to 0.5, the
accuracy increases, which exhibits that when the effect of
the knowledge from Web searching enlarges, the learning
accuracy gets higher. However, when γ is larger than 0.5
(note that when γ = 0.5, γ

1−γ
will be equal to 1, which

means the weights of web constraints remain unchanged),
the accuracy becomes lower when γ increases. This is be-
cause the impact of the knowledge from the plan traces is
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Figure 3: Comparison of different cases (Case I: the accuracy with STRIPS constraints (γ = 0); Case II: The accuracy with
STRIPS & web constraints where weights of web constraints are all the same (γ = 0.5 and wo = 1); Case III: The accuracy
with STRIPS & web constraints where web constraints are defined by the similarity function (γ = 0.5))

relatively reduced when γ becomes very large, and implies
that the knowledge from the plan traces is also important
for learning high-quality action models. In summary, with
the knowledge of the current limited plan traces, exploiting
knowledge from Web searching does help improve the learn-
ing accuracy.

We do not have space to show the running time of our
algorithm LAWS. Suffice it to say that the CPU time of the
learning process is quite reasonable. The maximal time of
our LAWS algorithm is smaller than 1,000 seconds for learn-
ing action models in our experiment on a typical 2 GHZ PC
with 1GB memory. However this time did not include the
Web searching time, since it mainly depends on the specific

network quality.

Conclusion

In this paper, we proposed a novel cross-domain action-
models acquisition algorithm LAWS to learn action models
by transferring the knowledge from related source domains
to a target domain via Web search. We first built a similarity
function to measure the relation between two domains and
generate web constraints associated with weights defined by
the similarity function. We then built STRIPS semantics
constraints from plan traces and solve all the constraints us-
ing a weighted MAX-SAT solver. From our experiments, we
can see that our LAWS algorithm can learn the action models
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with the help of the source domains, which is more accu-
rate than other algorithms that do not exploit any knowledge
from other domains. We also showed that exploiting knowl-
edge from Web search is helpful in building a mapping func-
tion between the domains.

In the future, we would like to study the feasibility of ap-
plying our transferring framework to learning more expres-
sive action models, such as PDDL, rather than STRIPS mod-
els, and study the feasibility of transferring knowledge from
multiple domains.
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