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Abstract

Data sparsity due to missing ratings is a major chal-
lenge for collaborative filtering (CF) techniques in
recommender systems. This is especially true for
CF domains where the ratings are expressed numer-
ically. We observe that, while we may lack the in-
formation in numerical ratings, we may have more
data in the form of binary ratings. This is especial-
ly true when users can easily express themselves
with their likes and dislikes for certain items. In
this paper, we explore how to use the binary pref-
erence data expressed in the form of like/dislike to
help reduce the impact of data sparsity of more ex-
pressive numerical ratings. We do this by transfer-
ring the rating knowledge from some auxiliary da-
ta source in binary form (that is, likes or dislikes),
to a target numerical rating matrix. Our solution
is to model both numerical ratings and like/dislike
in a principled way, using a novel framework of
Transfer by Collective Factorization (TCF). In par-
ticular, we construct the shared latent space col-
lectively and learn the data-dependent effect sep-
arately. A major advantage of the TCF approach
over previous collective matrix factorization (or bi-
factorization) methods is that we are able to capture
the data-dependent effect when sharing the data-
independent knowledge, so as to increase the over-
all quality of knowledge transfer. Experimental re-
sults demonstrate the effectiveness of TCF at vari-
ous sparsity levels as compared to several state-of-
the-art methods.

1 Introduction
Data sparsity is a major challenge in collaborative filtering
methods[Goldberget al., 1992; Panet al., 2010] used in rec-
ommender systems. Sparsity refers to the fact that some ob-
served ratings, e.g.5-star grades, in auser-item rating matrix
are too few, such that overfitting can easily happen when we
predict the missing values. However, we observe that, some
auxiliary data of the form “like/dislike” may be more easi-
ly obtained; e.g. the favored/disfavored data in Moviepilot1,

1http://www.moviepilot.de

the love/ban data in Last.fm2 and the “Want to see”/“Not In-
terested” data in Flixster3. It is more convenient for users to
express such preferences instead of numerical ratings. The
question we ask in this paper is: how do we take advantage
of our knowledge in the form of binary ratings to alleviate
the sparsity problem in numerical ratings when we build a
prediction model?

To the best of our knowledge, no previous work answered
this question of how to jointly model a target data of numer-
ical ratings and an auxiliary data of like/dislike. There are
some work on using both the numerical ratings andimplic-
it data of “whether rated”[Koren, 2010; Liuet al., 2010] or
“whether purchased”[Zhang and Nie, 2010] to help boost
the prediction performance. Among the previous works, Ko-
ren ([Koren, 2010]) uses implicit data of “rated” as offsets in
a factorization model, Liu et al.[Liu et al., 2010] adapt the
collective matrix factorization (CMF) approach[Singh and
Gordon, 2008] to integrate the implicit data of “rated”, and
Zhang et al.[Zhang and Nie, 2010] convert the implicit data
of simulated purchases to auser-brand matrix as a user-side
meta data representing brand loyalty and auser-item matrix
of “purchased”. However, none of these previous works con-
sider using auxiliary data of both like and dislike in collabo-
rative filtering in a transfer learning framework.

Most existing transfer learning methods in recommender
systems consider auxiliary data from several perspectives, in-
cluding user-side transfer[Caoet al., 2010; Maet al., 2011;
Vasuki et al., 2012], item-side transfer[Singh and Gordon,
2008], two-side transfer[Panet al., 2010], or knowledge-
transfer using related but not aligned data[Li et al., 2009a;
2009b]. In this paper, we consider the situation where the
auxiliary data of like/dislike is such that users and items of the
target rating matrix and the auxiliary like/dislike matrixare
both aligned. This gives us more precise information on the
mapping between auxiliary and target data, which can lead
to higher performance. Under this framework, the following
questions can be addressed.

1. What to transfer and how to transfer, as raised in[Pan
and Yang, 2010], can be answered. Previous works that
address this question include approaches that transfer the
knowledge of latent features in an adaptive way[Panet

2http://www.last.fm
3http://www.flixster.com



al., 2010] or collective way[Singh and Gordon, 2008],
transfer cluster-level rating patterns in an adaptive man-
ner [Li et al., 2009a] or collective manner[Li et al.,
2009b].

2. How to model the data-dependent effect of numer-
ical ratings and like/dislike when sharing the data-
independent knowledge? This question is important s-
ince clearly the auxiliary and target data may be with
different distribution and semantic meaning.

In this paper, we propose a principled matrix-based
transfer-learning framework referred asTransfer by Collec-
tive Factorization (TCF), which jointly factorizes the data
matrices inthree parts: a user-specific latent feature matrix,
an item-specific latent feature matrix, and two data-dependent
core matrices. Technically, our main contributions include:

1. We construct a shared latent space (what to transfer) via
matrix tri-factorization in acollective way (to address
the how to transfer question).

2. We model the data-dependent effect of like/dislike and
numerical ratings by learning the core matrices of tri-
factorizations separately.

3. We introduce orthonormal constraints to the latent fea-
ture matrices in TCF to enforce the effect of noise reduc-
tion in singular value decomposition (SVD), and thus
only transfer the most useful knowledge.

Figure 1: Graphical model ofTransfer by Collective Factor-
ization (TCF) for transfer learning in recommender systems.

2 Transfer by Collective Factorization
2.1 Problem Definition
In the target data, we have a matrixR = [rui]n×m ∈
{1, 2, 3, 4, 5, ?}n×m with q observed ratings, where the ques-
tion mark“?” denotes a missing value (unobserved value).
Note, the observed rating values inR are not limited to
5-star grades, instead, they can be any real numbers. We
use a mask matrixY = [yui]n×m ∈ {0, 1}n×m to de-
note whether the entry(u, i) is observed (yui = 1) or not
(yui = 0). Similarly, in the auxiliary data, we have a matrix
R̃ = [r̃ui]n×m ∈ {0, 1, ?}

n×m with q̃ observations, where 1
denotes the observed ‘like’ value, and 0 denotes the observed

‘dislike’ value. The question mark is the missing value. Sim-
ilar to the target data, we have a corresponding mask matrix
Ỹ = [ỹui]n×m ∈ {0, 1}

n×m. Note that there is an one-one
mapping between the users and items ofR andR̃. Our goal
is to predict the missing values inR by transferring knowl-
edge fromR̃. Note that the implicit data in[Koren, 2010;
Liu et al., 2010; Zhang and Nie, 2010] is different in the form
of {1, ?}, since implicit data corresponds to positive observa-
tions only.

2.2 Model Formulation
We assume that a useru’s rating on item i in the tar-
get data,rui, is generated from the user-specific latent fea-
ture vectorUu· ∈ R

1×du , item-specific latent feature vec-
tor Vi· ∈ R

1×dv , and some data-dependent effect denot-
ed asB ∈ R

du×dv . Note that it’s different from the PMF
model[Salakhutdinov and Mnih, 2008], which only contain-
s Uu· andVi·. Our graphical model is shown in Figure 1,
whereUu·, u = 1, . . . , n andVi·, i = 1, . . . ,m are shared to
bridge two data, whileB, B̃ are designed to capture the data-
dependent information. We fixd = du = dv for notation sim-
plicity in the sequel. We denote the tri-factorization in the tar-
get domain asF(R∼UBV

T ) =
∑n

u=1

∑m
i=1 yui[

1
2 (rui −

Uu·BV T
i· )

2 + αu

2 ||Uu·||
2
F + αv

2 ||Vi·||
2
F ] +

β
2 ||B||

2
F , where

regularization terms||Uu·||
2
F , ||Vi·||

2
F and||B||2F are used to

avoid overfitting. Similarly, in the auxiliary data, we have
F(R̃∼UB̃V

T ). To factorizeR andR̃ collectively, we ob-
tain the following optimization problem for TCF,

min
U,V,B,B̃ F(R∼UBV

T ) + λF(R̃∼UB̃V
T )

s.t. U,V ∈ D (1)

where λ > 0 is a tradeoff parameter to balance the tar-
get and auxiliary data andD is the range of the latent vari-
ables. D can beDR = {U ∈ R

n×d,V ∈ R
m×d} or

D⊥ = DR ∩ {U
T
U = I,VT

V = I} to resemble the ef-
fect of noise reduction in SVD[Keshavanet al., 2010]. Thus
we have two variants of TCF, CMTF (collective matrix tri-
factorization) forDR and CSVD (collective SVD) forD⊥.
Although 2DSVD or Tucker2[Ding and Ye, 2005] can fac-
torize a sequence offull matrices, it does not achieve the goal
of missing value prediction insparse observation matrices,
which is accomplished in our proposed system.

To solve the optimization problem in Eq.(1), we firstcol-
lectively factorize two data matrices ofR andR̃ to learnU
andV, and then estimateB andB̃ separately. The knowledge
of latent featuresU andV is transferred by collective factor-
ization of the rating matricesR andR̃, and for this reason,
we call our approachTransfer by Collective Factorization.

2.3 Learning the TCF
Learning U and V in CMTF GivenB andV, we have
gradient on the latent feature vectorUu· of useru,

∂[F(R∼UBV
T ) + λF(R̃∼UB̃V

T )]

∂Uu·
= −bu + Uu·Cu,

whereCu =
∑m

i=1(yuiBV T
i· Vi·B

T + ỹuiλB̃V T
i· Vi·B̃

T ) +
αu

∑m
i=1(yui + λỹui)I and bu =

∑m
i=1(yuiruiVi·B

T +



Input : R, R̃, Y, Ỹ.
Output : U, V, B, B̃.
Step 1. Scale ratings inR.
Step 2. InitializeU,V.
Step 3. EstimateB andB̃.
repeat
repeat
Step 4.1.1. FixB andV, updateU in CMTF or CSVD.
Step 4.1.2. FixB andU, updateV in CMTF or CSVD.
until Convergence

Step 4.2. FixU andV, updateB andB̃.
until Convergence

Figure 2: The algorithm ofTransfer by Collective Factoriza-
tion (TCF).

λỹuir̃uiVi·B̃
T ). Thus, we have an update rule similar to alter-

native least square (ALS) approach in[Bell and Koren, 2007],

Uu· = buC
−1
u . (2)

Note that Bell et al.[Bell and Koren, 2007] consider bi-
factorization in a single matrix, which is different from our
tri-factorization of two matrices. We can obtain the update
rule forVi· similarly.

Learning U andV in CSVD Since the constraintsD⊥ have
similar effect of regularization, we remove the regularization
terms in Eq.(1) and reach a simplified objective functiong =
1
2 ||Y⊙ (R−UBV

T )||2F + λ
2 ||Ỹ⊙ (R̃−UB̃V

T )||2F , where
the variablesU andV can be learned via gradient descent on
the Grassmann manifold[Edelmanet al., 1999; Buono and
Politi, 2004],

U← U− γ(I−UU
T )

∂g

∂U
= U− γ∇U, (3)

where∂g
∂U

= (Y⊙(UBV
T −R))VB

T +λ(Ỹ⊙(UB̃V
T −

R̃))VB̃
T and γ =

−tr(tT1 t2)−λtr(t̃T1 t̃2)

tr(tT2 t2)+λtr(t̃T2 t̃2)
with t1 = Y ⊙

(R − UBV
T ), t̃1 = Ỹ ⊙ (R̃ − UB̃V

T ), andt2 = Y ⊙

(∇UBV
T ), t̃2 = Ỹ ⊙ (∇UB̃V

T ). Note that[Buono and
Politi, 2004; Keshavanet al., 2010] study a single-matrix fac-
torization problem and adopt a different learning algorithm
on the Grassmann manifold for searchingγ. We can obtain
the update rule forV similarly.

Learning B and B̃ GivenU,V, we can estimateB andB̃
separately in each data, e.g. for the target data,

F(R∼UBV
T ) ∝

1

2
||Y ⊙ (R−UBV

T )||2F +
β

2
||B||2F ,

where the data-dependent parameterB can be estimated ex-
actly in the same way as that of estimatingw in a corre-
sponding least square SVM problem, wherew = vec(B) =

[BT
·1 . . . B

T
·d]

T ∈ R
d2×1 is a big vector concatenated from

the columns of matrixB. The instances can be constructed
as{(xui, rui)} with yui = 1, wherexui = vec(UT

u·Vi·) ∈

R
d2×1. Hence, we obtain the following least-square SVM

problem,

min
w

1

2
||r −Xw||2F +

β

2
||w||2F

whereX = [. . .xui . . .]
T ∈ R

p×d2

(with yui = 1) is the
data matrix, andr ∈ {1, 2, 3, 4, 5}p×1 is the corresponding
observed ratings fromR. Setting∇w = −XT (r −Xw) +
βw = 0, we have

w = (XT
X+ βI)−1

X
T
r. (4)

Note thatB or w can be considered as a linear compact op-
erator[Abernethyet al., 2009] and solved efficiently using
various existing off-the-shelf tools.

Finally, we can solve the optimization problem in Eq.(1)
via alternatively estimatingB, B̃, U andV, all in closed
forms. The complete algorithm is given in Figure 2. Note that
we scale the target matrixR with rui =

rui−1

4 , yui = 1, u =
1 . . . , n, i = 1 . . .m, to remove the value range difference of
two data sources. We adopt random initialization forU,V in
CMTF and SVD results of̃R for that in CSVD.

Each of the above sub-steps of updatingB, B̃, U

and V will monotonically decrease the objective function
in Eq.(1), and hence ensure convergence to local mini-
mum. The time complexity of TCF and other baseline
methods (see Section 3) are: (a) AF:O(q), (b) PMF:
O(Kqd2 +Kmax(n,m)d3), (c) CMF:O(Kmax(q, q̃)d2 +
Kmax(n,m)d3), (d) TCF:O(Kmax(q, q̃)d3+Kd6), where
K is the iteration number,q, q̃ (q, q̃ > n,m) is the number of
non-zeno entries in the matrixR andR̃, respectively, andd
is the number of latent features. Note that TCF can be sped
up via stochastic sampling or distributed computing.

3 Experimental Results
3.1 Data Sets and Evaluation Metric
We evaluate the proposed method using two movie rating data
sets, Moviepilot and Netflix4, and compare to some state-of-
the-art baseline algorithms.
Moviepilot Data The Moviepilot rating data contains more
than4.5×106 ratings with values in[0, 100], which are given
by more than1.0×105 users on around2.5×104 movies[Said
et al., 2010]. The data set used in the experiments is con-
structed as follows,

1. we first randomly extract a2, 000 × 2, 000 dense rating
matrixR from the Moviepilot data, and then normalize
the ratings byrui

25 +1, and the new rating range is[1, 5];

2. we randomly splitR into training and test sets,TR, TE ,
with 50% ratings, respectively.TR, TE ⊂ {(u, i, rui) ∈
N× N× [1, 5]|1 ≤ u ≤ n, 1 ≤ i ≤ m}. TE is kept un-
changed, while different (average) number of observed
ratings for each user,4, 8, 12, 16, are randomly sampled
from TR for training, with different sparsity levels of
0.2%, 0.4%, 0.6% and0.8% correspondingly;

4http://www.netflix.com



3. we get the auxiliary dataR̃ (sparsity 2%) from
favoured/disfavoured records of users expressed
on movies. The overlap betweeñR and R

(
∑

i,j yij ỹij/n/m) is 0.035%, 0.070%, 0.10% and
0.14% correspondingly.

Netflix Data The Netflix rating data contains more than108

ratings with values in{1, 2, 3, 4, 5}, which are given by more
than4.8 × 105 users on around1.8 × 104 movies. The data
set used in the experiments is constructed as follows,

1. we first randomly extract a5, 000 × 5, 000 dense rating
matrixR from the Netflix data;

2. we randomly splitR into training and test sets,TR, TE ,
with 50% ratings, respectively.TE is kept unchanged,
while different (average) number of observed ratings for
each user,10, 20, 30, 40, are randomly sampled fromTR

for training, with different sparsity levels of0.2%,0.4%,
0.6% and0.8% correspondingly;

3. we randomly pick100 observed ratings on average from
TR for each user to construct the auxiliary data matrix
R̃. To simulate heterogenous auxiliary and target data,
we adopt the pre-processing approach[Sindhwaniet al.,
2009] on R̃, by relabeling1, 2, 3 ratings inR̃ as0 (dis-
like), and then4, 5 ratings as1 (like). The overlap be-
tweenR̃ andR (

∑
i,j yij ỹij/n/m) is 0.035%, 0.071%,

0.11% and0.14% correspondingly.

The final data sets are summarized in Table 1.

Table 1: Description of Moviepilot (MP) data (n = m =
2000) and Netflix (NF) data (n = m = 5000).

Data set Form Sparsity

MP
target (training) [1, 5] ∪ {?} < 1%
target (test) [1, 5] ∪ {?} 11.4%
auxiliary {0,1,?} 2%

NF
target (training) {1,2,3,4,5,?} < 1%
target (test) {1,2,3,4,5,?} 11.3%
auxiliary {0,1,?} 2%

Evaluation Metric We adopt the evaluation metric of Mean
Absolute Error (MAE),

MAE =
∑

(u,i,rui)∈TE

|rui − r̂ui|/|TE |

whererui and r̂ui are the true and predicted ratings, respec-
tively, and |TE | is the number of test ratings. In all exper-
iments, we run three random trials when generating the re-
quired number of observed ratings fromTR, and averaged
results are reported. The results on RMSE are similar.

3.2 Baselines and Parameter Settings
We compare our TCF method with two non-transfer learning
methods: the average filling method (AF), PMF[Salakhutdi-
nov and Mnih, 2008], as well as one transfer learning method:
CMF [Singh and Gordon, 2008].

For the average filling (AF) method, we use the empiri-
cally best approach[Panet al., 2010], r̂ui = r̄ + bu· + b·i,
wherer̄ =

∑
u,i yuirui/

∑
u,i yui is the global average rat-

ing, bu· =
∑

i yui(rui − r̄·i)/
∑

i yui is the bias of useru,
andb·i =

∑
u yui(rui − r̄u·)/

∑
u yui is the bias of itemi.

For PMF, CMF and TCF, we fix the latent feature number
d = 10. For PMF, different tradeoff parameters ofαu =
αv ∈ {0.01, 0.1, 1} are tried; for CMF, different tradeoff pa-
rametersαu = αv ∈ {0.01, 0.1, 1}, λ ∈ {0.01, 0.1, 1} are
tried; for CMTF,β is fixed as1, and different tradeoff param-
etersαu = αv ∈ {0.01, 0.1, 1}, λ ∈ {0.01, 0.1, 1} are tried;
for CSVD, different tradeoff parametersλ ∈ {0.01, 0.1, 1}
are tried.

To alleviate the data heterogeneity of{0, 1} and
{1,2,3,4,5}−1

4 or [1,2,3,4,5]−1
4 , a logistic link function

σ(Uu·V
T
i· ) was embedded in the auxiliary data matrix fac-

torization of CMF, whereσ(x) = 1
1+e−γ(x−0.5) , and different

parametersγ ∈ {1, 10, 20} are tried.

3.3 Results
We randomly samplen ratings (one rating per user on aver-
age) from the training dataR and use them as the validation
set to determine the parameters and convergence condition
for PMF, CMF and TCF. The results on test data (unavailable
during training) are reported in Table 2. We can make the
following observations:

1. TCF performs significantly better than all other base-
lines at all sparsity levels;

2. For the transfer learning method of CMF, we can see
that it is significantly better than PMF at almost all spar-
sity levels (except the extremely sparse case of0.2% on
Moviepilot), but is still worse than AF, which can be ex-
plained by (1) the heterogeneity of the auxiliary binary
rating data and target numerical rating data, and (2) the
usefulness of smoothing (AF) for sparse data;

3. For the transfer learning methods of CMF and CMTF,
we can see that CMTF performs better than CMF in all
cases, which shows the advantages of modeling the data-
dependent effect in CMTF.

4. For the two variants of TCF, we can see that introduc-
ing orthonormal constraints (CSVD) improves the per-
formance over CMTF in all cases, which shows the ef-
fect of noise reduction, and thus selectively transfer the
most useful knowledge from the auxiliary data.

To further study the effectiveness of selective transfer vi-
a noise reduction in TCF, we compare the performance of
CMTF and CSVD at different sparsity levels with different
auxiliary data of sparsity1%, 2% and3% on Netflix. The re-
sults are shown in Figure 3. We can see that CSVD performs
better than CMTF in all cases, which again shows the advan-
tage of CSVD in transferring the most useful knowledge.

4 Related Works
PMF Probabilistic matrix factorization (PMF)[Salakhutdi-
nov and Mnih, 2008] is a recently proposed method for miss-
ing value prediction in asingle matrix. The RSTE model[Ma



Table 2: Prediction performance on Moviepilot and Netflix ofaverage filling (AF), probabilistic matrix factorization (PMF),
collective matrix factorization with logistic link function (CMF-link), and two variants ofTransfer by Collective Factorization,
CMTF (TCF) and CSVD (TCF). Numbers in boldface (i.e.0.7087) and in Italic (i.e. 0.7415) are the best and second best
results among all methods, respectively.

Data set Sparsity ofR Without transfer With transfer
(Observed tr. #, val. #) AF PMF CMF-link CMTF (TCF) CSVD (TCF)

Moviepilot

0.2% (tr. 3, val. 1) 0.7942±0.0047 0.8118±0.0014 0.9956±0.0149 0.7415±0.0018 0.7087±0.0035

0.4% (tr. 7, val. 1) 0.7259±0.0022 0.7794±0.0009 0.7632±0.0005 0.7021±0.002 0.6860±0.0023

0.6% (tr. 11, val. 1) 0.6956±0.0017 0.7602±0.0009 0.7121±0.0007 0.6871±0.0013 0.6743±0.0048

0.8% (tr. 15, val. 1) 0.6798±0.0010 0.7513±0.0005 0.6905±0.0007 0.6776±0.0006 0.6612±0.0028

Netflix

0.2% (tr. 9, val. 1) 0.7765±0.0006 0.8879±0.0008 0.7994±0.0017 0.7589±0.0175 0.7405±0.0007

0.4% (tr. 19, val. 1) 0.7429±0.0006 0.8467±0.0006 0.7508±0.0008 0.7195±0.0055 0.7080±0.0002

0.6% (tr. 29, val. 1) 0.7308±0.0005 0.8087±0.0188 0.7365±0.0004 0.7031±0.0005 0.6948±0.0007

0.8% (tr. 39, val. 1) 0.7246±0.0003 0.7642±0.0003 0.7295±0.0003 0.6962±0.0009 0.6877±0.0007

et al., 2011] generalizes PMF and factorizes asingle rating
matrix with a regularization term from theuser-side social
data. The PLRM model[Zhang and Nie, 2010] generalizes
PMF to incorporate numerical ratings,implicit purchasing da-
ta, meta data and social network information, but does not
consider theexplicit auxiliary data of both like and dislike.
Mathematically, the PLRM model that only considers numer-
ical ratings andimplicit feedback can be considered as a spe-
cial case of our TCF framework, CMTF forD = DR, but
the learning algorithm is different (CMTF has closed-form
solutions for all steps). CSVD (withD = D⊥) performs
better than CMTF via selectively transferring the most useful
knowledge.

CMF Collective matrix factorization (CMF)[Singh and
Gordon, 2008] is proposed for jointly factorizing two matri-
ces with the constraints of sharingone-side (user or item) la-
tent features. However, in our problem setting as shown in
Figure 1, both users and items are aligned. To alleviate the
data heterogeneity in CMF, we embed a logistic link function
in the auxiliary data matrix factorization in our experiments.

DPMF Dependent probabilistic matrix factorization (DPM-
F) [Adamset al., 2010] is a multi-task version of PMF based
on Gaussian processes, which is proposed for incorporating
homogeneous, but not heterogeneous, side information via
sharing the innercovariance matrices of latent features.

CST Coordinate system transfer (CST)[Panet al., 2010] is
a recently proposed transfer learning method in collaborative
filtering to transfer the coordinate system from two auxiliary
CF matrices to a target one in an adaptive way.

Parallel to the PMF family of CMF and DPMF, there is a
corresponding NMF[Lee and Seung, 2001] family with non-
negative constraints:

1. Tri-factorization method of WNMCTF[Yoo and Choi,
2009] is proposed to factorize three matrices ofuser-
item, item-content anduser-demographics, and

2. Codebook sharing methods of CBT[Li et al., 2009a]
and RMGM[Li et al., 2009b] share cluster-level rating
patterns of two rating matrices.

Models in the NMF family usually have better inter-
pretability, while the top ranking models[Koren, 2010] in
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Figure 3: Prediction performance of TCF (CMTF, CSVD)
on Netflix at different sparsity levels with different auxiliary
data.

collaborative filtering are from the PMF family. We summa-
rize the above related work in Table 3, in the perspective of
whether having non-negative constraints on the latent vari-
ables, and what & how to transfer in transfer learning[Pan
and Yang, 2010].

5 Conclusions and Future Work
In this paper, we presented a novel transfer learning frame-
work, Transfer by Collective Factorization (TCF), to trans-
fer knowledge from auxiliary data of explicit binary ratings
(like and dislike), which alleviates the data sparsity problem
in numerical ratings. Our method constructs the shared la-
tent spaceU,V in a collective manner, captures the data-
dependent effect via learning core matricesB, B̃ separately,
and selectively transfer the most useful knowledge via noise
reduction by introducing orthonormal constraints. The nov-
elty of our algorithm includes generalizing transfer learning
methods in recommender systems in a principled way. Ex-
perimental results show that TCF performs significantly bet-
ter than several state-of-the-art baseline algorithms at various
sparsity levels.

In the future, we will extend the TCF framework to include
more theoretical analysis and large-scale experiments.



Table 3: Summary of related work on transfer learning in recommender systems.

Knowledge Algorithm style (how to transfer)
(what to transfer) Adaptive Collective

PMF [Salakhutdinov and Mnih, 2008] family Covariance DPMF [Adamset al., 2010]
Latent features CST[Panet al., 2010] CMF [Singh and Gordon, 2008], TCF

NMF [Lee and Seung, 2001] family Codebook CBT [Li et al., 2009a] RMGM [Li et al., 2009b]
Latent features WNMCTF [Yoo and Choi, 2009]
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Steven T. Smith. The geometry of algorithms with orthog-
onality constraints.SIAM SIMAX, 20(2):303–353, 1999.

[Goldberget al., 1992] David Goldberg, David Nichols, Bri-
an M. Oki, and Douglas Terry. Using collaborative filter-
ing to weave an information tapestry.CACM, 35(12):61–
70, 1992.

[Keshavanet al., 2010] Raghunandan H. Keshavan, Andrea
Montanari, and Sewoong Oh. Matrix completion from
noisy entries.JMLR, 99:2057–2078, 2010.

[Koren, 2010] Yehuda Koren. Factor in the neighbors: S-
calable and accurate collaborative filtering.ACM TKDD,
4(1):1:1–1:24, 2010.

[Lee and Seung, 2001] Daniel D. Lee and H. Sebastian Se-
ung. Algorithms for non-negative matrix factorization. In
NIPS, pages 556 – 562, 2001.

[Li et al., 2009a] Bin Li, Qiang Yang, and Xiangyang Xue.
Can movies and books collaborate? cross-domain collab-
orative filtering for sparsity reduction. InIJCAI, pages
2052–2057, 2009.

[Li et al., 2009b] Bin Li, Qiang Yang, and Xiangyang Xue.
Transfer learning for collaborative filtering via a rating-
matrix generative model. InICML, pages 617–624, 2009.

[Liu et al., 2010] Nathan N. Liu, Evan W. Xiang, Min Zhao,
and Qiang Yang. Unifying explicit and implicit feedback
for collaborative filtering. InCIKM, pages 1445–1448,
2010.

[Ma et al., 2011] Hao Ma, Irwin King, and Michael R. Lyu.
Learning to recommend with explicit and implicit social
relations.ACM TIST, 2(3), 2011.

[Pan and Yang, 2010] Sinno Jialin Pan and Qiang Yang. A
survey on transfer learning.TKDE, 22(10):1345–1359,
2010.

[Panet al., 2010] Weike Pan, Evan W. Xiang, Nathan N. Liu,
and Qiang Yang. Transfer learning in collaborative filter-
ing for sparsity reduction. InAAAI, pages 230–235, 2010.

[Saidet al., 2010] Alan Said, Shlomo Berkovsky, and
Ernesto W. De Luca. Putting things in context: Chal-
lenge on context-aware movie recommendation. InRec-
Sys: CAMRa, pages 2–6, 2010.

[Salakhutdinov and Mnih, 2008] Ruslan Salakhutdinov and
Andriy Mnih. Probabilistic matrix factorization. InNIPS,
pages 1257–1264, 2008.

[Sindhwaniet al., 2009] Vikas Sindhwani, S.S. Bucak,
J. Hu, and A. Mojsilovic. A family of non-negative matrix
factorizations for one-class collaborative filtering. In
RecSys: RIA, 2009.

[Singh and Gordon, 2008] Ajit P. Singh and Geoffrey J. Gor-
don. Relational learning via collective matrix factoriza-
tion. In KDD, pages 650–658, 2008.

[Vasukiet al., 2012] Vishvas Vasuki, Nagarajan Natarajan,
Zhengdong Lu, Berkant Savas, and Inderjit Dhillon. Scal-
able affiliation recommendation using auxiliary networks.
ACM TIST, 2012.

[Yoo and Choi, 2009] Jiho Yoo and Seungjin Choi. Weight-
ed nonnegative matrix co-tri-factorization for collaborative
prediction. InACML, pages 396–411, 2009.

[Zhang and Nie, 2010] Yi Zhang and Jiazhong Nie. Prob-
abilistic latent relational model for integrating heteroge-
neous information for recommendation. Technical report,
School of Engineering, UCSC, 2010.


