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Abstract

Learning distance metrics is a fundamental prob-
lem in machine learning. Previous distance-metric
learning research assumes that the training and test
data are drawn from the same distribution, which
may be violated in practical applications. When
the distributions differ, a situation referred to as co-
variate shift, the metric learned from training data
may not work well on the test data. In this case
the metric is said to be inconsistent. In this pa-
per, we address this problem by proposing a novel
metric learning framework known as consistent dis-
tance metric learning (CDML), which solves the
problem under covariate shift situations. We the-
oretically analyze the conditions when the metrics
learned under covariate shift are consistent. Based
on the analysis, a convex optimization problem is
proposed to deal with the CDML problem. An im-
portance sampling method is proposed for metric
learning and two importance weighting strategies
are proposed and compared in this work. Experi-
ments are carried out on synthetic and real world
datasets to show the effectiveness of the proposed
method.

1 Introduction

Distance Metric learning (DML) is an important problem
in many machine learning problems, such as classification
through nearest neighborhood methods [Sriperumbudur and
Lanckriet, 2007], clustering [Davis et al., 2007] and semi-
supervised learning [Yeung and Chang, 2007], etc. DML
aims at learning a distance metric for an input space from
some additional information such as must-link/cannot-link
constraints between data instances. In the case of classifica-
tion, for example, the class label information can be converted
to such constraints, where data instances with the same label
can be used to construct must-link pairs and those from dif-
ferent classes can be used to form cannot-link pairs. The key
intuition in DML is to find a distance metric that can pull
must-link instance pairs close to each other while push the
cannot-link pairs away from each other.

Although different DML algorithms have been pro-
posed [Xing et al., 2003; Yeung and Chang, 2007; Davis et

al., 2007], previous research works generally assumed that
the training and test data are drawn from the same distribu-
tion. If this assumption holds, the metric learned from the
training data will work well on the test data. However, in
many real world applications, it may be inappropriate to make
this assumption. For example, in some cases, the training
data may be collected with a sampling bias [Zadrozny, 2004],
and in other cases, the data distribution may change due to
the changing environment [Pan et al., 2008]. In these sit-
uations, the distance metric learned on training data cannot
be directly utilized on the test data. Figure 1 shows a syn-
thetic data example: for the training data, the first dimension
(x-axis) has more discriminative information. However, for
the test data, the second dimension (y-axis) contains more
discriminative information. Thus, the metric that keeps the
must-link training instances close to each other does not nec-
essarily keep them to be close after the distribution changes.
We refer to such discrepancies as the inconsistency problem
in metric learning.

The problem of learning when the training and test data
have different distributions has been studied from different
perspectives, e.g., as covariate shift [Bickel et al., 2007],
sample selection bias [Zadrozny, 2004] or domain adapta-
tion [Daume and Marcu, 2006]. Previous related research
in transfer learning mainly focused on supervised learning,
including classification and regression. To the best of our
knowledge, there has been no work that addresses metric
learning when the training and test data have different distri-
butions. In fact, the concept of distances is closely related to
data distribution. It is well known that the Euclidean distance
is linked to Gaussian distribution and the Manhattan distance
measure (1-norm distance) is associated with Laplace distri-
bution. Therefore, any change of distribution will cause prob-
lems for metric learning, invalidating many previous results.

In this paper, we concentrate on the problem of consis-
tent distance metric learning under covariate shift. The as-
sumption made under covariate shift in classification prob-
lems is that although the data distributions can change, the
conditional distributions of labels given features keep stable.
For metric learning we make a similar assumption that the
conditional distributions of the indicator variable of must-
link/cannot-link keep stable. We theoretically analyze the
consistency property of distance metric learning when train-
ing and test data follow different distributions. Based on our
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Figure 1: On the training set, the x-axis is crucial to distin-
guish the two classes. However, on the test set the y-axis is
more important instead. The metric learned from the training
set will have bias when generalized to test set.

analysis, we propose a convex optimization problem for con-
sistent distance metric learning (CDML). We novelly adapt
importance sampling methods used in supervised learning
for metric learning. Two importance weighting strategies
are investigated. The first strategy estimates the importance
weights for data instances before using them to calculate im-
portance weights for instance pairs. The second strategy di-
rectly estimates the importance weights for instance pairs.
The two strategies are compared and analyzed from both the-
oretical and practical perspectives. We conduct empirical ex-
perimentation with both synthetic and real world datasets to
demonstrate the effectiveness of the proposed algorithm.

2 Distance Metric Learning

Distance Metric learning (DML) aims to learn a distance met-
ric from a given collection of must-link/cannot-link instance
pairs while preserving the distance relation among the train-
ing data instances. In general, DML can be formulated as the
following multi-objective optimization problem:{

min . Exi,xj∼Pr(x)

[
dθ(xi, xj)

]
, (i, j) ∈ S

max . Exi,xj∼Pr(x)

[
dθ(xi, xj)

]
, (i, j) ∈ D (1)

where xi and xj are instances drawn from distribution Pr(x)
and dθ(xi, xj) is the distance function for xi and xj with the
parameter θ. S is the set of must-link pairs and D is the set
of cannot-link pairs. In most distance metric learning algo-
rithms, the distance function type is restricted to the Mala-
hanobis distance, which can be defined as

dA(x, y) =
√

(x− y)TA(x− y). (2)

where A is a parameter in the distance function that is a pos-
itive semi-definite matrix. Since we can always factorize A
into A = LTL, the Malahanobis distance in the original fea-
ture space can be regarded as the Euclidean distance in a new
feature space after a linear transformation is applied to the
original feature space, as shown below,

dA(x, y) =
√

(x− y)TA(x− y) =
√

(Lx− Ly)T(Lx− Ly).
(3)

To be precise, this is a pseudo metric rather than a metric
from a mathematical perspective. However, in this paper we
still follow the terminologies of previous work.

The first objective in Equation 1 is to minimize the ex-
pected distance of must-link pairs. The second objective is
to maximize the distance of cannot-link pairs. When Mala-
hanobis distance is used, the square of the distance is usually
considered instead of the distance function (Equation 2), in
order to simplify the formulation.

In order to solve the multi-objective optimization problem,
the objective functions can be converted to a single-objective
optimization problem. One conversion strategy is to use one
objective as the optimization goal and the other as constraints,
as done in [Xing et al., 2003]. A second strategy is to regard
both objectives as constraints and optimize a new objective
function as in [Davis et al., 2007]. The constraints for must-
link relations can either be hard or soft. For hard constraints,
we have

d2A(xi, xj) < u, (4)
and for the soft constraints, we have

d2A(xi, xj) < u+ ξ (5)
where u is the upper bound for the distance between must-
link pairs and ξ is a slack variable. Similarly, for cannot-link
pair we can obtain the hard constraints.

d2A(xi, xj) > l (6)
and the soft ones

d2A(xi, xj) > l − ξ, (7)
where l is a lower bound for the distance of cannot-link pairs.

A more general formulation of DML is to consider a loss
function over the distance function. We can show that dif-
ferent strategies mentioned above can be regarded as using
different loss functions. In fact, we can define the loss func-
tion L(sij , dA(xi, xj)) similar to hinge loss, where sij is a
label set to 1 for must link pairs and -1 for cannot-link pairs.
For must-link pairs,

L(1, dA(xi, xj)) =

{
0, d2A(xi, xj) < u (8a)

d2A(xi, xj)− u, d2A(xi, xj) ≥ u (8b)
and for cannot-link pairs,

L(−1, dA(xi, xj)) =

{
0, d2A(xi, xj) > l (9a)

l − d2A(xi, xj), d
2
A(xi, xj) ≤ l (9b)

Then we can formulate the DML problem as,
Problem 1.

min �(x;A) ≡ Exi,xj∼Pr(x)[L(sij , dA(xi, xj))], (10)
Similar to supervised learning, it is infeasible to optimize

the expected loss in Problem 1 in practical problems. We
need to solve the following problem where the empirical loss
is minimized.
Problem 2.

min �emp(x;A) ≡ 1

N

∑
i,j

L(sij , dA(xi, xj)), (11)

where N is the number of pairs considered.
This would introduce the problem of generalization ability,

which will be discussed in the next section.
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3 Consistency in Metric Learning

The above formulation of DML has an implicit assumption
to guarantee generalization ability: the distributions of train-
ing and test data are identical. However, when the training
and test data are drawn from different distributions, the met-
ric that keeps the must-link pairs of training instances close
to each other may not keep the ones in the test data close due
to the changes in data distributions. In this section, we will
first define consistency in distance metric learning problem.
Then we will investigate how to handle this problem when
covariate shift exists.
Definition 1. A metric learning algorithm is consistent if

lim
N→∞

�emp(x;A) = l(x;A), x ∼ Pr(x) (12)

where N is the number of training data.
A consistent metric-learning method will guarantee the

ability of generalizing the metric learned on a finite set of
training data to the test data. Different from the consis-
tency problem defined for pattern recognition problems, met-
ric learning is defined on instance pairs rather than instances.
In other words, it considers the relations between instances.
Therefore, the consistency of metric learning is about the gen-
eralization ability of relation between data instances.

In the case of covariate shift, the distributions of training
and test data are different. Thus, we have

xtrain ∼ Pr(x), xtest ∼ Pr′(x) (13)
Accordingly, general DML algorithms will fail to satisfy the
consistency property.

In a supervised learning setting, the covariate shift problem
can be solved by importance sampling methods [Shimodaira,
2000]. Based on Theorem 1, presented as follows, we can
also adapt importance sampling methods to the distance met-
ric learning problem.
Theorem 1. Suppose that xi and xj are drawn independently
from Pr(x). If a metric learning algorithm for Problem 2 is
consistent without covariate shift, then minimizing the follow-
ing function (Equation 14) using this algorithm can produce
consistent solutions under covariate shift.

min �′emp(x;A) = min
∑
i,j

wijL(sij , dA(xi, xj)) (14)

where wij =
Pr′(xi)Pr′(xj)
Pr(xi)Pr(xj)

Proof. Since the metric learning algorithm is consistent with-
out covariate shift, we have

lim
N→∞

�′emp(x;A) = Exi,xj∼Pr(x)[wijL(sij , dA(xi, xj))] (15)

Let us denote the right hand side of the above equation by
�′(x;A).

�′(x;A) = Exi,xj∼Pr(x)[wijL(sij , dA(xi, xj))]

=

∫
wijL(sij , dA(xi, xj))Pr(xi)Pr(xj)dxidxj

=

∫
L(sij , dA(xi, xj))Pr

′(xi)Pr
′(xj)dxidxj

= Exi,xj∼Pr′(x)[L(sij , dA(xi, xj))]

This shows the conclusion holds.

In supervised learning with covariate shift, Pr′(x)/Pr(x)
is called the importance weight. The weight wij is the product
of importance weights for xi and xj . Therefore, this approach
needs to estimate the importance weight for x first. Since the
loss function is defined over pairs of instances, it is possible
to directly estimate the importance weight on instance pairs
in some cases. For example, it is possible when the distance is
induced by a norm, which indicates d(xi, xj) = f(xi − xj).
The Malahanobis distance also belongs to such a case. From
this perspective, we can calculate the importance weight for
instance pairs using

wij =
Pr′(xi − xj)

Pr(xi − xj)
=

Pr′(Δx)

Pr(Δx)
(16)

where Δx = xi − xj . We need to introduce the concept of
cross-correlation in this case. If X and Y are two indepen-
dent random variables with probability distributions g and h,
respectively, then the probability distribution of the difference
X − Y is given by the cross-correlation g � h,

(g � h)(t) =

∫ ∞

−∞
g∗(τ)h(t+ τ)dτ (17)

where g∗ denotes the complex conjugate of g. Then, we can
have another formulation of CDML solution directly defined
using Δx.
Theorem 2. If the distance is introduced by a norm, then
dθ(xi, xj) = f(Δx). Suppose that δx is a random variable
drawn from Q(x) = Pr(x) � Pr(x), and that a metric learn-
ing algorithm for Problem 2 is consistent without covariate
shift, minimizing the following problem (equation 18) using
this algorithm can produce consistent solutions under covari-
ate shift.

min �′emp(x;A) = min
∑
i,j

wijL(sij , f(δx)) (18)

where wij = Pr′(δx)/Pr(δx).
The proof is similar with the one in Theorem 1 except the

two variable now changed to one variable δx and the details
are omitted here. From this point of view, the problem is
treated as a supervised learning problem where instances are
pairs. Although both approaches can be used to solve the
CDML problem, they are not equivalent, with each having its
own advantages and drawbacks. We will discuss and compare
the two weighting approaches later.

In our analysis, we have the prerequisite that the original
distance metric learning itself is consistent without covariate
shift. This condition, although nontrivial to address, is be-
yond the scope of this paper. We believe that this condition
can be addressed similarly to what was done in pattern recog-
nition [Vapnik, 1995].

4 Metric Learning Under Covariate Shift

As we analyzed in the above section, the corresponding con-
sistent metric learning problem can be formulated as
Problem 3.

min
∑
i,j

w(xi, xj)L(sij , dA(xi, xj)), xi, xj ∼ Pr(x) (19)
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It can also be regarded as a cost-sensitive distance metric
learning problem, where violating different pair constraints
could introduce different costs. In the following, we formu-
late it as a convex optimization problem.

4.1 Our Approach

We have so far proposed a general framework for consistent
distance metric learning. In this section, we will propose a
specific convex optimization problem to solve the CDML.

Given the loss function defined in previous section, the cost
sensitive learning problem then becomes,

min
A�0

∑
wijξij

s.t. tr(A(xi − xj)(xi − xj)
T) ≤ u+ ξij (i, j) ∈ S,

tr(A(xi − xj)(xi − xj)
T) ≥ l − ξij (i, j) ∈ D,

ξij ≥ 0

(20)

where tr(M) is the trace of the matrix M .
It is easy to show the above problem is a convex optimiza-

tion problem. More specifically, the problem can be con-
verted to the following semi-definite problem (SDP), where
general SDP solvers can be applied to.

min
A�0

tr(CX̃),

s.t. tr(PijX̃) = u (i, j) ∈ S,
tr(PijX̃) = l (i, j) ∈ D

(21)

where

C =

(
0 0
0 W

)
, X̃ =

(
A 0
0 Λ

)
, Pij =

(
B 0
0 Eij

)
, (22)

and W = diag(wij),Λ = diag(ξij), B = (xi − xj)(xi −
xj)

T. For (i, j) ∈ S , Eij has only one nonzero element with
Eij(i, j) = −1; For (i, j) ∈ D, Eij has only one nonzero
element with Eij(i, j) = 1.

In this paper we use a general SDP solver (SDPT31) to
solve our problem. As shown in [Weinberger and Saul, 2008],
it is possible to investigate the structure in the pairwise rela-
tionship to reduce the complexity. We plan to develop algo-
rithms that are more efficient for this problem in the future.

If we have some prior knowledge over the distribution and
metrics, we can include one regularization term into Equa-
tion 20. In [Kulis et al., 2006], Kulis has shown the con-
nection between KL-divergence and Bregman Matrix Diver-
gence. The Burg matrix divergence can be introduced as a
regularization term

min
A�0

∑
wijξij + γDBurg(A,A0)

s.t. tr(A(xi − xj)(xi − xj)
T) ≤ u+ ξij (i, j) ∈ S

tr(A(xi − xj)(xi − xj)
T) ≥ l − ξij (i, j) ∈ D

ξij ≥ 0

(23)

where DBurg(A,A0) = (tr(AA−1
0 )− log det(AA−1

0 ))− n.
We let A0 = I if we do not have any specific prior informa-
tion. The problem is still a convex optimization problem. We

1http://www.math.nus.edu.sg/∼mattohkc/sdpt3.html

adopt the successive approximation method used in [Grant
and Boyd., 2009] to solve this convex optimization problem.

Our approach is related to information-theoretic metric
learning (ITML) [Davis et al., 2007] if we do not consider
the importance weights. However, the loss function used in
ITML only minimized the divergence between the learned
matrix and its prior. As such the loss function in ITML cannot
be directly applied to cost sensitive learning. For this reason,
hinge loss is introduced in our method.

4.2 Estimating Importance Weights

Accurately estimating the importance weights is crucial in co-
variate shift. In this paper, we use a state-of-the-art algorithm
proposed by Tsuboi in [Tsuboi et al., 2008] for this estima-
tion. We will briefly introduce the algorithm in this section.

Since estimating the distribution of x is not trivial when
the data dimension is high, directly estimating the importance
weight Pr′(x)

Pr(x) is a preferable approach [Tsuboi et al., 2008].
Let w(x) =

∑
k αkϕk(x), where αk are parameters to be

learned from data samples and {ϕk(x)} are the basis func-
tions such that ϕk(x) ≥ 0 for all x. The importance weight
is obtained by minimizing KL(Prtest(x)||Pr′test(x)), where
Pr′test(x) = w(x)Prtrain(x). It can be further converted to a
convex optimization problem.

max
∑
j

log(
∑
k

αkϕk(x
test
j )),

s.t.
∑
i

∑
k

αkϕk(x
test
j ) = ntrain and αk ≥ 0

(24)

where ntrain is the number of training data.
In this paper, our focus is to deal with the consistent

metric learning problem. Readers are referred to [Tsuboi
et al., 2008] for details on estimating importance weights.
There are also other candidate methods for estimating impor-
tance weights [Huang et al., 2007]. An advantage of learn-
ing the weighting function is that it allows us to generalize
importance weights to out-of-sample data. Another point
from [Tsuboi et al., 2008] is that the error of importance
weight is proportional to O(1/

√
n), where n is the number

of instances. For the method of estimating weights on pairs,
we consider Δx as variable themselves in the above equa-
tions and we can construct more data instances to estimate
the weights. Theoretically, we will have more accurate im-
portance weights. However, from the experiments we will see
that these additions will not always give better performance
in practice.

5 Experiments

In this section, we evaluate the performance of our proposed
methods on both synthetic and real world datasets. Since we
have two weighting methods, we refer to the first one, which
looks at instances and is described in Theorem 1 as CDML1
and the other one, which looks at instance pairs and is in The-
orem 2 as CDML2.

5.1 Experiment Setup

We construct Gaussian mixture models for generating the
training and test data. Data in the positive and negative
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Figure 2: GMM1 and GMM2: Two Gaussian Mixture Datasets. The left figure shows the data display in the 2-dimensional
space. The right one shows importance sampling results where the larger mark indicates more importance weight.

Figure 3: Case one: There exists significant covariate shift in
Pr(x) but not in Q(δx). Case two: There exists significant
covariate shift in Pr(x) as well as in Q(δx).

classes are generated from two 2-dimensional Gaussian mix-
ture models respectively. The mixture weights for training
and test data are different. Therefore covariate shift exists
in the datasets. Figure 2 displays the two datasets. We also
test our algorithm on real-world benchmark datasets. They
include two datasets from UCI2 and another two from IDA3.
For the UCI datasets, we follow previous research work on
sample selection bias: the covariate shift is simulated by ar-
tificially introducing bias [Huang et al., 2006]. For the IDA
datasets, they are already split into training and test sets and
covariate shift already exists in the original split [Sugiyama
et al., 2008]. Therefore, we directly use the IDA datasets in
the experiments.

We evaluated our method both on classification and clus-
tering problems. For the classification task, the results are
obtained by a K-Nearest-Neighbor (KNN) classifier based
on the metric learned. The value is the average accuracy of
KNN for K ranging from 1 to 5. We also perform clustering
based on the metric learned. Normalized Mutual Information
(NMI) is used to evaluate the clustering result, which is de-
fined in [Xu et al., 2003].

In all experiments, we randomly sample 50 pairs of must-
link/cannot-link from the data and repeat 10 times to calculate
the variance of results. The parameter u and l are chosen by
the 5% and 95% percentiles of the distribution of Δx.

5.2 Experimental Results

In this section, we first use the synthetic datasets to illus-
trate the idea of CDML comprehensively. Then we com-
pare our method with two baseline algorithms. The first

2http://www.ics.uci.edu/∼mlearn/MLRepository.html
3http://ida.first.fraunhofer.de/projects/bench/

Figure 4: The figures shows the histogram of weight on pairs
estimated by CDML2.

Table 1: Classification experiments results

GMM1 GMM2 iris wine
Euclidean 88.7(0.0) 69.8(0.0) 93.4 (6.1) 66.2 (1.9)
ITML 88.8(0.2) 73.7(0.5) 93.9(2.1) 70.8 (6.0)
CDML1 92.7(1.3) 74.2(2.2) 94.5 (1.6) 85.7 (8.7)
CDML2 88.3(0.7) 74.1(0.8) 93.3 (3.0) 88.6 (9.7)

one is using Euclidean distance directly. The second is
information-theoretic metric learning (ITML), which is one
state-of-the-art metric learning algorithm proposed by Davis
et al. in [Davis et al., 2007]. We conduct evaluation with both
classification and clustering tasks.

As shown in Figure 2, both GMM datasets have covariate
shifts if we consider the distribution Pr(x). The two datasets
are different when we consider the relation between their in-
stances. Take the cannot-link pairs as an example, GMM1
does not have significant covariate shift when considering the
distribution of Q(δx) as illustrated in Figure 3. However, in
GMM2, not only Pr(x) but also Q(δx) has covariate shift,
as shown in Figure 4. This may cause the difference be-
tween the results of CDML1 and CDML2. We can observe
from Table 1 that the classification accuracy with KNN clas-
sifier based on CDML1 has significant improvement while
CDML2 does not. For GMM2, both CDML1 and CDML2

Table 2: Classification results on IDA datasets.
Data Euclidean ITML CDML1
splice 71.1(1.5) 74.4(1.4) 74.5(1.6)
ringnorm 65.2(1.4) 79.1(1.0) 80.3(0.5)
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Table 3: Clustering results
Data Euclidean ITML CDML1
wine 0.46(0.03) 0.47(0.03) 0.83(0.04)
iris 0.72(0.09) 0.88(0.12) 0.91(0.07)

have significant improvement. Since δx is invariant with re-
spect to translation, it cannot detect the shift in translation.
This experiment shows that, although CDML2 has its advan-
tage over CDML1 theoretically, in practice it may not outper-
form CDML1. It is interesting to see that CDML1 generally
performs better. Table 2 shows the performance comparison
using classification accuracy on IDA datasets. From this ta-
ble, we can find that CDML outperforms Euclidean and is
comparable to ITML. Table 3 shows the clustering results on
two UCI datasets. We can see the improvement is even more
significant than classification.

6 Related Work

The problem of covariate shift was introduced to machine
learning community by [Zadrozny, 2004]. The problem of
estimating importance weight is addressed by [Huang et al.,
2006; Sugiyama et al., 2008]. Huang et al. proposed to use
a non-parametric kernel methods which calculates the impor-
tance weights by minimizing the difference of means of train-
ing and test data in a universal kernel space [Huang et al.,
2006]. Sugiyama et al. proposed another similar approach
which minimizes the KL divergence between the distribu-
tions. In [Sugiyama et al., 2008], Bickel et al. proposed a
method to unify the importance weight estimation step and
supervised learning step together [Bickel et al., 2007]. How-
ever, these works only focus on supervised learning problems.
To our best knowledge, there is no previous work on consid-
ering covariate shift in metric learning problems.

7 Conclusion and Future Work

In this paper, we address the problem of consistent met-
ric learning under covariate shift. A cost sensitive metric
learning algorithm was proposed. Two importance weight-
ing methods were proposed and analyzed. Experiments were
carried out on both synthetic and real world datasets on both
classification and clustering tasks. Currently we are using the
general SDP solvers for our proposed problem. In the future,
we plan to develop faster and more scalable algorithm for this
problem.
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