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Abstract

Activity recognition aims to discover one or more
users’ actions and goals based on sensor readings.
In the real world, a single user’s data are often in-
sufficient for training an activity recognition model
due to the data sparsity problem. This is especially
true when we are interested in obtaining a personal-
ized model. In this paper, we study how to collab-
oratively use different users’ sensor data to train a
model that can provide personalized activity recog-
nition for each user. We propose a user-dependent
aspect model for this collaborative activity recog-
nition task. Our model introduces user aspect vari-
ables to capture the user grouping information, so
that a target user can also benefit from her simi-
lar users in the same group to train the recognition
model. In this way, we can greatly reduce the need
for much valuable and expensive labeled data re-
quired in training the recognition model for each
user. Our model is also capable of incorporating
time information and handling new user in activity
recognition. We evaluate our model on a real-world
WiFi data set obtained from an indoor environment,
and show that the proposed model can outperform
several state-of-art baseline algorithms.

1 Introduction

With the proliferation of sensor technologies, recognizing hu-
man’s activities of daily living (ADL) from a series of low-
level sensor observations has drawn a lot of research interests
in both AI and ubiquitous computing communities. Accurate
activity recognition can help us provide various personalized
support for many real world applications. For example, [Pol-
lack et al., 2003] used activity recognition to help the elders
against the cognitive decline by sending personalized activity
reminders. [Eagle and Pentland, 2009] extracted user’s eigen-
behaviors to help discover community affiliations. Early ac-
tivity recognition algorithms are based on logic, in which con-
clusions are deducted from the observations and a number of
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“closed world” assumptions [Kautz, 1987]. Bui gave a gen-
eral model for online plan recognition [Bui, 2003]. Gei and
Steedman further showed to use natural language processing
to assist plan recognition [Geib and Steedman, 2007]. As
extensive sensor data become available, recent activity recog-
nition research starts to focus on using real-time sensor data
and learning techniques to recognize the user behaviors. For
example, Tapia et al. developed a wireless state-change sen-
sor system and used a Naive Bayes classifier to recognize the
ADLs [Tapia et al., 2004]. Patterson et al. used RFID sen-
sors to capture the abstract object usage and thus use them to
recognize user’s fine-grained activities with Hidden Markov
Models [Patterson et al., 2005]. Liao et al. applied a hierar-
chical Conditional Random Fields to extract a user’s locations
and activities from GPS data [Liao et al., 2007].

In general, the success of training an activity recognition
model relies on having sufficient sensor data from user. How-
ever, in the real world, a single user’s data are often insuffi-
cient due to the data sparsity problem. This is especially true
when we are interested in obtaining a personalized activity
recognition model. Consider a real-world example when we
are trying to build a multi-user activity recognition system
with WiFi data. Each user uses her mobile device to record
WiFi signal data as she moves in the environment, and anno-
tates the data with some activity label such as “having class”.
Because the human labeling is expensive and a single user
may not foresee all possible WiFi observations in such an
open environment, each single user actually does not have
enough annotated data to train a personalized activity recog-
nition model for her own. Then we are motivated to ask: as
each user’s data are insufficient, can we use them together
to train a user-dependent model that can provide personal-
ized activity recognition to each user? This problem is not
trivial in nature. Most of the previous work does not dif-
ferentiate the users [Tapia et al., 2004; Lester et al., 2005;
Liao et al., 2007]. They treat all the users equally by simply
mixing their data in training. However, different users may
behave differently given similar sensor observations. For ex-
ample, a user may visit the coffee shop for meal and the other
just enjoys sitting in its outdoor couches to read research pa-
per. These two users probably observe similar WiFi signals,
but their activities are quite personalized. This implies that it
may not be appropriate to require all the users to share one
common, user-independent activity recognizer. In this paper,

2085

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence



we propose a user-dependent aspect model to help the users
collaboratively build an activity recognition model that can
give personalized predictions. Rather than simply pooling
multiple users’ data together, our model introduces user as-
pect variables to capture the user grouping information from
their data. As a result, for a targeted user, the data from her
similar users in the same group can also help with her per-
sonalized activity recognition. In this way, we can greatly re-
duce the need for much valuable and expensive labeled data
required in training the personalized recognition model.

Our contributions are summarized as follows:

• We propose a new model to collaboratively utilize dif-
ferent users’ data for personalized activity recognition.

• Our model is capable of encoding time information and
handling new users in activity recognition.

• We evaluate our model with real-world data and show
that it can outperform several state-of-art baselines.

2 Related Work

Our work is different from other multi-user activity recog-
nition work that aims to model concurrent activities among
multiple users. For example, Lian and Hsu used a factorial
Conditional Random Fields model for joint recognition of
multiple concurrent chatting activities [Lian and Hsu, 2009].
Wang et al. proposed a coupled Hidden Markov Model to
capture user interactions and recognize multi-user activities at
the same time [Wang et al., 2009]. Comparatively, our work
does not intend to model such concurrent activities. Besides,
our model is able to use the activity data collected at different
time by multiple users for personalized activity recognition.

There has been some interesting work that tries to address
the data sparsity problem from a different perspective. Rather
than aggregating multiple users’ data, they focus on utiliz-
ing extra knowledge such as human common-sense and un-
labeled sensor data. For example, Perkowitz et al. proposed
to mine the natural language descriptions of activities from
ehow as labeled data, and translated them into probabilistic
collections of object terms for training the recognition model
[Perkowitz et al., 2004]. In addition to the common-sense
knowledge, Wyatt et al. further used the unlabeled RFID
sensor data and trained a Hidden Markov Model for activ-
ity recognition [Wyatt et al., 2005]. Though in this paper, we
do not explore such extra knowledge for our collaborative ac-
tivity recognition task, we believe it is a promising direction
for future research.

Our model is an extension to the standard aspect model
[Hofmann and Puzicha, 1999], which is originally pro-
posed to define a generative model for word/document co-
occurrences. We use the aspect model to formulate sensor
data for activity recognition, and further extend it by intro-
ducing user latent aspects to capture the user grouping infor-
mation. Some closely related concepts to aspect model in-
clude probabilistic Latent Semantic Analysis [Hofmann and
Puzicha, 1999], Latent Dirichlet Allocation [Huynh et al.,
2008], Author Topic Model [Farrahi and Gatica-Perez, 2008].
They are introduced to activity recognition research, and
shown to work well to discover implicit activity patterns from

various sensor data. Different from our work, they usually do
not explicitly use the activity labels and more focus on data
analysis rather than real-time recognition as us.

3 User-dependent Aspect Model

In a WiFi environment, multiple users collect wireless sig-
nal data with activity annotations for around a month. The
data format is in a set of quads: {〈ai, ui, fi, ti〉|i = 1, ..., L},
where a is an activity, u is a user, and f is a feature observed
at time t. In our WiFi case, a feature corresponds to a wire-
less access point (AP) that our mobile device can detect. A
data record quad indicates that a user u is doing an activity
a at time t, and meanwhile her wireless device detects some
AP f . Our goal is to build a personalized activity recognition
model by using these data, so that with a user’s WiFi obser-
vations at some time, we can predict what she is doing.

3.1 Graphical Model and Its Inference

Our model extends the standard aspect model [Hofmann and
Puzicha, 1999; Si and Jin, 2003] by introducing user aspects,
as well as time aspects and feature aspects to model person-
alized activity recognition from time-dependent sensor data.
Figure 1 depicts our graphical model. The shadow nodes for
user variables u, time variables f , feature variables f and ac-
tivity variables a are observations. The blank nodes inside the
rectangle are latent aspect variables. The user latent aspects
Zu ∈ {z1u, z

2
u, ..., z

Du
u } are discrete variables, indicating Du

user clusters. Our model adopts such a user-cluster-activity
hierarchy to help the users to collaboratively build an activity
recognizer. In contrast to a two-tier user-activity hierarchy
where each user can only rely on herself to do activity recog-
nition, our model can make the users from a same cluster to
contribute together to train the recognizer from their feature
and time observations. Therefore, even if some user has lim-
ited data to train an activity recognition model, she can still
benefit from other similar users in the same group(s). As each
user can belong to multiple user clusters at the same time with
different probabilities, they actually contribute differently to
each user cluster in training the recognition model and con-
sequently get different predictions in real-time recognition.
This helps to achieve the model personalization.
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Figure 1: User-dependent aspect model.

We also introduce the latent aspectsZf ∈ {z1f , z
2
f , ..., z

Df

f }

and Zt ∈ {z1t , z
2
t , ..., z

Dt

t } to encode the data observations on
feature and time. They are used to capture the dependency

2086



between activities and observations, considering that similar
feature observations at similar time periods are likely to imply
some same activity. Note that these aspects do not necessarily
rely on users. We can also take all the users’ data as input, and
only use them (i.e. Zf and Zt) to build a user-independent
model for general activity recognition. However, such a user-
independent model, as we will show in the experiment, does
not perform as well as our user-dependent model. The user
latent aspects help to achieve personalization, and that is the
reason why we call our model a user-dependent aspect model.

In general, our aspect model is a generative model, which
uses the latent aspect variables to explain the observations. It
specifies a joint probability of the observed random variables:

P (a, u, f, t) =
∑

Zu,Zf ,Zt

P (a, u, f, t, Zu, Zf , Zt), (1)

where P (a, u, f, t, Zu, Zf , Zt) is expanded, according to the
graphical model, as follows:

P (a, u, f, t, Zu, Zf , Zt) = P (Zu)P (Zf )P (Zt)
P (u|Zu)P (f |Zf)P (t|Zt)P (a|Zu, Zf , Zt).

(2)

Here, the user variables u, feature variables f and activ-
ity variables a are all discrete in nature, so their conditional
probabilities on latent aspects can be modeled easily by multi-
nominal distributions. One exception is the time, which could
be continuous. To formulate P (t|Zt), we discretize the time
t with two possible strategies. One is “ByHour”, which seg-
ments the time into hours. The other is “ByPeriod”, which
segments it into larger time periods; for example, we can
define five periods, including morning (7am∼11am), noon
(11am∼2pm), afternoon (2pm∼6pm), evening (6pm∼12am)
and night (12am∼7am). We will compare these two strate-
gies in the experiment to see the impact of time factor.

In inference, for an existing user, we want to predict her ac-
tivity based on all the access point features detected1 at some
time t. Therefore, our model outputs the activity a∗ that has
the highest likelihood:

a∗ = argmax
a

∏
f
P (a, u, f, t). (3)

For a new user, as we do not have any of her data before, we
will summarize all the users’ predictions to output an activity:

a∗ = argmax
a

∑
u

∏
f
P (a, u, f, t). (4)

3.2 Model Training

For model training, we can use the Expectation Maximization
(EM) algorithm to get the maximum likelihood estimation2.
At E-step, for each data example 〈ai, ui, fi, ti〉, we compute

P (Zu, Zf , Zt|ai, ui, fi, ti) =
P (ai,ui,fi,ti,Zu,Zf ,Zt)∑

Zu,Zf ,Zt

P (ai,ui,fi,ti,Zu,Zf ,Zt)
.

(5)
At M-step, given L data examples, we compute

P (Zu) =
1

L

∑

i

∑

Zf ,Zt

P (Zu, Zf , Zt|ai, ui, fi, ti), (6)

1We follow [Yin et al., 2004] to assume AP independence.
2Derivation details are skipped here for space, interested readers

can refer to [Hofmann and Puzicha, 1999; Si and Jin, 2003].

P (u|Zu) =

∑
i:ui=u

∑
Zf ,Zt

P (Zu, Zf , Zt|ai, ui, fi, ti)

L× P (Zu)
, (7)

P (a|Zu, Zf , Zt) =

∑
i:ai=a

P (Zu, Zf , Zt|ai, ui, fi, ti)

∑
i

P (Zu, Zf , Zt|ai, ui, fi, ti)
. (8)

Analogous to Eq.(6), we can get P (Zf ) and P (Zt); and sim-
ilarly, analogous to Eq.(7), we can get P (f |Zf) and P (t|Zt).
Due to space limit, we skip the details here.

For model complexity, let’s denote the number of activity
as Na, the number of users as Nu, the number of features as
Nf . Together with Du user aspects, Df feature aspects and
Dt time aspects, we totally need to maintainN = (Na×Du×
Df ×Dt+Nu×Du+Nf ×Df +Nt×Dt+Du+Df +Dt)
variables for our model. The time complexity for each EM
iteration is as follows: at E-step, we need to update the prob-
ability of P (Zu, Zf , Zt|ai, ui, fi, ti) for each data example
by summing over the latent aspects, therefore the cost is
O(L×Du×Dt×Df); at M-step, we can amortize the sum-
mation over L samples as O(L ×Du ×Dt ×Df ) and after
one data scan update the N variables by O(N).

4 Experiments

In our experiments, we have 13 users collecting the WiFi data
for around a month, basically in a university area. Their mo-
bile devices sniffed the WiFi signals roughly every 10 min-
utes when it was power on. The users annotated their WiFi
data with eight possible activities from time to time, and we
further preprocess the data by data segmentation and label
parsing. On average, each user has around 1,150 data exam-
ples, and in total we observed 2,912 different access points
(i.e. features) in this dataset. Some activity and user statistics
is shown in Figure 2. For each user, we split the first half of
her data in chronological order as training data, and the other
half as test data. We measure the average accuracy among all
the users at each trial, and report the average accuracy of three
trials through the experiments. Without special notification,
our model uses the “ByPeriod” time segmentations, and the
model parameters are set as: Du = 3, Dt = 2 and Df = 20.

4.1 Activity Recognition for Existing Users

In this experiment, we gather the same percent of training
data from each user and fit them into our model for training.
Then, we test each user and give the average accuracy. We
also vary the number of training data and see the performance
change. We employ three baselines for comparison: (1) “Sin-
gle” baseline, which uses each single user’s data for train-
ing and maintains a personalized activity recognition model
for each user; (2) “Merged” baseline, which pools all the
users’ data together and trains a general activity recognition
model for all the users. For these two baselines, we use the
sophisticated Conditional Random Fields [Vail et al., 2007;
Liao et al., 2007] as the classifier model. These two base-
lines also take the time information as a feature input for fair
comparison; (3) “MostFreq” baseline, which uses the most
frequent activity based on training data as the prediction.

As shown in Figure 3(a), as the number of training data
increases, our model is consistently better than the baselines.
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(a) Activity statistics.
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(b) User statistics.

Figure 2: Data statistics.
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(a) Performance on existing users.

��

��	

��

��	

�	

�
 �
 !
 �
 �


�
��

��
��

�

�	��	
��������
�
���������	�

)���
 ����,

(b) Performance on new users.

��	
�	
�		
�!
�!	
��
��	

�
 �
 !
 �
 �


�
��

��
��

�

�	��	
��������
�
�
���������	�

/0*����,�1��2�3
/0�����1��2�3
/0�����1��2	3

(c) Impact of time factor.

Figure 3: System performance.

The “MostFreq” baseline’s performance keeps unchanged, as
the found most frequent activity is always “doing research”
as training data size increases. The baseline’s comparatively
poor performance shows that a simple solution may not be
adequate for this complex task. For the other two base-
lines, we notice that, when the training data size is small, our
model’s improvement over the baselines seems small as well;
but as the training data size increases, the improvement in-
creases quickly. This is because with limited training data,
the learned user clusters may not be as accurate as that with
enough training data. Another interesting observation is that,
when there is more training data, the “Single” baseline seems
to outperform the “Merged” baseline. It implies that each
user’s unique activity pattern can be better preserved by per-
sonalized activity recognition given enough training data.

Percent of User-dependent User-independent
training data (our model) (variant of our model)

20% 0.56 ± 0.02 0.52 ± 0.01

40% 0.57 ± 0.02 0.53 ± 0.02
60% 0.62 ± 0.03 0.58 ± 0.04

80% 0.65 ± 0.01 0.60 ± 0.02

100% 0.71 ± 0.00 0.64 ± 0.03

Table 1: Impact of the user latent factors [acc ± std].

We also study the impact of user latent aspects to our
model, so that we can understand how much benefit this user-
dependent solution brings to personalized activity recogni-
tion. We employ a variant of our model as the baseline,
named user-independent aspect model for comparison. This
baseline takes all the users’ data as input. It is a simplified

version of our model with the user latent factor Zu and user
variable u removed. In other words, this baseline only con-
sists of feature and time latent aspects, without encoding any
user information, and thus it is user-independent. As shown in
Table 1, our user-dependent model consistently outperforms
the baseline. It proves that, the user aspects are crucial to the
personalized activity recognition task. In addition, we also
tested the case when this user-independent baseline only takes
a single user’s data as input for training to mimic personalized
activity recognition. On average, we observed a 15% perfor-
mance lift of our model over such a baseline. This shows that
our model can well incorporate multiple users’ data.

4.2 Activity Recognition for New Users

In this experiment, we use a leave-one-user-out strategy, with
which we hold out one user only for testing and the other
users for training. Then we rotate on each user and report an
average accuracy in Figure 3(b). As there is no training data
for the test user, the “Single” baseline does not work any-
more. We compare our model with the “Merged” baseline
which requires all the users to share a same activity recog-
nizer. As can be seen in the figure, our model’s performance
is comparable with the baseline. This is because when there
is no training data for a new user, our model has no way to
capture her grouping information. By summing up the pre-
diction probabilities over the users (c.f. Eq.(4)), our model
thus gives a comparable prediction result with the “Merged”
baseline of pooling all the data together.

4.3 Impact of Time and the Model Parameters

We study the impact of two time segmentation strategies:
“ByHour” and “ByPeriod”. As shown in Figure 3(c), two
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strategies have comparable performances, though when the
training data size is small, the “ByPeriod” strategy seems bet-
ter. This may be because “ByPeriod” strategy summarizes the
reasonable time segments with fewer parameters, which are
favored given limited training data. We also observe that, the
model performance seems not very sensitive to the latent time
aspect cardinality Dt.

We study the impact of the model parameters on user and
feature group numbers. In this experiment, we use 60% of the
training data. We vary the model parameter pairs (Du, Df ),
and report the averaged accuracy in the recognition task with
existing users. As shown in Table 2, when the user cluster
numbers are reasonably small, e.g. Du = 3 or 5 compared
with the total user number as Nu = 13, the model perfor-
mance is stable. But when the user cluster number is too big,
e.g. Du = 10, the performance could possibly drop due to
inappropriate clustering. For the number of feature clusters
Df , as the number of observed APs in our data is big, we see
the performances for Df = 20 and Df = 50 are comparable.
We also observe similar patterns in recognizing new users.

Parameters Accuracy

Du = 3, Df = 20 0.62 ± 0.02

Du = 5, Df = 20 0.60 ± 0.01

Du = 5, Df = 50 0.59 ± 0.02

Du = 10, Df = 20 0.57 ± 0.03

Table 2: Impact of the model parameters on Du and Df .

4.4 Discussion

When our model works and when it may not work? These are
the questions that we are curious about. We plot our model’s
performance on each user in Figure 4. We used 60% of train-
ing data, and the baselines are described as above.

In the figure, we can observe our model improvements on
most users over the baselines. Our model especially works
well on user 3, user 5 and user 11 compared with the base-
lines. Let us take user 11 as an example for analysis. The
“Single” baseline does not work well in this user’s case, be-
cause in the test data, we have many access point features
unseen in the training data. Therefore, the “Single” base-
line, since it only uses a single user’s data for training, cannot
handle well the unseen observations and give many incorrect
predictions. Comparatively, our model can work better be-
cause it can benefit from other users’ data which may contain
some unseen access points. Interestingly, the “Merged” base-
line also does not work well in this case, though it uses other
users’ data. The test data show that user 11 often went to the
campus cafe area (which has cozy couches and coffee) in the
evening time to do research. But the “Merged” baseline pre-
dicts the activity in the cafe area as “having meal”, as most of
the users seen in the dataset annotated “having meal” there at
that time. While our model correctly gives the prediction of
“doing research”, because it figures out that one of his simi-
lar user (i.e. user 4) sometimes also did the same thing in the
cafe. This pattern is preserved to correct the predictions as
“doing research” rather than “having meal”. This case shows
that, our model works when: 1) there are multiple users’ data

available; and especially 2) when similar users share the sim-
ilar activities given similar observations.

There are also some cases when our model may not work
well, such as on user 7 and user 8. Though the reasons why
our model does not work well on both users appear slightly
different, there is one thing in common. That is, our model’s
underlying assumption which assumes a group of similar
users would do similar activities given some similar observa-
tions is violated in these two cases. For example, some of user
7’s test data indicate his “having leisure” in some office. Our
model predicts the activities as “doing research” since one of
his similar user usually worked in that office area. This ac-
tivity inconsistency among the users leads to the performance
drop. Beside, user 8 is shown to be often “having leisure”
in her residence area. But in user 8’s training data, the most
frequent activities that happens in her residence area are “do-
ing research” and “others”. Her similar users seem to have
consistent activity patterns in training and test data. Con-
sequently, this behavior difference in training/test data also
makes the model perform poorly. Notice that in both user
7 and user 8, the “Merged” baseline seems better, as it suf-
fers less from such behavior differences by considering all
the users equally.

5 Conclusion

In summary, we study how to collaboratively use different
users’ sensor data for personalized activity recognition. We
introduce a user-dependent aspect model which formulates
the user grouping information with latent user aspects. There-
fore, each single user can benefit from other similar users’
data. Our model can also use the time information and pro-
vide activity recognition to a new user. We test our model
with our real-world WiFi-based activity recognition system.
For existing users, we show average performance lift (w.r.t.
different training data sizes) of 11% over the baseline with
pooling all the users’ data together and 13% over the baseline
with each single user’s data. For activity recognition with new
users, our model also gives comparable performances with
the baseline. We also give case studies to help understand the
conditions for our model to work.

For future work, we are interested in extending our model
to online update with new observations. We also want to ex-
plore using extra knowledge such as common-sense knowl-
edge and unlabeled sensor data to help improve the system.
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