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Abstract

Transfer learning allows knowledge to be extracted
from auxiliary domains and be used to enhance learn-
ing in a target domain. For transfer learning to be suc-
cessful, it is critical to find the similarity between aux-
iliary and target domains, even when such mappings
are not obvious. In this paper, we present a novel al-
gorithm for finding the structural similarity between t-
wo domains, to enable transfer learning at a structured
knowledge level. In particular, we address the prob-
lem of how to learn a non-trivial structural similarity
mapping between two different domains when they are
completely different on the representation level. This
problem is challenging because we cannot directly com-
pare features across domains. Our algorithm extracts the
structural features within each domain and then map-
s the features into the Reproducing Kernel Hilbert S-
pace (RKHS), such that the “structural dependencies”
of features across domains can be estimated by ker-
nel matrices of the features within each domain. By
treating the analogues from both domains as equivalent,
we can transfer knowledge to achieve a better under-
standing of the domains and improved performance for
learning. We validate our approach on a large number
of transfer learning scenarios constructed from a real
world dataset.

Introduction and Motivation
Re-using knowledge across different learning tasks (do-
mains) has long been addressed in the machine learning
literature (Thrun 1998; Caruana 1997; Daumé III 2006;
Dai 2008; Blitzer 2006). Existing research on this issue usu-
ally assume that the tasks are related on the low level, i.e.
they share the same feature space or the same paramet-
ric family of models, such that knowledge transfer can be
achieved by re-using weighted samples across tasks, finding
a shared intermediate representation, or learning constraints
(informative priors) on the model parameters.

However, examining knowledge transfer in human intel-
ligence, we could find that human beings do not rely on
such low-level relatedness to transfer knowledge across do-
mains. Namely, we human beings are able to make analogy
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across different domains by resolving the high level (struc-
tural) similarities even when the learning tasks (domains)
are seemingly irrelevant. For example, we can easily under-
stand the analogy between debugging for computer viruses
and diagnosing human diseases. Even though the computer
viruses (harmful codes) themselves have nothing in common
with bacteria or germs, and the computer systems is totally
different from our bodies, we can still make the analogy base
on the following structural similarities:
1. Computer viruses cause malfunction of computers. Dis-

eases cause disfunction of the human body.
2. Computer viruses spread among computers through

the networks. Infectious diseases spread among people
through various interactions.

3. System updates help computers avoid certain viruses.
Vaccines help human beings avoid certain diseases.
Understanding of these structural similarities helps us ab-

stract away the details specific to the domains, and build a
mapping between the abstractions (see Figure 1). The map-
ping builds on the high level structural relatedness of the two
domains, instead of their low level “literal similarities”. In
other words, the attributes of the “computer” and the “hu-
man” themselves do not matter to the mapping, whereas
their relationships to other entities in their own domains mat-
ter.

This is reminiscent of the learning-by-analogy paradigm
in early endeavors in intelligent planing and problem solv-
ing. However, many previous operational systems in compu-
tational analogy, such as case-based reasoning, have used a
simple similarity function between an old and new problem
domain, whereby the features in the two domains are iden-
tical, albeit weighted. This similarity measure cannot han-
dle some more intuitive cases of human problem solving,
such as the above example, in which the similarity between
the domains should be measured on the structural level. And
such a “structural similarity” can only be determined if we
can correctly identify analogues across completely different
representation spaces.

On the other hand, in cognitive science, analogical learn-
ing indeed involves developing a set of mappings between
features from different domains. Such a need is captured
in structure mapping theory (Falkenhainer 1989; Gentner
1990) of analogical reasoning, which argued for deep re-
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Figure 1: We can make the analogy between debugging
for computer viruses and diagnosing human diseases based
on structural similarities. The dash lines bridge analogues
across domains.

lational similarity rather than superficial similarity. Howev-
er, an operational computational theory has been lacking for
how to come up with the mapping function. We try to fill
this gap in this paper.

In this paper, we present a framework of transfer learn-
ing by structural analogy, which builds on functional space
embedding of distributions (Smola 2007). Specifically, we
address transfer learning in a setting that the source domain
and target domain are using completely different representa-
tion spaces. As we cannot directly compare features across
domains, we extract the structural information of the fea-
tures within each domain by mapping the features into the
Reproducing Kernel Hilbert Space (RKHS), such that the
“structural dependencies” of features across domains can be
estimated by kernel matrices of the features within each do-
main (Smola 2007). Hence the learning process is formulat-
ed as simultaneously selecting and associating features from
both domains to maximize the dependencies between the s-
elected features and response variables (labels), as well as
between the selected features from both domains. With the
learned cross-domain mapping, a structural similarity be-
tween the two domains can be readily computed, which can
be used in place of simple similarity measures in compu-
tational analogy systems such as case based reasoning. By
treating the analogues from both domains as equivalent, we
can transfer knowledge to achieve a better understanding of
the domains, e.g. better accuracy in classification tasks.

Related Work
The idea of re-using knowledge across learning tasks (do-
mains) has been addressed in the machine learning litera-
ture in different terminologies, such as learning to learn,

multi-task learning, domain adaptation, and transfer learn-
ing (Thrun 1998; Caruana 1997; Daumé III 2006; Dai 2008;
Blitzer 2006; Mahmud 2007). To the best of our knowledge,
among these works (Dai 2008) and (Mahmud 2007) are the
only ones that address transferring knowledge across dif-
ferent representations spaces. However, (Dai 2008) rely on
co-occurrence observations that bridges the two feature s-
paces (such as a dictionary, which consists of co-occurrence
observations of two languages), such that the cross-domain
relations of the features can be estimated straightforward-
ly. In contrast, our work does not rely on the availability
of such co-occurrence data. (Mahmud 2007) proposed the-
oretical foundations for transfer learning between arbitrary
tasks based on Kolmogorov complexity. However they only
showed how to implement their framework in the context of
decision trees, whereas our framework of making structural
analogy between the features can be applied together with
many different learning algorithms.

Learning by analogy is one of the fundamental insights of
artificial intelligence. Humans can draw on the past experi-
ence to solve current problems very well. In AI, there has
been several early works on analogical reasoning, such as
Dynamic Memory (Schank 1982). Using analogy in prob-
lem solving, (Carbonell 1981; Winston 1980) pointed out
that analogical reasoning implies that the relationship be-
tween entities must be compared, not just the entity them-
selves, to allow effective recall of previous experiences.
(Forbus 1998) has argued for high-level structural similar-
ity as a basis of analogical reasoning. (Holyoak 1997) has
developed a computational theory of analogical reasoning
using this strategy, when abstraction rules given as input that
allow the two instances to be mapped to a unified represen-
tation.

Analogical problem solving is the cornerstone for case-
based reasoning (CBR), where many systems have been de-
veloped. For example, HYPO (Ashley 1991) retrieves sim-
ilar past cases in a legal case base to argue in support of
a claim or make counter-arguments. PRODIGY (Carbonell
1991) uses a collection of previous problem solving cases as
a case base, and retrieves the most similar cases for adapta-
tion.

However, most operational systems of analogical reason-
ing, such as CBR systems (Aamodt 1994; Watson 1997;
Leake 1996; Kolodner 1993), have relied on the assumption
the past instances and the new target problem be in the same
representational space. Most applications of CBR fall in this
case (Mark 1989; Cheetham 2007; Bayoudh 2007), where
the sets of feature that describe the old cases and new prob-
lems are the same. For example, cases for car diagnosis are
built on descriptions of automobile attributes such as battery
and engine size, although the values are allowed to be dif-
ferent between a past case and the current problem.

Approach
Estimating Structural Dependencies by HSIC
We aim at resolving the structural analogy between two do-
mains with completely different low-level representations.
For the source domain we are provided with observations
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where Xs is the source input domain and Ys is the source
output (label) domain. Similarity we have data for the target
domain:
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Note that Xt, Yt can be representation spaces that are com-
pletely different from Xs, Ys.

For both the source and the target domain, we denote their
feature domains as Φs and Φt. In practice, features are rep-
resented by their profiles1 in the training set:
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N ). Nevertheless, our
framework is applicable to more sophisticated representa-
tions (such as graphs etc.) as it is kernelized, which accesses
data only through the kernel function.

Let Hs, Ht, Gs, Gt, Fs, and Ft be reproducing kernel
Hilbert spaces (RKHS) on the domains Xs, Xt, Ys, Yt, Φs

and Φt, with associated kernel functions ms, mt, ls, lt, ks
and kt respectively. Then we are able to estimate depen-
dencies across domains using the Hilbert-Schmidt Indepen-
dence Criterion (HSIC) (Gretton 2005; 2007; Smola 2007),
which is defined as the square of the Hilbert-Schmidt norm
of the cross-covariance operator bridging the two RKHS.

Specifically, for the RKHS Fs and Ft on the feature do-
mains Φs and Φt, in terms of the kernel functions ks, kt the
HSIC can be expressed as
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where Prst is the joint distribution of source and target do-
main features over Φs×Φt, and (s, t), (s′, t′) are distributed
independently according to the joint distribution.

Given a sample
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of the joint distribution Prst, HSIC can be estimated using
the kernel matrices (Song 2007):
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1The “profile” of a feature is defined as its feature value on all

instances of a dataset.

Similarly, we can estimate the dependencies across the
domains (Xs,Ys) and (Xt,Yt) by the corresponding ker-
nel matrices Ms, Ls, Mt and Lt computed by the samples
S, T (in (1) and (2)) from the joint distributions Pr(s)xy and
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Estimating dependencies by HSIC is a crucial component
in our learning framework, which requires estimating depen-
dencies for the three pairs of domains, namely the source in-
put and output domain (Xs,Ys), the target input and output
domain (Xt,Yt), and the source and target feature domain
(Φs,Φt)

Transfer Learning by Structural Analogy
The joint distributions Pr(s)xy and Pr(t)xy are well characterized
by the samples S and T. So estimating HSIC for (Xs,Ys)
and (Xt,Yt) can be carried out straightforwardly. Howev-
er we have no direct sample from the joint distribution Prst
because the samples in (3) and (4), i.e. the features from dif-
ferent domains, are not associated. Actually how to associate
the features depends on the structures of each domain, and
we therefore name the cross-domain dependency as “struc-
tural dependency”, which can only be determined if we un-
derstand the structural analogy across the domains.

For a given association of the source and target domain
features, as in (6), structural dependency between the do-
mains can be estimated by (7). That means, by maximizing
the estimated structural dependency, we find the “correct”
association of the features from both domains, i.e. we make
the analogy across domains.

Formally, given W ≤ min(S, T ), let σs and σt be injec-
tives from {1, · · · ,W} to {1, · · · , S} and {1, · · · , T} respec-
tively, we could describe the learning problem as selecting a
ordered set of features
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from both the source and the target learning task, such
that the objective function combining dependencies between
(Xs,Ys), (Xt,Yt) and (Φs,Φt) is maximized:

(σ̂s, σ̂t) = argmax
σs,σt

[D(Fs, Ft, F)

+λsD(Hs, Gs, S) + λtD(Ht, Gt, T)] (9)
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pseudo-sample from the joint distribution Prst constructed
by associating the selected features from both domains. All
the three terms in (9) are estimated by the estimator (7) with
kernel matrices Ks, Kt, Ms, Ls, Mt and Lt computed us-
ing the selected features in (8). λs and λt are free parameters
controlling the relative influences the terms.

After determining σs and σt, each sample of the source
domain can be “translated” into a sample for the target do-
main by treating the features f (s)

σs(i)
and f

(t)
σt(i)

(analogues) as



equivalent. Then standard supervised learning methods can
be applied to the expanded training set of the target domain.
Computing the structural similarity between the domains al-
so becomes straightforward. One can directly measure the
structural similarity by D(Fs, Ft, F).

It is noticeable that the above described learning paradig-
m bears some key features that can be viewed as prototype
models of the components in human’s learning by analogy:

1. The learner knows the key concepts in a familiar case
(source domain).

2. The learner identifies key concepts in a new problem (tar-
get domain) by both analyzing the new problem itself and
making the analogy from a previous familiar case base on
their structural similarities.

3. The learner gains better understanding of the new problem
thanks to the knowledge transferred from the previous fa-
miliar case.

Algorithm
We have presented the general framework of learning by
structural analogy. However, finding the globally optimal so-
lution to the optimization problem in (9) is not straightfor-
ward. In this paper, we present a simple algorithm to im-
plement the framework by finding a local minimum of the
objective.

Our algorithm first selects features from both domains by
maximizing D(Hs, Gs, S) and D(Ht, Gt, T) respective-
ly, without considering relations between the two domains.
This is achieved by the forward selection method in (Song
2007).

Then we find the analogy by sorting the selected features
for the source domain to maximize D(Fs, Ft, F). One ad-
vantage of this implementation is that we actually do not
have to determine the weights λs and λt as the correspond-
ing terms are maximized in separate procedures.

Then, sorting the selected features of the source domain to
“make the analogy” is achieved by the algorithm proposed in
(Quadrianto 2008). Specifically, we aim to find the optimal
permutation π∗ from the permutation group ΠW :

π∗ = arg max
π∈ΠW

tr K̄tπ⊤K̄sπ (10)

where K̄t = HKtH, K̄s = HKsH and Hij = δij −W−1.
Note that a biased HSIC estimator (W − 1)−2tr K̄tπ⊤K̄sπ
is used here instead of the unbiased estimator (7). Setting
the diagonal elements in the kernel matrices to zero is rec-
ommended for sparse representations (such as bag-of-words
for documents) which give rise to dominant signal on the
diagonal. The optimization problem is solved iteratively by:

πi+1 = (1− λ)πi + λ arg max
π∈ΠW

[
tr K̄tπ⊤K̄sπi

]
(11)

Since tr K̄tπ⊤K̄sπi = tr K̄sπiK̄
tπ⊤, we end up solv-

ing a linear assignment problem (LAP) with the cost matrix
−K̄sπiK̄

t. A very efficient solver of LAP can be found in
(Cao 2008).

The whole procedure is formalized in Algorithm 1.

Algorithm 1 Transfer Learning by Structural Analogy
Input: S and T.
Output: {f (s)

σs(1)
, f

(s)
σs(2)

, · · · , f (s)
σs(W )}

and {f (t)
σt(1)

, f
(t)
σt(2)

, · · · , f (t)
σt(W )}.

Feature selection in source domain using (Song 2007)
Feature selection in target domain using (Song 2007)
Compute K̄s and K̄t with all selected features together;
Initialize permutation matrix π0;
for i = 0 to MAX− 1 do

Compute cost matrix −K̄sπi−1K̄
t;

Solve the LAP with the cost matrix;
Update permutation matrix as in (11);
if converged then

break;
end if

end for

Experiments
Ohsumed Dataset
To validate our approach we conducted extensive exper-
iments on the Ohsumed (Hersh 1994) text dataset2. The
Ohsumed dataset consists of documents on medical issues
covering 23 topics (classes) with ground truth labels on each
document. The preprocessed corpus is bag-of-words data
on a vocabulary of 30,689 unique words (features), and the
number of documents per class ranges from 427 to 23,888.

We constructed a series of learning tasks from the dataset
and attempted transfer learning between all pairs of tasks.
Specifically, to construct one learning task, we selected a
pair of classes (among the 23) with roughly the same num-
ber of documents (ratio between 0.9 and 1.1). One class
is treated as positive examples and the other as negative.
This resulted in 12 learning tasks. For each learning task,
we selected 10 features (words) using (Song 2007). As these
features were selected independently for each learning task,
there was almost no shared features between different learn-
ing tasks, which makes it impossible to transferring knowl-
edge using traditional transfer learning methods.

The 12 learning tasks give rise to 12×11
2 = 66 “task pairs”

and we attempted transfer learning in all of them. For each
task pair, we compare our method and two baselines de-
scribed below:
1. Transfer by Analogy (ours): We train a SVM classifi-

er on the source learning task; find the structural analo-
gy between the features; apply the classifier to the target
learning task using the feature correspondences indicated
by the analogy. Performance is measured by the classifi-
cation accuracy in the target learning task.

2. Independent Sorting: We sort the source (and target)
learning task features according to their “relevance” in
the learning task itself. The relevance is measured by H-
SIC between the feature and the label. And the correspon-
dences between the features are established by their ranks

2The dataset is downloaded from P.V. Gehler’s page
http://www.kyb.mpg.de/bs/people/pgehler/rap/index.html



Table 1: Experimental results on 66 transfer learning pairs. Columns: ANAL.: transfer by analogy (ours). SORT: feature
correspondence from independent sorting. RAND: average performance over 20 random permutations. PAIR: The transfer
learning scenarios. For example, in 1|8 → 2|15, the source learning task is to distinguish between class 1 and class 8, the target
learning task is to distinguish between class 2 and class 15, according to the original class ID in the Ohsumed dataset.

PAIR ANAL. SORT RAND PAIR ANAL. SORT RAND PAIR ANAL. SORT RAND
1|8 → 1|12 60.3% 81.4% 64.1% 1|8 → 2|15 75.0% 72.2% 60.1% 1|8 → 2|16 54.0% 74.7% 68.8%
1|8 → 4|14 68.2% 56.2% 62.1% 1|8 → 5|13 66.5% 51.1% 58.3% 1|8 → 5|17 62.5% 50.3% 55.5%
1|8 → 7|22 85.2% 85.4% 65.5% 1|8 → 8|12 65.8% 69.5% 60.5% 1|8 → 11|16 72.7% 56.7% 56.9%
1|8 → 13|17 54.3% 54.3% 58.7% 1|8 → 20|21 71.7% 50.1% 58.9% 1|12 → 2|15 74.6% 69.1% 67.2%
1|12 → 2|16 52.9% 63.5% 69.5% 1|12 → 4|14 79.1% 62.7% 58.3% 1|12 → 5|13 58.3% 50.3% 57.5%
1|12 → 5|17 53.0% 64.6% 54.8% 1|12 → 7|22 54.0% 71.8% 61.0% 1|12 → 8|12 55.4% 55.0% 58.6%
1|12 → 11|16 59.3% 50.9% 60.7% 1|12 → 13|17 61.4% 58.1% 57.6% 1|12 → 20|21 73.8% 60.1% 66.0%
2|15 → 2|16 77.3% 81.1% 66.5% 2|15 → 4|14 62.0% 59.0% 60.7% 2|15 → 5|13 64.4% 58.1% 59.8%
2|15 → 5|17 54.8% 51.2% 54.7% 2|15 → 7|22 70.9% 59.0% 58.2% 2|15 → 8|12 53.7% 62.4% 59.2%
2|15 → 11|16 68.1% 73.6% 62.2% 2|15 → 13|17 50.4% 67.1% 58.6% 2|15 → 20|21 75.2% 65.7% 64.4%
2|16 → 4|14 57.3% 67.4% 55.1% 2|16 → 5|13 70.4% 71.0% 58.3% 2|16 → 5|17 50.2% 51.4% 54.0%
2|16 → 7|22 69.1% 64.6% 65.6% 2|16 → 8|12 80.8% 55.2% 61.6% 2|16 → 11|16 53.7% 53.4% 54.3%
2|16 → 13|17 61.5% 60.0% 57.0% 2|16 → 20|21 62.3% 68.7% 60.2% 4|14 → 5|13 71.2% 50.5% 58.2%
4|14 → 5|17 59.5% 52.6% 54.0% 4|14 → 7|22 85.7% 57.0% 63.0% 4|14 → 8|12 83.4% 53.5% 62.2%
4|14 → 11|16 71.7% 52.6% 56.4% 4|14 → 13|17 76.8% 52.6% 56.4% 4|14 → 20|21 76.0% 64.3% 58.4%
5|13 → 5|17 64.6% 63.2% 57.1% 5|13 → 7|22 86.2% 57.2% 64.0% 5|13 → 8|12 76.9% 50.6% 57.3%
5|13 → 11|16 70.6% 64.2% 56.2% 5|13 → 13|17 68.8% 52.2% 57.0% 5|13 → 20|21 76.5% 50.1% 59.8%
5|17 → 7|22 69.9% 54.3% 64.9% 5|17 → 8|12 61.3% 64.8% 58.6% 5|17 → 11|16 61.8% 60.0% 57.8%
5|17 → 13|17 61.5% 59.6% 57.2% 5|17 → 20|21 69.4% 62.1% 61.2% 7|22 → 8|12 67.5% 71.5% 58.3%
7|22 → 11|16 58.0% 54.8% 56.7% 7|22 → 13|17 67.9% 56.5% 58.3% 7|22 → 20|21 73.6% 52.4% 60.2%
8|12 → 11|16 71.0% 50.4% 58.5% 8|12 → 13|17 62.5% 56.5% 59.0% 8|12 → 20|21 74.1% 56.1% 59.2%
11|16 → 13|17 78.8% 58.1% 61.4% 11|16 → 20|21 58.8% 68.8% 59.8% 13|17 → 20|21 52.8% 52.1% 61.5%

in their own learning tasks. Note that this baseline method
uses even more information (the labels) than our “transfer
by analogy” method.

3. Random Permutation: We randomly permutate the fea-
tures and apply the classifier trained in the source task to
the target task using the random correspondence. Perfor-
mance is average over 20 random permutations.
Target task performances obtained in all the 66 task pairs

are shown in Table 1, and some statistics are shown in Ta-
ble 2. Note that when applying the classifier trained in source
task to the target task, the identity of positive/negative class
in the target task is not identifiable as we do not use any tar-
get domain label. And because all learning tasks have rough-
ly balanced positive and negative examples, getting an ac-
curacy of 20% is equivalent to 80% as they both indicate
a strong correlation between the classifier output and the la-
bel. Therefore the reported target domain accuracy is always
larger than or equal to 50% (with the worst case 50% indi-
cating that the classifier output and the label are independen-
t). From the results we can conclude that, it is statistically
significant that the structural analogy approach successfully
transfers knowledge between learning tasks with completely
different representations (features). And the learner benefits
most from the source learning task if the appropriate analogy
is made.

Conclusion
In this paper we addressed the problem of transfer learning
by structural analogy between two domains with completely

Table 2: Some statistics over the 66 transfer learning pairs.
Rows follow the same explanation as in columns of Table 1.
Columns: Best Count: number of transfer learning pairs
(out of 66) for which the current method outperforms the
other two. Ave. Accuracy: average target task accuracy a-
mong all 66 transfer learning pairs. Margin: The margin by
which the current method beats the other two methods av-
eraged among all pairs counted in “Best Count” (because in
practice we only care about the performance when “positive
transfer” occurs).

METHODS BEST COUNT AVE. ACCURACY MARGIN
ANALOGY 43 / 66 66.6% 9.7%

SORT 16 / 66 60.2% 6.4%
RAND 7 / 66 59.8% 3.9%

different low-level representations. By making use of statis-
tical tools, we tried to bridge transfer learning and the old
paradigm of learning by analogy, and extend them to more
general settings. The current work and our future research
aim at automatically making structural analogies and deter-
mine the structural similarities with as few prior knowledge
and background restrictions as possible.
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