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Abstract Memory-based collaborative filtering (CF) aims at predicting the rating
of a certain item for a particular user based on the previous ratings from similar users
and/or similar items. Previous studies in finding similar users and items have sev-
eral drawbacks. First, they are based on user-defined similarity measurements, such
as Pearson Correlation Coefficient (PCC) or Vector Space Similarity (VSS), which
are, for the most part, not adaptive and optimized for specific applications and data.
Second, these similarity measures are restricted to symmetric ones such that the sim-
ilarity between A and B is the same as that for B and A, although symmetry may not
always hold in many real world applications. Third, they typically treat the similarity
functions between users and functions between items separately. However, in reality,
the similarities between users and between items are inter-related. In this paper, we
propose a novel unified model for users and items, known as Similarity Learning
based Collaborative Filtering (SLCF) , based on a novel adaptive bidirectional asym-
metric similarity measurement. Our proposed model automatically learns asymmetric
similarities between users and items at the same time through matrix factorization.

Responsible editor: Tao Li, Chris Ding and Fei Wang.

B. Cao (B) · Q. Yang
The Hong Kong University of Science and Technology, Kowloon, Hong Kong
e-mail: caobin@cs.ust.hk

Q. Yang
e-mail: qyang@cs.ust.hk

J.-T. Sun · Z. Chen
Microsoft Research Asia, 49 Zhichun Road, Beijing, China
e-mail: jtsun@microsoft.com

Z. Chen
e-mail: zhengc@microsoft.com

123



394 B. Cao et al.

Theoretical analysis shows that our model is a novel generalization of singular value
decomposition (SVD). We show that, once the similarity relation is learned, it can be
used flexibly in many ways for rating prediction. To take full advantage of the model,
we propose several strategies to make the best use of the proposed similarity function
for rating prediction. The similarity can be used either to improve the memory-based
approaches or directly in a model based CF approaches. In addition, we also pro-
pose an online version of the rating prediction method to incorporate new users and
new items. We evaluate SLCF using three benchmark datasets, including MovieLens,
EachMovie and Netflix, through which we show that our methods can outperform
many state-of-the-art baselines.

Keywords Collaborative filtering · Matrix factorization · Similarity learning

1 Introduction

With the explosive growth of the Web, personalized online services have become
increasingly popular ranging from providing search results to giving product recom-
mendations. Collaborative filtering (CF) aims at predicting the preference of items for
online users based on the items previously rated by similar users. Examples of suc-
cessful applications of CF include recommending products at Amazon.com,1 movies
by Netflix,2 etc. Among the CF methods, memory-based methods are both simple
and effective (Adomavicius and Tuzhilin 2005). They usually fall into two classes:
user-based approaches (Breese et al. 1998; Herlocker et al. 1999) and item-based
approaches (Sarwar et al. 2001; Deshpande and Karypis 2004). To predict a rating
for an item for a given user, user-based methods find the ratings of similar users for
prediction, while item-based methods rely on the ratings on similar items.

Despite much successes so far, memory-based methods suffer from several draw-
backs. First, missing data is a major problem in CF, causing the so-called sparse-
ness problem in CF (Xue et al. 2005). This is because there are usually millions
of users and items in existence. However, a single user can only rate a relatively
small number of items. Besides, the rating counts of items often follow long tail
distributions (Park and Tuzhilin 2008), such that items in a long tail often have
fewer ratings. The sparseness problem makes it difficult to find similar users or
items accurately, especially for users and items who belong to the long tails. Sec-
ond, in memory-based approaches, similar users and items are found by calculat-
ing a certain similarity measurement. Some well-known methods include Pearson
Correlation Coefficient (PCC) (Resnick et al. 1994) and Vector Space Similarity
(VSS) (Breese et al. 1998). However, being general methods, these measurements
are often not adaptive to the application domains and particular data sets. These
functions are often fixed in the sense that once given, they are not changeable; for
example, we do not know when to switch from PCC to VSS in a single data set.
To cope with these problems, many variations of similarity measurements, including

1 http://www.amazon.com.
2 http://www.netflix.com.
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Learning bidirectional asymmetric similarity 395

weighting approaches, combination measures and rating normalization methods have
been developed (Herlocker et al. 2002). Although these measurements can capture
the correlation between users or items to some extent, the similarity functions have
fixed forms and are still not able to adapt to the underlying data (Herlocker et al.
2002). Third, these similarity measurements are restricted to be symmetric, so that
the structure relation between users or items is a symmetric relation. The symmetry
assumption can cause problems in many real world applications. For example, some
users in a social network may have more impact than others. When they recommend
items, the effect to their neighbors are much larger than the other way around. Finally,
many previous studies in CF consider the similarities between users and items sep-
arately. However, similarities between users and items in reality are inter-dependent
and can be used to reinforce each other. Therefore, it would be more appropriate if the
similarities between users and items are jointly learned automatically. Our research is
aimed at address all of the above shortcomings in a unified framework.

In this paper, we make two connected contributions. The first contribution is in sim-
ilarity function learning. We propose a unified model to learn asymmetric similarities
for items and users at the same time. Through novel reformulations of classic mem-
ory-based approaches, we first propose an one-directional similarity learning model
which can learn either user-side similarity or item-side similarity. We further extend
the one-directional learning to bi-directional similarity learning which learns user-
side similarity and item-side similarity at the same time. We show that the similarity
learning problems can be formulated as problems of matrix factorization with miss-
ing values. Our second contribution is a collection of algorithms that use the learned
similarity functions for CF, in what we call similarity-learning collaborative filter-
ing (SLCF). We consider two versions of SLCFs, the first improves the traditional
memory-based approaches (M-SLCF), and second is based on matrix reconstruction
(R-SLCF). We also propose an online version of the rating prediction method R-SLCF
to allow new users and new items to be included in our model incrementally.

There are several advantages of our approaches. First, the similarity between two
users is learned based on the global consistency of all ratings rather than their rat-
ings only. Their similarity can be calculated even when they do not share any ratings.
Therefore, the sparseness problem can be addressed satisfactorily. Second, the learned
similarity function can be adaptive according to a number of real-world conditions.
For example, the learned similarity would change if the degree of the sparseness of
observed ratings changes. Third, we allow the similarity to be asymmetric. This can be
achieved by allowing the similarity matrix to be asymmetric. Finally, we learn the sim-
ilarity among users as well as items at the same time. In fact, the similarities between
users and items can be regarded as being influenced by some latent factors. Theoretical
analysis shows that our model corresponds to a novel generalization of the singular
value decomposition (SVD) model, thus allowing a number of nice theoretical proper-
ties to be inherited from SVD research. We evaluate our model using three widely used
benchmark datasets, including the MovieLens, EachMovie and Netflix data. We show
that show that our methods outperform many of the well known baselines significantly
on the tested benchmark datasets.

This paper is an extended version of our earlier work (Cao et al. 2008). In this
paper, we make several major extensions. First, we extend the learning methods from

123



396 B. Cao et al.

symmetric similarity functions to the more general asymmetric functions. Then, we
provide a more rigorous theoretical treatment of our learning algorithms and related
computational properties. Finally, we introduce more extensive experimental results
to validate our algorithms.

The remainder of the paper is organized as follows. In Sect. 2, we define the nota-
tions and the problems. In Sect. 3, we review some related works to our method and
revisit the memory-based methods and SVD-based methods. Then, we introduce sim-
ilarity learning based methods (SLCF) in Sect. 4. We discuss the relation between
SLCF models and several matrix factorization models in Sect. 5. In Sect. 6, we dis-
cuss several rating prediction methods based on the learned similarity. We present our
experiments in Sect. 7 and make conclusions in Sect. 8.

2 Notation and problem definition

In this section, we define the notations and give a formal statement of our problem.

− R: We denote the ground truth rating matrix by R, with rows representing users
and columns representing items. We use rui to denote the rating value corre-
sponding to a user u and an item i .

− X : We use X to denote the matrix with observed elements in R. Since only a part
of the elements is known, X is sparse. We will use zero to denote the unobserved
entries.

− Y : We use Y to denote the sparse matrix with elements to be predicted.
− IX : We use IX to denote the indicator matrix of sparse matrix X , whose element

(IX )i j is 1 if the Xi j is observed and 0 otherwise.

Both X and Y are subsets of rating matrix R. From the above definitions, we have
X = IX � R and Y = IY � R. We use � to denote elementwise products.

Problem definition: Given a matrix X that is a subset of rating matrix R, we predict
the rating scores in another of R’s subset Y based on X .

3 Related work

In the past, many researchers have explored memory-based approaches to CF, where
many of them can be regarded as aiming at improving the similarity measurement
(Breese et al. 1998; Delgado 1999; Herlocker et al. 2002; Ma et al. 2007). A draw-
back of these methods is that these similarity measurements were not adaptive to
different datasets or contain some parameters needed to be tuned but not learned.
Some researchers considered how to utilize the user-based and item-based approaches
together (Wang et al. 2006; Ma et al. 2007). Wang et al. (2006) proposed a probabi-
listic fusion model to combine the user-based method with the item-based method.
They found that fusing all the ratings in the user–item matrix can help solve the data
sparseness problem. A drawback is that they estimated the user similarities and item
similarities independently and thus omit the relationship between these similarities.
Ma et al. (2007) proposed a method to fill in the missing values before making predic-
tions, which had the drawback similar to that in Wang et al. (2006). Jin et al. (2004)

123



Learning bidirectional asymmetric similarity 397

developed a method for similarity learning, where an automatic weighting scheme
for items was designed. Their method aimed at finding the optimal weights that could
form a clustered distribution for user vectors in an item space by bringing similar users
closer and dissimilar users farther away. However, they only considered the similarity
weights for items.

Model based approaches rely on using a statistical model to make predictions. A
typical model-based approach is the low-rank matrix approximation based approach
(Vozalis and Margaritis 2007; Brand 2003; Zhang et al. 2005), where CF is viewed as
a missing value prediction problem for a rating matrix, which can be solved through
SVD. Such SVD based approaches can be regarded as latent factor models where
the eigenvectors correspond to the latent factors. Users and items are mapped into a
low-dimensional space formed by the learned latent factors. Other similar approaches
include Hofmann (2004) and Canny (2002). A drawback of these models is that they
all use the same latent factors to model users and items. An underlying assumption is
that the numbers of latent factors that influence users and items are the same. Recog-
nizing that a user may have diverse interests and an item may have multiple functions,
Si and Jin (2003) proposed a flexible mixture model for CF. They are among the first
to relax the restriction that users and items fall into the same classes. A drawback is
that their probabilistic model regarded the ratings as discrete values. Another draw-
back is that they ignored the relation between ratings. A consequence is that they did
not consider rating scores of 3 and 2 to be closer to each other than the rating scores
of 5 and 1.

3.1 Memory-based CF

In this section, we review memory-based and SVD-based approaches for CF.
User-based CF predicts a target user u’s interest in a test item m based on rating

information from similar users.

rum =
∑

v∈Cu

suvrvm for rum ∈ Y (1)

where rum represents the rating for an item m from a user u. Cu is the set of near-
est neighbors of a user u. A user v has an influence weight suv on u, which can
be calculated by normalizing the PCC (Resnick et al. 1994). In other words, suv =
PCC(u, v)/

∑
w∈Cu

PCC(u, w), where

PCC(u, v) =
∑

i∈Ru∩Rv
(rui − ru) · (rvi − rv)√∑

i∈Ru∩Rv
(rui − ru)2 ·

√∑
i∈Ru∩Rv

(rvi − rv)2
(2)
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An alternative similarity measure is the VSS model (Breese et al. 1998). Based on this
similarity model, we have suv = V SS(u, v)/

∑
w∈Cu

V SS(u, w), where

V SS(u, v) =
∑

i∈Ru∩Rv
rui · rvi√∑

i∈Ru∩Rv
r2

ui ·
√∑

i∈Ru∩Rv
r2
vi

(3)

where Ru is the set of items rated by user u.
Similar to the user-based approach, item-based predictions can be made based on

the following relation:

rum =
∑

n∈Cm

smnrun for rum ∈ Y (4)

where Cm is the set of nearest neighbors of the item m, within which the item n has
an influence weight smn on m. smn can also be calculated using PCC or VSS as in the
above equations.

3.2 Model-based CF using low-rank matrix approximation

SVD is a matrix analysis method used by many researchers for CF (Vozalis and
Margaritis 2007; Brand 2003; Zhang et al. 2005). SVD seeks a low-ranked matrix
that minimizes the sum-squared distance to the rating matrix R. Since most of the
entries in R are missing, the sum-squared distance is minimized with respect to the
partially observed entries of the rating matrix, which is X . Therefore the loss function
to optimize is (Funk 2006; Wu 2007)

l = ||IX � (X − U V T)||2F + α(||U ||2F + ||V ||2F ) (5)

where � stands for the element-wise multiplication, || · ||2F denotes the Frobenius
norm, and IX is the indicator function, whose element IX (i, j) can take on a value of
1 if the user i rated the movie j , and 0 otherwise. The parameter α controls the weight
of the regularization term. In addition, U is a lower dimensional representation for
users and V is a lower dimensional representation for items. The diagonal matrix �

in a traditional SVD model is merged into U and V for simplicity. The last term is a
regularization term that prevents the model from overfitting. Unobserved entries Y are
then predicted by Y = IY � (U V T). The regularized SVD method has been widely
used as a key component in the competition of Netflix Prize (Funk 2006; Wu 2007).

Another adaptation of the SVD-based method is to use the EM algorithm to solve
the missing value problem (Zhang et al. 2005). The basic idea is to iteratively esti-
mate the missing ratings and conduct SVD decomposition. This method may be time
consuming for a large matrix.
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4 Similarity metric learning with matrix factorization

We present our main contributions in this section. To begin with, we formulate mem-
ory-based approaches in matrix form and based on the form, we can naturally extend
them to one-directional similarity learning which is defined in the following section.

4.1 One-directional similarity learning

Memory-based CF methods are usually distinguished from model-based approaches
and regarded as heuristic-based approaches (Adomavicius and Tuzhilin 2005). In a
user perspective, a user-based approach assumes that similar users tend to have sim-
ilar ratings on the same items. From the perspective of items, item-based approaches
assume that users have similar ratings on the similar items. Although these ideas are
intuitive, the concept of “similarity” is crucial and nontrivial to define.

Equation 1 presents the user-based approach. In a matrix form, it can be stated as

Y = IY � (Ŝ1 X) (6)

where Ŝ1 denotes the similarity matrix of users with Ŝ1(u, v) defined by

Ŝ1(u, v) =
{

suv, v ∈ Cu , (7)

0, otherwise. (7′)

where Cu is the set of nearest neighbors of a user u.
Similar to the user-based approach, item-based methods (Eq. 4) can be stated in the

matrix form as

Y = IY � (X Ŝ2) (8)

where Ŝ2 denotes the similarity matrix of the column vectors corresponding to items,
with Ŝ2(m, n) defined by

Ŝ2(m, n) =
{

smn, n ∈ Cm , (9)

0, otherwise. (9′)

where Cm is the set of nearest neighbors of item m.
Noticing that X and Y are both subsets of the rating matrix R, for user based

approach, we have

(IY � R) = IY � (Ŝ1(IX � R)) (10)

For the item-based approach, we have

(IY � R) = IY � ((IX � R)Ŝ2) (11)
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Equations 10 and 11 can actually be seen as matrix reconstruction equations with
respect to R. By replacing Y on the left side of the equation with X , we can obtain
matrix factorization equations for similarity matrix learning.

Finally, we can obtain a model for similarity learning in the user based approach

(IX � R) = IX � (S1(IX � R)) (12)

The item based approach can be easily derived in the same way, which is omitted here.
In the above formulas, the similarity matrices S1 and S2 are no longer predefined as

in previous memory-based approaches. Instead, they can be learned from the observed
data X . This is one of our key contributions in this paper. Note that the above model is
a one-directional similarity learning model; in the next section, we extend the model
to bi-directional.

4.2 Bi-directional similarity learning

As stated earlier, one-directional models treat users and items separately. In this sec-
tion, we extend the learning problem to a bi-directional similarity learning problem
that can learn the row and column similarities together. Recent studies (Wang et al.
2006; Ma et al. 2007) have found that the combination of user-based and item-based
approaches can indeed boost the performance of CF. However, these recently proposed
methods still conduct user-based prediction and item-based prediction separately. In
this section, we show how to integrate them together to take the advantages of both
methods.

Based on the previous subsection, a natural way to combine user-based and item-
based approach can be stated as follows:

rum =
∑

v,n

suvsmnrvn for rum ∈ Y (13)

In this formula, we extend the neighborhood range to all users and all items, indicating
that all ratings are interconnected. In this way, the prediction for a target user and item
can benefit from ratings of other users and items, and vice versa.

The above equation can be re-written in a matrix form

Y = S1 X S2 (14)

where S1 and S2 are also variables we need to learn. The matrix S1 is a row (user) sim-
ilarity matrix and S2 is a column (item) similarity matrix. Similar to one-directional
similarity learning, we have a similarity learning problem in matrix factorization form
stated as:

(IX � R) = IX � (S1(IX � R)S2) (15)
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Learning bidirectional asymmetric similarity 401

The above models are free-formed, which contain too many variables to learn. In
the following section, we reduce the number of variables by requiring that the matrix
be of low ranks.

4.3 Low-rank asymmetric similarity matrix

To reduce the number of parameters in a similarity matrix Si (i = 1, 2), we can require
Si to be low-rank matrix and factorize Si with S1 = U1U T

2 and S2 = V1V T
2 , where Ui

are rank-KU matrices and Vi are rank-KV matrices with KU denoting the number of
latent factors for users and KV be the number of latent factors for items.

If we let U1 = U2 and V1 = V2, the similarity matrices S1 and S2 are symmetric.
Then, we have a factorization problem with missing values in a one-directional case:

(IX � R) ≈ IX � (UU T(IX � R)) (16)

In bi-directional cases, we have

(IX � R) ≈ IX � (UU T(IX � R)V V T) (17)

where we use ≈ because the exact factorization may not exist. We allow the “simi-
larity matrix” to have negative value because negative correlation between users do
exist in real word problems. The symmetry assumption can be used to decrease the
number of variables that we need to learn. As can be seen in Sect. 3.1, we have
PCC(u, v) = PCC(v, u) and V SS(u, v) = V SS(v, u) according to the definitions.
Thus, the functions to calculate PCC and VSS are symmetric. This indicates that when
considering the user relation (or item relation) as a graph, the graph is undirected and
the influence of the user u on the user v is the same as that of the user v on the user
u. This strong assumption may not be true in the real world. For example, some users
in a social network may have more impact than others. When they recommend some
items, their influence on their neighbors is much larger than vice versa.

The above consideration motivates us to consider a asymmetric similarity matrix
model. We can naturally extend the above similarity learning-based model to an asym-
metric model by requiring S to be asymmetric. With a free form low-rank similarity
matrix, the asymmetric one-directional matrix factorization model becomes

(IX � R) ≈ IX � (U V T(IX � R)) (18)

Likewise, the bi-directional matrix factorization model becomes

(IX � R) ≈ IX � (U1U T
2 (IX � R)V1V T

2 ) (19)

The asymmetric similarity learning formulation is more adaptive with the symmetric
similarity learning problem regarded as a special case of the asymmetric similarity
learning problem.
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4.4 Algorithms for similarity learning

The approximate factorization problem can be converted to a minimization problem
of the norm of the difference between the original matrix R and the approximation
matrix, which we denote R′. We use the Frobenius norm which has the advantage of
being easy to be optimized, but this does not prevent the approximation models to
generalize to other loss functions as in Dhillon and Sra (2005).

The regularized matrix factorization (Eq. 5) comes from the work on maximum
margin matrix factorization (Srebro et al. 2005). The last term in Eq. 5 is a regular-
ization term which prevents the model from overfitting (Srebro et al. 2005). We can
encode this term in our model. Now the loss function we are going to minimize is

l = ||E ||2F + α
∑

i

(||Ui ||2F + ||Vi ||2F ) (20)

where E is the difference between the original matrix and the approximation matrix.
We have four types of approximation factorization with the dimensions of one or
bi-directional and symmetric or asymmetric. The loss functions of the corresponding
four types are listed below.

− For the one-directional symmetric case, E = IX � R − IX � (UU T R) and the
loss is

l = ||IX � R − IX � (UU T(IX � R))||2F + α||U ||2F (21)

− For the one-directional asymmetric case E = IX � R − IX � (U V T R) and the
loss is

l = ||IX � R − IX � (U V T(IX � R))||2F + α(||U ||2F + ||V ||2F ) (22)

− For the bi-directional symmetric case E = IX � (X − UU T X V V T) and the
loss is

l = ||IX � R − IX � (UU T(IX � R)V V T)||2F + α(||U ||2F + ||V ||2F ) (23)

− For the bi-directional asymmetric case E = IX � (X − U1U T
2 X V1V T

2 ) and the
loss is

l = ||IX � R − IX � (U1U T
2 (IX � R)V1V T

2 )||2F
+α(||U1||2F + ||U2||2F + ||V1||2F + ||V2||2F ) (24)

We use gradient-descent approaches to solve the minimization problem. Many gra-
dient-descent based algorithms have been developed for optimization problems such
as conjugate gradient (Press et al. 1992) and SMD (Schraudolph 1999). In this paper
we use the adaptive-gain gradient decedent algorithm (Almeida et al. 1998) to mini-
mize the loss function, which is described in Algorithm 1. The advantage of adaptive
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Fig. 1 Derivatives for the loss functions (21)–(24)

gain-gradient decedent algorithm includes easy implementation and fast convergence
speed.

A key component of gradient based optimization algorithms is to compute the gra-
dients. Unlike EM-style algorithms, matrix based algorithms have the advantages of
elegant formulation and easy implementation. We can derive the derivatives of the
norm in Fig. 1.

We notice that, although the similarity matrices S1 and S2 are large and dense, we
can avoid computing them in the algorithm by carefully choosing the order of matrix
multiplication.

Theorem 1 The time complexity of computing the derivative is O(nnz(X)K +N K 2),
where nnz(X) is the number of nonzero elements in X and K = max{KU , KV }. N is
the maximum of number of users and items.

Proof To compute the term EV V T XTU , we can choose the order of product com-
putations to always conduct the product of sparse matrix to a low-rank matrix or two
low-rank matrices. For example, ((EV )((V T XT)U )). For each matrix production,
the complexity is O(nnz(X)k + N K 2). Therefore, the overall time complexity of
calculating the derivatives is O(nnz(X)k + N K 2). ��
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Algorithm 1 Bi-directional asymmetric similarity learning using adaptive gain
Input: training data X , parameters μ, KU , KV and T
Output: U1, V1, U2, V2
Initialization: Randomly initialize U and V
FOR t = 1 TO T :

Update U1: U (t+1)
1 = U (t)

1 − η
(t)
U1

� ∂l
∂U

(t)
1

Update U2: U (t+1)
2 = U (t)

2 − η
(t)
U2

� ∂l
∂U2

(t)

Update V1: V (t+1)
1 = V (t)

1 − η
(t)
V1

� ∂l
∂V1

(t)

Update V2: V (t+1)
2 = V (t)

2 − η
(t)
V2

� ∂l
∂V2

(t)

Update ηU1 :

η
(t)
U1

= η
(t−1)
U1

· max( 1
2 , 1 + μ · η

(t)
U1

� ∂l
∂U1

(t−1) � ∂l
∂U1

(t)
)

Update ηU2 :

η
(t)
U2

= η
(t−1)
U2

· max( 1
2 , 1 + μ · η

(t)
U2

� ∂l
∂U2

(t−1) � ∂l
∂U2

(t)
)

Update ηV1 :

η
(t)
V1

= η
(t−1)
V1

· max( 1
2 , 1 + μ · η

(t)
V1

� ∂l
∂V1

(t−1) � ∂l
∂V1

(t)
)

Update ηV2 :

η
(t)
V2

= η
(t−1)
V2

· max( 1
2 , 1 + μ · η

(t)
V2

� ∂l
∂V2

(t−1) � ∂l
∂V2

(t)
)

5 Relation to other MF models

In this section, we discuss the relation between our model and other matrix factor-
ization models. When the similarity matrix is of full rank, the solution to Eq. 14 is
trivial but not useful since any U and V that can satisfy UU T = I and V V T = I is a
solution. However, when the similarity matrix has low rank, the solution is not trivial
anymore and has deep connections to the SVD. With the low rank assumption, the
learned similarities between users as well as items can be regarded as being influenced
by some latent factors. In contrast to some previous latent-factor models, such as SVD
(Zhang et al. 2005) and Aspect Models (Hofmann 2004), our model is more flexible
in that it does not require the number of factors underlying the user space and the item
space to be the same.

Under the special case when these factors are the same, the following theorem
relates the bi-directional symmetric SLCF model and SVD.

Theorem 2 If we disregard the missing data and require that the ranks of U and V
are the same, SVD find a solution to X = UU T X V V T.

Proof Suppose that X = U�V T. By plugging it into UU T X V V T, we obtain
UU T X V V T = UU TU�V TV V T = U�V T = X . ��

The equivalence of bi-directional SLCF model and SVD models can be established
under the condition that there are no missing values and U and V have equal ranks.
However, when there are missing values, the two models are not equivalent anymore
even when we have KU = KV = K . We will see this further in the experimental
section again.

From the dimension-reduction point of view, SVD seeks a K dimensional space
for row vectors and column vectors. However, in our model, we look for two different
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spaces for row vectors and column vectors. Therefore, our model can also be regarded
as bi-dimensional reduction-based method for cases when row vectors and column
vectors with different dimensions. We can also find the relationship between the two
spaces, as the two sets of bases satisfy the following equation:

U · B1 = B2 · V (25)

where the users’ basis B1 = U T X V V T and the items’ basis B2 = UU T X V .
Xu and Gong (2004) proposed a concept factorization model for document clus-

tering, which has the following form

X = XU V T (26)

We can observe it is similar to the one-directional similarity learning model, except
that the missing value is just treated as 0. Ding et al. (2006) studied a similar model
called convex-NMF that has nonnegative constraints on U and V ,

X = XU V T , U, V > 0 (27)

We can naturally extend these one-directional models into bi-directional models using
our above framework.

6 Rating prediction based on bidirectional similarity learning

To take the full advantage of the model, we design algorithms for rating prediction
with different strategies based on learned similarity. In this section, we discuss two
types of similarity learning based CF strategies; namely, reconstructed matrix based
and traditional memory based strategies.

6.1 Matrix reconstruction strategy (R-SLCF)

Model-based approaches keep the user profiles in a more compressed data structure
than memory based methods. The prediction for a user’s interests is based on the user’s
profile that is learned during a training process. In our model, the user u’s profile cor-
responds to a row u in the matrix U denoted by Uu and the item i’s profile corresponds
to a column i in V , i.e. V T

i . With our learned model, we predict a rating to the item
i by the user u,

rui =
∑

v, j

svusi j rv j = UuU T X V V T
i for rui ∈ Y

This can be done when both u and i show up in the training data X . We refer to this
prediction strategy as matrix reconstruction strategy for SLCF (R-SLCF).

An additional problem facing the matrix reconstruction strategy needs to be
addressed. When new users and new items arrive, one needs to retrain the model
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based on the whole new dataset so as to make predictions for the new users and items.
This procedure is clearly too time-consuming and is often infeasible. In the following,
we present an online version of the R-SLCF method, which can bring new users and
items into the model without retraining on the whole dataset. The key issue is how to
embed the new users and items into the previous model.

Suppose that there are some new users who arrive with new rating information Ŷ
and Ŷ is to be included into the previous user rating matrix X . Then we have a new

rating matrix with X ′ =
(

X
Ŷ

)
. Let UY be a representation of new users. Hence we

have

Ŷ = UŶ · U T X V V T = UŶ · B1 (28)

By solving the above linear equation, we find UŶ with

UŶ = Ŷ · ((IŶ � B1) · (IŶ � B1)
T + λI)−1 (29)

where I is the identity matrix. We can regard the user as being projected to a lower
dimensional space spanned by the matrix B1. Then, all new users are projected into
this space. The last term λI is introduced to guarantee that the inverse operation is
more stable (Kirsch 1996).

Similar to adding new users, we can consider the new items as being projected to a
lower dimensional space spanned by B2. Suppose that there are some new items that
arrive with new rating information Ŷ and Ŷ is included into the previous user rating
matrix X to give X ′ = (X, Ŷ ). We can update VŶ by

Ŷ = UU T X V · V T
Ŷ

= B2 · V T
Ŷ

(30)

UŶ = Ŷ · ((IŶ � B2) · (IŶ � B2)
T + λI)−1 (31)

Then similar to R-SLCF, we can predict the rating by

RŶ = UŶ U T X V V T
Ŷ

Although we need to calculate the inverse of matrices in projection based strategy,
the matrices are small and can be computed efficiently. In the following, we will refer
to our batch matrix reconstruction method as R-SLCF, and the online version of the
algorithm as online R-SLCF.

6.2 Improved memory-based strategy (M-SLCF)

An intuitive way to use the learned similarity is to improve memory-based approaches.
The idea is to use the learned similarity matrices S1 and S2 to find the nearest neigh-
bors. Then, we can use the memory based methods for prediction. We refer to this
strategy as M-SLCF, which is especially helpful for comparing our learned similarity
with the pre-defined similarity such as PCC. One disadvantage of this strategy is it
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needs to compute pairwise similarity values between users or items in a way simi-
lar to memory-based approaches, which is computationally infeasible in large-scale
recommendation systems. This rating prediction method is also used as a baseline to
R-SLCF in our experiments (Sect. 7.3).

7 Experiments

In this section, we empirically demonstrate the computational and performance prop-
erties of our similarity learning methods as well as rating prediction strategies.

7.1 Datasets

Three benchmark datasets are used in our experiments.

− MovieLens3 is a widely used movie recommendation dataset. It contains
100,000 ratings with scale 1–5. The ratings are given by 943 users on 1,682
movies. The public dataset only contains users who have at least 20 ratings.

− EachMovie4 is another popular used dataset for CF. It contains 2,811,983 ratings
from 72,916 users on 1,628 movies with scale 1–6.

− Netflix5 is a pubic dataset used in Netflix Prize competition. It contains rat-
ings from 480,000 users on nearly 18,000 movies with scale 1–5. In this paper,
we use a subset of 367,348 ratings from 5,000 users and 2,000 movies for our
experiments.

7.2 Evaluation metrics

In this paper, we use Mean Absolute Error (MAE) for performance evaluation.

M AE =
∑

u,m |rum − r̂um |
N

where rum denotes the ground truth rating of the user u for the item m, and r̂um denotes
the predicted rating. The denominator N is the number of tested ratings. Smaller MAE
score corresponds with better performance.

7.3 Comparison with other approaches

The baselines used in this paper include user-based method using PCC, item-based
method using PCC and regularized SVD method. We also compare our algorithms
with the method proposed in Wang et al. (2006), which fuses the similarities among

3 http://www.grouplens.org/.
4 http://www.cs.cmu.edu/lebanon/IR-lab.htm.
5 http://www.netflixprize.com.
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Fig. 2 Converge curves of R-SLCF and regularized SVD. Evaluated by MAE on Movielens with the
parameter K = 10 for regularized SVD, KU = KV = 10 for R-SLCF

users as well as items. We also conduct experiments on Netflix dataset, although our
results are not comparable with the top results on the leaderboard since they used a
hybrid methods in the end. We should note that the regularized SVD, which is one of
the best non-ensemble-based algorithms in the Netflix Prize competition (Funk 2006),
is also included in our baselines.

7.3.1 Comparison with SVD-based approaches

In this section, we compare our SLCF model with the regularized SVD model intro-
duced in Sect. 3.2 in different ways. Figure 2 shows the convergence curves of SLCF
and regularized SVD. In this experiment, we use the same optimization algorithm (i.e.,
adaptive gain) with the same initial points6 for U and V to run the algorithms. We also
tune the best step length for each algorithm. We can see that SLCF converges faster
than regularized SVD and is able to find better solutions. We also note that regularized
SVD has smaller MAE values on the training data but larger MAE values on the test
data when compared with R-SLCF, which indicates that the regularized SVD is more
likely to overfit than SLCF.

Table 1 shows the performance comparison of SLCF and regularized SVD model
with various values of K . In this experiment, R-SLCF uses the same number of vari-
ables with regularized SVD to ensure fairness of comparison. We can see that SLCF
clearly outperforms the regularized SVD model. The results also indicate that our
model is different from regularized SVD even when KU = KV when there are miss-
ing values.

6 Although the initial points are the same, the initial performance can be different.
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Table 1 MAE comparison of R-SLCF with SVD for different K

Dataset K SVD R-SLCF1 R-SLCF2

MovieLens K = 5 0.7665 0.7534 0.7534
K = 10 0.7676 0.7517 0.7516
K = 15 0.7785 0.7533 0.7523
K = 20 0.7906 0.7554 0.7532

EachMovie K = 5 0.8023 0.7902 0.7901
K = 10 0.8272 0.7855 0.7845
K = 15 0.8317 0.7920 0.7912
K = 20 0.8127 0.7932 0.7920

Netflix K = 5 0.7557 0.7505 0.7501
K = 10 0.7640 0.7490 0.7480
K = 15 0.7737 0.7498 0.7498
K = 20 0.7835 0.7571 0.7569

For R-SLCF1 we require KU = KV = K and for R-SLCF2 we require KU + KV = 2K

Table 2 MAE comparison of R-SLCF and M-SLCF with memory-based method and item-based method

Dataset # Rating I-based U-based M-SLCF R-SLCF

MovieLens N = 30 1.0936 0.8785 0.8676 0.8418
N = 40 0.9587 0.8527 0.8405 0.8113
N = 50 0.9144 0.8451 0.8398 0.8104
N = 60 0.8648 0.8239 0.8106 0.8056

EachMovie N = 30 1.7238 0.9919 0.9449 0.9347
N = 40 1.6437 0.9908 0.9391 0.9297
N = 50 1.7792 0.9836 0.9817 0.9338
N = 60 1.6656 0.9886 0.9559 0.9327

Netflix N = 30 0.9568 0.8804 0.8291 0.7974
N = 40 0.8647 0.8390 0.8308 0.7782
N = 50 0.8293 0.8114 0.7872 0.7672
N = 60 0.7934 0.7774 0.7648 0.7439

The significance test is performed with significance level 0.05. N = 30 means only users with ratings no
larger than 30 are included

7.3.2 Comparison with memory-based approaches

In this section, we compare SLCF with user-based (U-based) and item-based (I-based)
approaches. Experimental results on three datasets are shown in Table 2. Comparisons
are conducted under different degree of sparseness condition with N = 30 meaning
only users who have ratings less than or equal to 30 are used. From this table, we can see
that both M-SLCF and R-SLCF outperform the baselines under different sparseness
conditions and R-SLCF performs better than M-SLCF.

We also compare R-SLCF with another stat-of-the-arts memory-based algorithm
called Similarity Fusion (SF) (Wang et al. 2006) which also utilizes both user side and
item side information. The difference between our approach and SF is that the simi-
larities used in our algorithm is automatically learned rather than defined heuristically.
To compare with this algorithm, we follow exactly the same experiment settings in
the paper. Then, for the performance of the SF method, we quote its results from the
paper (Wang et al. 2006). We can see that SLCF outperforms SF significantly.
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Table 3 Compare with SF on MovieLens

# Users 100 200 300

# Ratings 5 10 20 5 10 20 5 10 20

R-SLCF 0.838 0.770 0.771 0.799 0.768 0.763 0.787 0.753 0.739
CFONMTF 0.838 0.801 0.799 0.825 0.790 0.787 0.801 0.781 0.770
SF 0.847 0.774 0.792 0.827 0.773 0.783 0.804 0.761 0.769
SCBPCC 0.848 0.819 0.789 0.831 0.813 0.784 0.822 0.810 0.778

# Users is the number of training users and # Ratings is the number of ratings

In addition, we have compared with two other state-of-the-arts methods that have
utilized clustering on both user side and item side. One is cluster-based Pearson Corre-
lation Coefficient (SCBPCC) (Xue et al. 2005) and the other one is based on orthogonal
nonnegative matrix factorization (CFONMFTF) (Chen et al. 2009). The results are also
shown in Table 3. We found that our proposed method still outperforms both these
methods significantly.

7.4 Further study of SLCF models

In this section, we further study the properties of our proposed SLCF model. We first
investigate the effect of bi-directional learning and asymmetric similarity to the perfor-
mance compared to one-directional and symmetric in Sect. 7.4.1 and Sect. 7.4.2. Then
we show the influence of the parameter K to our model in Sect. 7.4.3. In Sect. 7.4.4 we
investigate the difference between the R-SLCF and online R-SLCF. We also show how
sparseness influences the learned similarity compared with memory-based approaches.

7.4.1 Comparison between one-directional and bi-directional similarity

We first study the difference between one-directional similarity and bi-directional
similarity. Figures 3 and 4 show the comparisons of MAE between one-directional
and bi-directional similarity learning models of symmetric and asymmetric similarity
matrices, respectively. They both show the performance advantages of bi-directional
learning.

7.4.2 Comparison between symmetric and asymmetric similarity

Figure 5 compares the convergence curves of one-directional similarity for symmet-
ric and asymmetric similarity learning. From this figure, we can observe that the
asymmetric similarity model significantly outperforms the symmetric model with the
same number of latent factors, which indicates the one-directional symmetric simi-
larity measurement model is not effective enough for the CF problem. We can also
see that our proposed asymmetric similarity shows its advantage over one-directional
similarity learning models.

Figure 6 compares convergence curves of bi-directional similarity for symmetric
and asymmetric similarity learning. The figure shows that the asymmetric model still
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Fig. 3 Comparison of one-directional symmetric (1d-symmetric) and bi-directional symmetric (2d-sym-
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Fig. 4 Comparison of one-directional asymmetric (1d-asymmetric) and bi-directional asymmetric
(2d-asymmetric) similarity matrix learning using MAE

outperforms the symmetric model. The asymmetric model also converges faster than
symmetric model. Figure 7 shows the comparisons between CPU time of bi-directional
asymmetric model and symmetric model with respect to MAE.

7.4.3 Impact of KU and KV

Two important parameters of bi-directional SLCF methods are the rank of user simi-
larity matrix KU and the rank of item similarity matrix KV . We conduct experiments
on the MovieLens dataset to study the impact of KU and KV to the performance.
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Fig. 6 Comparison of symmetric and asymmetric bidirectional similarity matrix learning using MAE

Figure 8 shows the two dimensional MAE surface with KU and KV being changed
simultaneously. We find that the best prediction result is achieved when KU and KV

are neither too small nor too large. Table 4 shows the best KV for given KU and Table 5
shows the best KU for given KV . An interesting observation is that most of the best
prediction results are achieved when KU + KV ≈ 20. This indicates that the inher-
ent information conveyed by latent user factors and item factors are complementary
to each other. When fewer user factors are available, more item factors are required
to characterize the inherent structure of the rating matrix, and vice versa. From the
MAE results of Fig. 8, the best result is obtained when both user and item factors are
considered (KU = 12, KV = 8). This confirms our initial conjecture that the user and
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are varied simultaneously

item spaces should be modeled with different numbers of factors. Another parameter
in our model is α that controls the balance between prediction error on training data
and model complexity. After testing on different values, we find α = 0.0001 gives the
best results in our experiments.

7.4.4 The difference of R-SLCF and online R-SLCF

The online R-SLCF algorithm is aimed at solving the new-user and new-item problem
in CF. In this experiment, we compare the accuracy of prediction by batch R-SLCF
and online R-SLCF. Figure 9 shows the comparison results on MovieLens. In this
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Table 4 Optimal KV given KU

KU 5 6 7 8 9

Opt KV 14 14 14 14 12
MAE 0.7611 0.7606 0.7606 0.7607 0.7604
KU 10 11 12 13 14

Opt KV 10 8 8 8 6
MAE 0.7606 0.7605 0.7603 0.7606 0.7607

Table 5 Optimal KU given KV

KV 5 6 7 8 9

Opt KU 13 13 12 12 12
MAE 0.7608 0.7607 0.7606 0.7603 0.7606
KV 10 11 12 13 14

Opt KU 11 9 9 9 7
MAE 0.7608 0.7606 0.7604 0.7607 0.7606
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Fig. 9 Comparison of online R-SLCF and R-SLCF. Evaluated by MAE on Movielens with 200 user as
test data, KU = KV = 10 for SLCF

experiment, we use 200 users as testing data. When training users are very few, online
R-SLCF is not as accurate as R-SLCF. But as the number of training users increases,
their performance become very close. Figure 10 shows the comparison of CPU time
on R-SLCF and online R-SLCF, which shows the advantage of the online algorithm
on efficiency.

An important parameter in online R-SLCF is λ. Figure 11 shows the influence of λ

on the prediction accuracy. After testing different values of λ, we find λ = 1 to be a
good choice, which we use in our other experiments.
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7.4.5 Impact of data sparseness

In this section, we show experiments on the impact of data sparseness on similarity
learning using M-SLCF. For comparison purposes, we also use the predefined simi-
larity PCC (Eq. 2) for selecting neighbors which we refer to as M-PCC. In both cases,
Eq. 1 with equal weights for neighbors is used for making predictions.

We first filtered the EachMovie dataset by keeping the users who have rated dif-
ferent numbers of movies (from less than 50 to less than 5 in this experiment). In
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Fig. 12 Comparison of PCC and M-SLCF on similarity with different degree of sparseness. Evaluated
using MAE on EachMovie with 50 nearest neighbors

this way, we constructed the datasets with different degrees of sparseness. We use
the user-based method with neighbors found by SLCF and compare the results with
PCC. When the data are not that sparse, PCC can do a good job in finding the nearest
neighbors. However, when the degree of sparseness increases, the performance drops.
In Fig. 12, we can clearly see that SLCF is able to find neighbors more accurately
when sparseness is increased. Figure 13 verifies our conclusion from a different per-
spective. It shows how SLCF and PCC performed with different numbers of nearest
neighbors. We can see that PCC is good at finding the most similar users but SLCF
has the advantage of finding the potentially similar users with higher recall. Therefore,
when more neighbors are used, SLCF performs much better.

8 Conclusions and future work

In this paper, we proposed a novel matrix factorization based model for learning
user and item similarities simultaneously for CF. The similarity measurement can
be asymmetric and can be learned from the data using matrix factorization methods.
We proposed an efficient learning algorithm as well as effective prediction strategies.
We showed our learned similarity measurement significantly outperforms the pre-
defined ones. The experiments showed our method can outperform baselines such as
traditional memory-based approaches and a low-rank matrix approximation model.
Furthermore, our online version of the prediction algorithm is shown to be effective
and more efficient for handling new users and items.

For our future work, we plan to develop more efficient algorithms to learn our
model in larger scale datasets. Although we focused on CF in this paper, our model is
very general for sparse data which has matrix form. Therefore, we plan to apply our
model to other kinds of data sets and tasks such as document clustering. We also plan
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to extend our model to multi-directional cases where more than two types of entities
are involved.
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