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a b s t r a c t

In activity recognition, one major challenge is how to reduce the labeling effort one needs
to make when recognizing a new set of activities. In this paper, we analyze the possibility
of transferring knowledge from the available labeled data on a set of existing activities in
one domain to help recognize the activities in another different but related domain. We
found that such a knowledge transfer process is possible, provided that the recognized
activities from the two domains are related in some way. We develop a bridge between
the activities in two domains by learning a similarity function via Web search, under the
condition that the sensor readings are from the same feature space. Based on the learned
similarity measure, our algorithm interprets the data from the source domain as ‘‘pseudo
training data’’ in the target domain with different confidence levels, which are in turn
fed into supervised learning algorithms for training the classifier. We show that after
using this transfer learning approach, the performance of activity recognition in the new
domain is increased several fold as compared to when no knowledge transfer is done. Our
algorithm is evaluated on several real-world datasets to demonstrate its effectiveness. In
the experiments, our algorithm could achieve a 60% accuracy most of the time with no
or very few training data in the target domain, which easily outperforms the supervised
learning methods.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

With the proliferation of sensor technologies, the task of recognizing human activities from a series of low-level
sensor readings has drawn much interest in AI, user modeling and ubiquitous computing areas [1,2]. Early activity
recognition algorithms are based on logical reasoning, in which conclusions are deducted from the observations and
‘‘closed world’’ assumptions [3]. As the sensor data became available, recent activity recognition research focuses more on
reasoning under uncertainty. For example, Bui introduced abstract Hidden Markov Models to represent the user’s activity
hierarchy [4]. Liao et al. applied a hierarchical Markov model to estimate a user’s locations and transportation modes [5].
Yin et al. applied a dynamic Bayesian network to infer a user’s actions from raw WiFi signals, and an N-gram model to
infer the users’ high-level goals from actions [6]. Similarly, Patterson et al. also applied a dynamic Bayesian network to
recognize fine-grained activities by aggregating the abstract object’s usage [7]. Hu and Yang used a skip-chain Conditional
Random Field and an activity correlation graph to model the concurrent and interleaving activities [8,9]. In a recent
work [10], Hidden Markov Models with an infinite state space were also used to detect abnormal activities from sensor
readings.
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Fig. 1. An example of cross-domain activity recognition.

Although much work has been done in activity recognition, a major challenge still remains: given a new domain of
activities: it usually requires a lot of human effort to label the sensor data for training a recognition model. Data labels are
usually meaningful activity terms associated with the data vectors, such as the sensor readings. If the labeled data for the
target activities are few, then the trained activity recognizer may not perform well. Such an issue has become a critical
challenge for applying activity recognition systems in practice. In the real world, users may only have a small amount of
time and effort to set up an activity recognition system; otherwise, they are quite likely to quit using such a recognition
system. Furthermore, users usually do not have the expertise in activity recognition research. Therefore when we try to
design some activity recognition algorithm, we should make the algorithm as simple as possible. In terms of data labeling
effort, we wish to ensure that the users need not label all activities; if they have done some labeling, it is best for our system
to automatically transfer the labeled knowledge to help recognize other different, but related activities. In this paper, we
show how to transfer the available labeled data from a set of activities to help train a recognizer for another set of different,
but related activities.

Consider an example in Fig. 1. The taxonomy is an activity taxonomy extracted from the MIT PLIA1 dataset [11,8],
representing the common daily activities. Suppose that some user wants to set up an activity recognition system at his/her
home to recognize the activities in the taxonomy. However, the user only wants to spend a very little amount of time and
effort to label the sensor data, where labels correspond to activity names such as ‘‘washing dishes’’. A usermay not be able to
label the sensor data associatedwith all activities described in the taxonomy. For example, the usermay only label the sensor
data from the activities in the ‘‘Cleaning Indoors’’ category, and leave unlabeled the sensor data from the other categories’
activities (e.g. in ‘‘Laundry’’, ‘‘Dishwashing’’). So in our problem, we have a source domain of activities that has the labeled
sensor data from activities in the ‘‘Cleaning Indoors’’ category. We also have some target domain that has the unlabeled
sensor data from the activities in some other category such as ‘‘Laundry’’ (denoted as ‘‘Target Domain 1’’) or ‘‘Dishwashing’’
(denoted as ‘‘Target Domain 2’’). Then, we ask the following fundamental questions:

1. Is it possible for us to use the labeled data in the source domain to help train an activity recognizer in the target domain?
For example, can we use the sensor data from the ‘‘Cleaning Indoors’’ category in training an activity recognizer for the
‘‘Laundry’’ category?

2. Under what conditions can domain transfer work for activity recognition?

In this paper, we answer the above questions by presenting a novel algorithm for cross-domain activity recognition
(CDAR), which can transfer the labeled data from a source domain to a target domain under the condition that (1) the



346 D.H. Hu et al. / Pervasive and Mobile Computing 7 (2011) 344–358

activities in the source and target domains are related by some Web pages and thus we can build a mapping between
them using the Web, and (2) the underlying feature spaces are identical between the source and target domains (they use
the same set of sensors, although activity labels can be different). We observe that although the activities in the source
domain and the target domain are different, some of them are similar in semantics as well as the corresponding sensor
data. For example, in the above Fig. 1, one may transfer useful information from activity ‘‘Washing-laundry’’ to ‘‘Hand-
washing dishes’’, considering that, although these two activities are different, the underlying physical actions one performs
for these two activities are similar, i.e. hand-washing. Therefore, if we have sensors attached to the body arms or hands, the
accelerometer values or other motion values detected should be similar for us to transfer the knowledge from the source
domain to the target domain. Intuitively, we use similar activities in the source domain to help enrich the labeled data for the
target domain. Specifically, we first learn a similarity function between activities in both domains by exploitingWeb search
and applying information retrieval techniques.We then train a (multi-class)weighted Support VectorMachine (SVM)model
with different probabilistic confidence weights learned from the similarity function. Experiments on real world data sets
show that the transferred activity recognizer can indeed improve performance by using the auxiliary data and outperform
some other state-of-the-art algorithms.

2. Related work

In this section we review some related research work. We first briefly review some papers in activity recognition. Since
our problem is related to transfer learning, we also review some transfer learning papers as well as some recent papers in
activity recognition which also exploit transfer learning ideas.

2.1. Activity recognition

Activity recognition aims to infer a user’s behavior from observations such as sensor data, and has various applications
includingmedical care [12], logistics service [13], robot soccer [14], plan recognition [15], etc. However,most of the proposed
activity recognition algorithms are focused only on sensor readings from only one domain, and usually require lots of
annotated data to train the activity recognition model.

There has been lots of progress in recognizing activities in the past twenty to thirty years. As early as 1987, Kautz
developed a formal theory to track the logical consistency of observed activities for plan recognition [3]. Many graphical
models have now been adopted to model the action sequences. For example, [16] built a hierarchical Dynamic Bayesian
Network tomodel the connection between inter/intra time slices activities. [14] focused on using Conditional Random Fields
and its variant to model the activity recognition problem.

Activity recognition is also a very important research topic in the context of computer vision, in which researchers aim
to recognize human actions from vision-based sensors, like video cameras. For example, in [17] and [18], the problem of
detecting abnormal activity patterns based on object motion patterns is studied. Many vision-based activity recognition
research also provide directions for ubiquitous sensor-based activity recognition research. The problems may seem similar
at the first glance, however, the differences between vision-based sensors and other sensors like accelerometers or RFID
sensors is that the knowledge and information one can gain from vision data is significantly larger than those of ubiquitous
sensors. Besides, vision-based sensory input has developed to a level where many kinds of useful features are already well
studied and used in recognition, for example, [19] proposed the fusion ofmultiple features including a quantized vocabulary
of local spatiotemporal (ST) volumes (or cuboids) and a quantized vocabulary of spin-images. However, for ubiquitous
sensor-based activity recognition, it is often the case that such a feature set does not even exist. In this paper, our proposed
approach is only applied to datasets accumulated from ubiquitous sensors and we omit the discussion about whether our
algorithm could be extended to vision-based sensory input.

Our work exploits the Web to connect two domains. In the past, some previous research works had considered learning
common sense knowledge from the Web (such as ehow and KnowItAll [20,21]) to assist model training. For example,
Perkowitz et al. proposed to mine the natural language descriptions of activities (e.g. ‘‘making-tea’’) from ehow.com as
labeled data, and translated them into probabilistic collections of object terms (e.g. ‘‘teacup’’, ‘‘teabag’’, etc.) [22]. Then, they
use these probabilistic collections as input data to train a dynamic Bayesian network model for prediction. Wyatt et al. also
proposed to mine recipes of the activities from theWeb as the labeled data, but they only use this knowledge as a prior and
trained aHiddenMarkovModel from the unlabeled RFID sensor data [23].Wang et al. further improved thiswork by utilizing
personal activity data from wearable sensors [24]. They first extracted the actions from the wearable sensors, and then
incorporated the actions with the object’s usage to finally predict the activities. Most previous approaches either exploited
only object-usage information or required explicit action modeling. Few of them exploited auxiliary source domains for
activity recognition.

2.2. Transfer learning

As we aim to transfer the labeled data across domains, our work is also related to transfer learning, which is a state-of-art
learning paradigm in machine learning [25,26].
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The idea of transfer learning is motivated by the fact that humans can intelligently apply knowledge learned previously
to solve new problems faster or with better solutions. For example, we may find that having knowledge of C++ can help
in studying Java or other programming languages and playing the electronic organ can help learning the piano. Transfer
learning aims at transferring knowledge from some source domains to a target domain. In general, the data from the both
domains may follow different distributions or be represented in different feature spaces. In [26], the definition of transfer
learning is given in the following form:we are given a source domainDs and learning task Ts, a target domainDT and learning
task TT , transfer learning aims to help improve the learning of the target predictive function fT in DT using the knowledge in
DS and TS , where DS ≠ DT , or TS ≠ TT .

There have been several main approaches to transfer learning in the past. Such approaches can be summarized into
four cases based on ‘‘what to transfer’’. The first approach can be referred to as the instance-transfer [27] approach, which
assumes that certain parts of the data in the source domain can be reused for learning in the target domain by re-weighting.

The second approach can be referred to as the feature-representation-transfer [28], which finds a ‘‘good’’ feature
representation in the target domain. In such an approach, the knowledge used to transfer across domains is encoded into
the learned feature representation. With such a new feature representation, the performance of the target task is expected
to improve significantly.

The third approach is parameter-transfer [29], which makes the assumption that the source and target tasks share some
parameters or prior distributions of the hyperparameters of the models. The transferred knowledge is then encoded into
the shared parameters or priors. Thus, by discovering the shared parameters, knowledge can be transferred across tasks.

The fourth approach is the relational-knowledge-transfer, which deals with transfer learning for relational domains. The
basic assumption of such an approach is that some relationship among the data in the source and target domains are similar.
Thus, the knowledge being transferred is the relationship among the data. For example, [30] builds themapping of relational
knowledge between both domains.

Our work can be seen as an instance-transfer approach. However, our work is different from most previous works,
because they usually assume that the domains can have different feature spaces but share the same label space. In our work,
we consider that the domains can share the same feature space (e.g. a same set of sensors at a home), but have different
label spaces (i.e. different activities). Most research works on transfer learning have not explicitly targeted this problem.
One relevant example, to the best of our knowledge, is in [31]. In [31], the authors proposed an algorithm to perform Web
query classification, where a bridging classifier is proposed tomap user’s queries to the target categories via an intermediate
taxonomy. Their algorithm could support the need of real-world search engines where the target label set for queries are
often changing among different domains. However, using the intermediate taxonomy, they could transfer useful knowledge
from the intermediate taxonomy to the target domain. Our research work shares some merits with this work, in that we
also aim to use similar information retrieval techniques based onWeb knowledge tomodel the similarities between actions
(words) in two domains.

2.3. Transfer learning in activity recognition

With more and more research work available in the area of transfer learning, there also have been some papers which
aim to solve some activity recognition related problems that also fall into the category of transfer learning. In this subsection,
we provide a brief overview of these papers and also provide a coarse categorization of these papers.

• Transferring Across Devices: One important component of activity recognition is localization, where locations are used
as key factors which could imply the subject’s activities. In [32], the authors propose a multi-task learning algorithm
to solve the multi-device indoor localization problem. One major drawback of previous localization systems lies in the
assumption that the collected signal distribution remains the same across different devices. However, empirical studies
in [32] show that this is often not the case and that the localization accuracy would be greatly affected. In [32], themulti-
device indoor localization problemwas formulated as an optimization problemand an alternating optimization approach
was employed to solve the problem.

• Transferring Across Time: Another important dimension by which transfer learning can be carried out is the time
dimension. Similarly, signal data distributions also vary from time to time and if we directly apply a model learned in the
previous month to try to perform recognition tasks in the current month, variations in signal distribution would degrade
the algorithm performance. To solve this problem, [33] proposed a semi-supervised Hidden Markov Model to transfer
the learned model from one time period to another.

• Transferring Across Space: Space is another dimension where transfer learning can be used. Since most localization
models are supervised learning approaches and would require us to collect labeled data across an entire building if
we want to do indoor localization in that building. Therefore, transfer learning would greatly alleviate the calibration
efforts one needs to perform before a learning model is trained. In [34], the authors propose a novel approach to learn
localization models across space, where a mapping function between the signal space and the location space is learned
by solving an optimization problem based on manifold learning techniques.

• Transferring Across Sensor Networks: In activity recognition, one possible scenario when one tries to apply transfer
learning is to transfer knowledge betweendifferent sensor networkswhere the layout and the functionality of the sensors
may not necessarily be the same. Earlier research work [35] on this topic attempted to transfer the knowledge between
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two houses which have different sensor network layouts. However, the correspondence between different sensors was
defined manually, which greatly reduced the learning difficulty but limited the applicability of such systems. One recent
paper [36] tries to solve the activity recognition also via a transfer learning approach. In this paper, the authors can
perform activity recognition across different sensor networks. However, their algorithm is based on the usage of ameta-
feature space, which are features that describe the properties of the actual features. Each sensor is described by one or
moremeta features, for example, a sensor on themicrowavemight have onemeta feature describing the sensor is located
in the kitchen, and another that the sensor is attached to a heating device. The limitations of the approach described
in [36] is that themeta-feature space needs to bemanually constructed, and it has to be the same kind of sensors in order
to have the common meta-feature space. Such limitations also avoid the transfer between different kinds of sensors or
in very different room layouts.

• Transferring Across Activity Types: This category refers to our work in this paper since we are aiming to transfer
knowledge between different activity label spaces but make the assumption that the feature space (sensor networks)
remain the same between different domains. Based on the above categorization, we can see that our work sets a different
dimension from all previous research work on activity recognition that exploit some transfer learning ideas.

3. Problem formulation

We consider two domains that have the same set of sensors spanning a feature space but have different activity (label)
spaces. Specifically, we have a source domain with a set of activities Asrc = {a1, . . . , am}, and a target domain with another
set of activitiesAtar = {am+1, . . . , an}.Asrc andAtar do not overlap, i.e.Asrc


Atar = ∅. In other words, we have two sets of

activities, one of which is called the source domain and the other of which is called the target domain. In the source domain,
the sensor readings are all labeled with activity names, and they will be used as training data. In the target domain, we do
not have any labeled data for training, but we know howmany activities are in the target domain and what their names are.
Our aim is that, given some sensor readings (i.e. test data) from the target domain, we can use the labeled training data from
the source domain to learn a recognizer and thus recognize their activity labels.

Notice that we are constraining our training data in the source domain whereas the test data is in the target domain. We
will not test the sensor readings drawn from the source domain in the testing phase. Such a setting is reasonable due to two
reasons. First, as the source domain has plentiful labeled data, using traditional learning approaches such as Naive Bayes,
decision tree or support vector machines would be enough to recognize the source domain’s activities. So in this paper, we
are more focused on recognizing those activities from the target domain without any labeled data. Second, it is not hard
for us to identify whether a sensor reading is drawn from the source domain or the target domain, by using some external
sensor information. For example, we can have a location sensor in the house to identify where the user is, so we can know a
sensor reading related to the user belongs to the source domain’s activities (say, ‘‘making-the-bed’’ in the bedroom) or the
target domain’s activities (say, ‘‘laundry’’ in the laundry closet).

We also make an underlying assumption that the source domain’s activities and the target domain’s activities do have
some kind of relationship. For example, ‘‘laundry’’ and ‘‘cleaning indoors’’ are related because they both involve some kind
of ‘‘cleaning’’. However, ‘‘laundry’’ and ‘‘watching TV/movies’’ may only be weakly related, so wemay not be able to transfer
that much useful knowledge from ‘‘laundry’’ to ‘‘’watching TV/movies’’ and hence the algorithm may not perform well. We
studied the impact of such domain differences in the experiment section. Two other assumptions are also made due to the
nature of ourmethod. First, we assume that thewebpages describing an activity couldmostly generalize themost important
objects and procedures one needs to perform an activity. Second, we also assume that there are sensors monitoring object
interaction, so that the sensor information contains enough knowledge about how the subject interacts with the objects of
interest.

To be more precise, let x ∈ Rk be a k-dimensional sensor reading (i.e. feature) vector at some time slice, and y be a
random variable whose value represents an activity (i.e. label). In the source domain, we have plentiful labeled training data
D trn

src = {(x(i)
src, y

(i)
src)}

T1
i=1, where y(i)

src ∈ Asrc . In the target domain, we do not have any training labeled data; instead, we only
have some test dataD tst

tar = {x(j)
tar , y

(j)
tar}

T2
j=1, where y(j)

tar ∈ Atar are used as ground truth for testing only.Wewould note that the
source domain’s sensor data and the target domain’s sensor data share the same feature space in Rk, but the two domains
have different label spaces.

In this paper, we make a simplification; that is, we break the sequences into time slices each, and omit the possible
sequential information we could take advantage of in dealing with the problem of cross-domain activity recognition. There
are several reasons for this. The first reason is that, when we constrain ourselves to using training data from only one subset
of activities from the original training data (source domain), we are already ‘‘choosing’’ the activities in the sequences
and have damaged the sequential information contained in the original data. The second reason is that, our paper, being
the first paper to tackle the problem of cross-domain activity recognition formally, would put more emphasis on how to
transfer useful knowledge between different activity sets; or, more loosely speaking, how to calculate similarities between
different activities and demonstrate that such a simplemethod is indeed effective in cross-domain activity recognition tasks.
Therefore, in this paper, we omit the sequential information and treat each time sequence of sensor readings with length T
as T instances in the training or testing datasets.
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4. Proposed approach

4.1. Algorithm overview

Our work belongs to the instance-transfer category in the transfer learning framework. In general, the instance-transfer
algorithms are motivated by data instance importance sampling [27]. That is, the training data from a source domain are
weighted to train amodel for the target domain, and theweights can be generally seen as the similarities between the source
domain’s data and the target domain’s data. The more similar some source domain’s data are to the target domain’s data,
the higher weights the source domain’s data will be assigned in the learning procedure. Different from the previous work
on instance-transfer which measures the similarities from the data (features), we show that in our cross-domain activity
recognition problem, we need to measure the similarities from the label information.

We first present an overview of our cross-domain activity recognition (referred to as CDAR below) algorithm to provide
the readers with a high-level overview of our algorithm. Our CDAR algorithm can be generalized into three steps.

In the first step, we aim to learn a similarity function between different activities by mining knowledge from the Web.
In particular, we will use Web search to extract related Web pages for the activities, and then apply information retrieval
techniques to further process the extractedWeb pages. After that, we use some similarity measure, such asMaximumMean
Discrepancy in Eq. (2), to calculate the similarities between any pair of activities from the source domain and target domain.
Such similarities will be used later to calculate confidence for pseudo training data for domain transfer.

In the second step, given the assumption that we only have labeled training data in the source domain but no labeled
training data in the target domain, it is impossible to follow supervised learning methods to train a recognizer for the target
domain’s activities. Therefore, by using the similarity values we have learned in the first step, we aim to generate some
pseudo training data for the target domain with some confidence values. Here ‘‘pseudo training data’’ are the training data
with the same feature values as in the source domain, but relabeled with the activity labels in the target domain. Such data
relabelings will be assigned with some confidence, whose values equal the similarities we calculated in the first step; and
this confidence will measure how ‘‘strong’’ a particular training data instance in the source domain can be explained as the
data instances in the target domain.

Following the second step, if we have N activities in the source domain and M activities in the target domain, we will
create pseudo training data in the target domainwith a label spacewith sizeNM . Each pseudo training instance is supported
with a confidence value. Therefore, by using the pseudo training data, we can apply a weighted Support Vector Machine
method [37] to train a classifier, so that we can use it to recognize the activities in the target domain.

4.2. Learning the similarity function

In this section, we will show how to learn a similarity function for any pair of activities from the source domain and the
target domain. To achieve this, we will novelly exploit the Web data.

4.2.1. Calculate similarity from web data
With the proliferation of theWeb services, there are emergingWeb pages that describe the daily activities. For example,

we can easily find many web pages introducing how to make coffee. Such web pages encode the human understanding of
the activity semantics, such as what kind of activity it is, what kind of objects it uses, etc. Such semantics can greatly help
measure the similarities between the activities.

In practice, as the activity names are known, we can employ Web search to extract Web pages related to the activities.
For example, for an activity ‘‘Vacuuming’’ defined in the taxonomy of Fig. 1, we can search on Google with the query
‘‘Vacuuming’’ as shown in Fig. 2. Then we can get a list of search results on the page. By clicking all search results, we
can get a set of Web pages. Although the Web pages contain a lot of information, only a small amount of such information
is related to the semantics of the queried activity. So we apply classic information retrieval techniques to retrieve the useful
information for each Web page.

In particular, for each Web page, we first extract all the words in it, and then treat the extracted words as a document
di with a bag of words. Such a document di can be further processed as a vector xw

i , each dimension of which is the term
frequency-inverse document frequency value (tf-idf) [38] of a word t:

tf -idfi,t =
ni,t∑
l
ni,l

· log
|{di}|

|{di : t ∈ di}|
,

where ni,t is the number of occurrences of word t in document di. Besides, |{di}| is the total number of collected documents,
and |{di : t ∈ di}| is the number of documents where word t appears. The terms in the tf-idf equation are explained as
follows:
• The first term ni,t∑

l ni,l
denotes the frequency of the word t that appears in the document di. If the word t appears more

frequently in the document di, then |{di : t ∈ di}| is larger, and thus thewhole term is larger. For example, in the returned
Web page of ‘‘Vacuuming’’, the word ‘‘clean’’ may appear many times, so its term frequency is high. It means that such a
word encodes some semantics of ‘‘Vacuuming’’, and it has higher weights in the Web data’s feature vector.
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Fig. 2. Extract Web data for activities.

• The second term log |{di}|
|{di:t∈di}|

denotes the inverse document frequency for the word t . If the word t appears in more
documents of the corpus, then |{di : t ∈ di}| is larger, and thus the whole term is smaller. For example, for the word
‘‘the’’, it is used in almost all the documents, but it is a stop word without any meaning. Hence, its inverse document
frequency will vanish to zero, thus the whole tf-idf value of the word is zero. It means that such a word does not encode
any semantics of the searched activity, so it can be removed from the Web data’s feature vector.

Therefore, for an activity u (e.g. ‘‘Vacuuming’’), we can get a set of documentsDw
u = {xw

i |i = 1, . . . ,mu}, with each xw
i as a tf-

idf vector. Similarly, for another activity v (e.g. ‘‘Washing-laundry’’), we can also Google it and get another set of documents
Dw

v = {zw
i |i = 1, . . . ,mv}, with each zw

i as a tf-idf vector.
After having the extracted Web data Dw

u and Dw
v , now we will show how to measure the similarity between the activity

u and the activity v. Note that a possible choice to calculate the similarity between two (Web) data distributions is using
the Kullback–Leibler (KL) divergence as [23] did. However, generally the Web text data are high-dimensional and it is hard
to model the distributions over the two different data sets. Hence, we propose to use the Maximum Mean Discrepancy
(MMD) [39], which can directly measure the distribution distance without density estimation, to calculate the similarity.

Definition 1. Let F be a class of functions f : X → R. Let p and q be Borel probability distributions, and let X =

(x1, . . . , xm) and Z = (z1, . . . , zn) be i.i.d. samples drawn from distributions p and q, respectively. Then, the Maximum
Mean Discrepancy (empirical estimation) is

MMD[F , X, Z] = sup
f∈F


1
m

m−
i=1

f (xi) −
1
n

n−
i=1

f (zi)


.

Considering the universal reproducing kernel Hilbert spaces (RKHS), we can interpret the function f as the feature mapping
function φ(·) of a Gaussian kernel [39].

Given the Web data Dw
u = {xw

i |i = 1, . . . ,mu} for activity u and the Web data Dw
v = {zw

i |i = 1, . . . ,mv} for activity v,
we can finally have the similarity between u and v as

sim(u, v) = MMD2
[Dw

u , Dw
v ], (1)

whereMMD2
[Dw

u , Dw
v ] is the maximummean discrepancy defined as:

MMD2
[Dw

u , Dw
v ] =

 1
mu

mu−
i=1

φ(xw
i ) −

1
mv

mn−
i=1

φ(zw
i )


2

H
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=
1
m2

u

Kw
uu


1 −

2
mumv

Kw
uv


1 +

1
m2

v

Kw
vv


1 , (2)

where Kw
uv is the Gaussian kernel defined over the data Dw

u and Dw
v . Specifically, K

w
uv is a mu × mv matrix, with its entry at

row i and column j defined as

Kw
uv(x

w
i , zw

j ) = exp


−

xw
i − zw

j

2
2σ 2


,

where σ is the kernel width for the Gaussian kernel function. In Eq. (2), ‖·‖1 is an entry-wise norm which sums up all the
entries in the matrix.

4.3. Generating pseudo training data

Nowwe have the similarity value sim(u, v) for each pair of activities u ∈ Asrc and v ∈ Atar . How can we generate a new
training data set defined over the label space of the target domain? Recall that, in the source domain, we have the training
labeled data D trn

src = {(x(i)
src, y

(i)
src)}

T1
i=1, where y(i)

src ∈ Asrc . For each training instance (x(i)
src, y

(i)
src) with y(i)

src = u where u ∈ Asrc ,
we will relabel it to get a set of pseudo training data as {(x(i)

src, vj, sim(u, vj))|vj ∈ Atar}
|Atar |
j=1 . Here, the similarity sim(u, vj)

between activity u and vj is used as the confidence of such a relabeling. In other words, we duplicate each training instance
|Atar | times; and each duplication will be relabeled using one activity category in the target domain with some confidence.
Finally, these relabeled training data duplications, whichwe call ‘‘pseudo’’ training data, are then used for training classifiers
to classify activities in the target domain.

4.4. Weighted SVM method

Now we have a pseudo training data set on the target domain where each data instance in the dataset contains not only
a category label but also a confidence value. The confidence value is defined as the similarity value we calculate between
two activities. Therefore, the larger the value is, themore similar the two activities are, and themore confident we are when
interpreting such a training data instance to this activity in the target domain.

However, training support vectormachineswith confidence values attached to training instances is a non-trivial task and
we apply the method proposed in [37] to accomplish our goal. Interested readers can follow the original paper for technical
details. Here we will briefly introduce the weighted SVMmodel for multi-class classification.

In [37], a ‘‘one-against-one’’ approach is employed for multi-class classification. Given the N classes (in our case, each
activity in the target domain is a class, so N = |Atar |), this approach constructs N(N − 1)/2 classifiers, each of which trains
the data from two different classes. For training data from the ith and the jth classes, the weighted SVM model solves the
following two-class classification problem:

min
wij,bij,ξ ij

1
2
(wij)Twij

+ C i
t

−
yt=i

(ξ ij)t + C j
t

−
yt=j

(ξ ij)t

s.t. (wij)Tφ(xt) + bij ≥ 1 − ξ
ij
t , if yt = i,

(wij)Tφ(xt) + bij ≤ −1 + ξ
ij
t , if yt = j,

ξ
ij
t ≥ 0.

(3)

Here, xt is the tth data instance, yt is its class label. φ(xt) is a feature mapping to xt .wij is the model parameter, bij is the bias
term, and ξ ij is the slack variable denoting the classification error. C i

t and C j
t are the weights for the tth instance of ith and

jth classes respectively. C t
i and C j

t are derived using the similarity function learned from the previous step; and they reflect
the confidence values of the data instances xt interpreted as being from the ith class (i.e. activity) in the target domain. In
other words, the pseudo training data point xt is from the ith class with confidence value of C i

t . Therefore, in Eq. (3), the first
termmakes sure that in training the support vector machine the margin is maximized; the second and third terms controls
the weighted classification errors for both classes. Intuitively, if the weight C i

t is higher, the pseudo training data instances
xt from the ith class are more trusted in training the SVMmodel.

After the optimization in Eq. (3) is solved, [37] uses a voting strategy for multi-class classification. In particular, each
binary classification for the ith and the jth classes is considered to be a vote. Then, the votes can be cast for all data instances
xt , and in the end each xt is designated to be in a class with maximum number of votes. In the case that two classes have
identical votes, the one with the smallest class index is simply chosen.

4.5. Cross-domain activity recognition (CDAR) algorithm

Finally, we summarize our CDARmethod in Algorithm 1. As shown in Algorithm 1, at the first 3 steps, we extract theWeb
pages for each activity from both domains, and apply the information retrieval technique to transform the Web pages into



352 D.H. Hu et al. / Pervasive and Mobile Computing 7 (2011) 344–358

tf-idf vectors. At step 4, after having theWeb data (i.e. a set of tf-idf vectors) for each activity, we compute a similaritymatrix
for each pair of activities between the source domain and the target domain. At step 5, based on the learned similarities,
we generate the pseudo training data by relabeling each training instance with the activity labels from the target domain.
Each relabeled training instance is assignedwith some confidence (weight), which equals the similarity between its original
activity label (from the source domain) and the newly given activity label (from the target domain). At step 6, we train the
CDARmodel using a weighted Support Vector Machine. At step 7, we use the trained weighted SVM classifier to performing
testing on the target domain’s data.

Algorithm 1 Algorithm for CDAR

Input: Source domain has T1 labeled training data Dsrc = {(x(i)
src, y

(i)
src)}

T1
i=1, where y(i)

src ∈ Asrc . Target domain does not have
any labeled training data; instead it has T2 test data Dtar = {(x(j)

tar , y
(j)
tar)}

T2
j=1, where y(j)

tar ∈ Atar are the ground truth labels for
testing only.
Output: Predicted labels on the test data in target domain.
begin
1: For each activity u ∈ Asrc , extract a list of Web pages from some search engine (such as Google);
2: For each u’s Web pages, apply information retrieval technique and transform eachWeb page to a tf-idf vector, and form

a Web data set Dw
u ;

3: Similar to the above two steps, extract a Web data set Dw
v for each activity v ∈ Atar ;

4: For any two activities u ∈ Asrc and v ∈ Atar , calculate the similarity sim(u, v) = MMD2(Dw
u , Dw

v ) using the maximum
mean discrepancy in Eq.(2);

5: Generate pseudo training data as follows: each training instance (x(i)
src, y

(i)
src) with y(i)

src = uwhere u ∈ Asrc , is relabeled to
get a set of pseudo training data as {(x(i)

src, vj, sim(u, vj))|vj ∈ Atar}
|Atar |
j=1 with sim(u, vj) as the confidences.

6: Train the model CDAR with a weighted SVM [37] on the generated pseudo training data.
7: Testing by the trained weighted-SVM classifier.
end

5. Experimental results

In this section, we plan to validate the effectiveness of our algorithm through experiments on several real-world
datasets. We plan to answer the following questions we had posed in previous sections to provide a systematic view of
the performance of our algorithm.

• First, is it possible for us to transfer useful knowledge between the source domain and the target domain using our
proposed approach?

• Second, how accurate can it be when we create pseudo training data in the target domain using Web knowledge?
• Third, how would the choice of activities in the source domain affect the algorithm performance when we attempt to

transfer knowledge to the same set of activities in the target domain?
• And finally, how would our algorithm parameters, such as the similarity function we use and the number of top ranked

pages we pick out in the searching step, affect our algorithm’s performance?

5.1. Datasets, evaluation criteria and implementation details

In this section, we briefly describe the datasets we use in our experiments, the evaluation criteria we adopt, and some
other detailed information about our algorithm implementation.

We use three datasets in our experiments. All the datasetswe use are publicly available on theWeb. Our first dataset (UvA
in short)2 is from [40] where a dataset is recorded in the house of a 26-year-oldman, living alone in a three-room apartment
where 14 state-change sensors are installed. Locations of sensors include doors, cupboards, refrigerators and a toilet flush
sensor. Sensors were left unattended and collected data for a period of 28 days, resulting in 2120 sensor events and 245
activity instances. Activities were annotated by the subject himself using a bluetooth headset. Seven different activities
were annotated: ‘‘Leave house’’, ‘‘Toileting’’, ‘‘Showering’’, ‘‘Sleeping’’, ‘‘Preparing breakfast’’, ‘‘Preparing Dinner’’, ‘‘Preparing
a beverage’’.

The second dataset we use is the MIT PLIA1 dataset3 [11], which was recorded on March 4, 2005 from 9 AM to 1 PM in
the MIT PlaceLab. The subject was asked to perform a set of common household activities during the four-hour period. The
dataset contains 89 different activities and was manually classified into several categories such as ‘‘Cleaning’’, ‘‘Yardwork’’,
etc.

2 http://staff.science.uva.nl/~tlmkaste/research/software.php.
3 http://architecture.mit.edu/house_n/data/PlaceLab/PLIA1.htm.

http://staff.science.uva.nl/~tlmkaste/research/software.php
http://architecture.mit.edu/house_n/data/PlaceLab/PLIA1.htm
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Table 1
Algorithm performance on UvA and intel dataset.

K UvA Acc (Std) Intel Acc (Std)

5 40.2% (21.7%) 39.8% (19.7%)
10 53.7% (22.8%) 47.3% (20.2%)
20 65.8% (22.1%) 58.1% (20.7%)
50 66.7% (21.2%) 63.2% (23.5%)

100 66.0% (22.4%) 63.1% (20.7%)
Supervised 72.3% (20.7%) 78.3% (17.6%)

The third dataset is from [7]4 and is provided by Intel Research Lab (Intel in short), which aims to recognize 11 routine
morning activities including using the bathroom, making oatmeal, making soft-boiled eggs, preparing orange juice, making
coffee, making tea, making or answering a phone call, taking out the trash, setting the table, eating breakfast and clearing
the table. Sensor readings were recorded by the subject simultaneously wearing two RFID gloves outfitted with antennae.

The evaluation criteriawe use in this paper is rather standard and simple. Sincewe are omitting sequential information in
the dataset, therefore we just calculate the accuracy we achieve on the test data set; in other words, the number of correctly
predicted activities over the total number of activities in all time slices.

We also briefly describe how we handle the Web pages we trawled from the search engine. Using the activity names
(e.g. preparing breakfast, cleaning misc, etc.) as queries, we submit these queries to Google and then the top K results are
retrieved from the search engine, where K is a parameter we will tune in the following subsections to show the relationship
between algorithm performance and the number of Web pages we retrieve for each query. Next, data preprocessing has
been applied to the raw data where all letters in the text are converted to lower case and the words are stemmed using the
Porter stemmer [41]. Furthermore, stop words are removed using a stop word list from theWeb.5 The SVM implementation
we used is the LIBSVM package [37].

5.2. Algorithm performance

We report the performance of our algorithm on three datasets with different activities in both the source domain and
the target domain. We also describe how we choose the activities in the source domain and the target domain in detail.

Since the number of activities in the UvA dataset and the Intel dataset are significantly fewer than that of the MIT PLIA1
dataset, we will use a relatively simpler strategy to choose the source and target domain activities for the UvA dataset and
the Intel dataset. For the MIT PLIA1 dataset, we will analyze the algorithm’s performance with different pairs of source and
target domain activities, which can help us understand that the ‘‘closeness’’ of the activities could affect the algorithm’s
performance a lot.

In the UvA dataset, there are only 7 activities. Therefore, we use training data from 3 activities for training (source
domain), and use the remaining 4 activities for testing (target domain). All sensor readings with their activities in the source
domain are used as training data and the rest used as testing data. The process of selecting different activities is repeated
ten times and we report the average accuracy and standard deviation we get under different parameters K . Here K is the
number of top ranked Web pages we extract from the search engine results.

We use a similar way of choosing activities in the source domain and the target domain in the Intel dataset, while we
use 5 activities in the source domain and the remaining 6 activities in the target domain. Again, the algorithm is repeated
ten times to report a mean accuracy and standard derivation. Detailed results are shown in Table 1. The row ‘‘Supervised’’
indicates the accuracywe achieve using a SVM classifier with normal 10-fold cross validation on the target domainwhenwe
could acquire labeled data on them, in other words, the performance of the SVM classifier under the traditional supervised
learning setting on the target domain. Such a result could be used as a baseline and an upper-bound to understand how
good the performance of our cross-domain activity recognition system is.

In theMIT PLIA1 dataset, since there aremany activities included in this dataset and a taxonomy could be built to describe
these activities [8,11]. Therefore, in the MIT PLIA1 dataset, we analyze how the performance will be affected when we use
the activities under the same category as activities in the source domain and construct training data, and then do the testing
on another set of activities under the same category in the target domain.

Examples are shown in Fig. 1, when we use activities under the node of ‘‘Cleaning Indoors’’ as activities in the source
domain and activities under the node of ‘‘Laundry’’ or ‘‘Dishwashing’’ as activities in the target domain. In other words, we
are using all sensor readings with activities ‘‘Sweeping, Swiffering, Mopping, Vacuuming, Dusting, Making the bed, Putting
things away, Disposing Garbage, Taking out trash, Cleaning a surface, Scrubbing, Cleaning misc, Cleaning background’’ as
training data and the testing data contain all sensor readings with activities ‘‘Washing laundry, Drying laundry, Washing
laundry background, Drying laundry background, Folding laundry, Putting away laundry, Ironing, Laundry misc’’.6

4 http://www.cs.rochester.edu/~kautz/Courses/577autumn2007/a5data.zip.
5 http://armandbrahaj.blog.al/2009/04/14/list-of-english-stop-words/.
6 Some activities, although defined in the activity taxonomy, do not appear in the MIT PLIA1 dataset, e.g. ‘‘Mopping’’.

http://www.cs.rochester.edu/~kautz/Courses/577autumn2007/a5data.zip
http://armandbrahaj.blog.al/2009/04/14/list-of-english-stop-words/
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Table 2
Algorithm performance on MIT PLIA1 dataset.

Source Target K = 10 K = 20 K = 50

Cleaning Laundry 53.4% (19.2%) 57.3% (18.7%) 58.9% (20.5%)
Cleaning Dishwashing 43.2% (18.7%) 49.3% (23.0%) 53.2% (20.7%)
Cleaning Hygiene 48.3% (22.8%) 52.4% (17.6%) 58.3% (20.7%)
Cleaning Leisure 45.7% (17.9%) 52.8% (20.7%) 54.9% (22.8%)
Laundry Cleaning 52.8% (20.5%) 53.2% (20.7%) 60.2% (20.0%)
Laundry Dishwashing 53.2% (20.7%) 58.3% (20.5%) 61.2% (21.2%)
Laundry Hygiene 46.3% (19.2%) 49.5% (23.0%) 58.3% (21.4%)
Laundry Leisure 40.2% (20.7%) 48.3% (20.5%) 49.2% (22.6%)
Dishwashing Cleaning 48.3% (20.5%) 53.2% (21.7%) 59.2% (19.2%)
Dishwashing Laundry 50.1% (21.7%) 54.8% (21.9%) 60.8% (22.6%)
Dishwashing Hygiene 52.7% (22.1%) 57.3% (20.7%) 59.2% (16.7%)
Dishwashing Leisure 43.7% (21.7%) 48.3% (18.7%) 50.3% (19.2%)
Hygiene Cleaning 45.8% (20.5%) 49.7% (20.7%) 52.9% (19.5%)
Hygiene Laundry 43.7% (20.2%) 53.8% (23.0%) 53.7% (17.0%)
Hygiene Dishwashing 42.8% (19.2%) 47.1% (22.8%) 51.2% (18.7%)
Hygiene Leisure 33.8% (20.5%) 38.3% (20.2%) 42.3% (21.2%)

The reason for us to choose the source domain’s activity set and the target domain’s activity set in such a way is as
follows: wewould like to analyze the performance of our algorithm to transfer from amore ‘‘categorized’’ set of activities to
another set of activities, which is more similar rather than chosen at random, as we had done in the previous two datasets.
We report the performance of our algorithm tested on different pairs of source activity sets and target activity sets, with
mean accuracies and standard deviations calculated over ten independent runs. Results are reported below in Table 2 with
various settings of parameter K .

From Tables 1 and 2, we can observe that our cross domain activity recognition (CDAR) algorithm could achieve a
comparable performance to supervised learning classifiers when evaluated on the target domain’s activities and trained
on the source domain’s activities. Especially, we find that when we evaluate a SVM classifier under a supervised learning
scenario on the UvA dataset, the accuracy is around 72%, whereas we could achieve a performance of 66% using our cross-
domain activity recognition algorithm, which is very close to the upper bound.

We also observe that with the increasing value of K being introduced in the algorithm, the performance generally
increases. Such an observation follows our intuition, which means more information is being extracted from the top Web
pages and generally theMMDvalue calculated ismore accurate, thereby improving the performance of the algorithmoverall.
Here we make another special note of how the choice of value K would affect our algorithm’s performance. From Tables 1
and 2, we could observe that a good value of K , around 20 or 50, would give us the optimal results. When K is larger than
the threshold of 50, the performance will degrade instead of continue improving. The reason is that, when K is too small,
theWeb page data is sparse and hence we could not get much useful information for calculating the similarity function and
when K is too large, the web pages we had crawled may not still be relevant to our querying activities and it may probably
add noise into the Web pages we had crawled and therefore it may degrade the overall performance of our algorithm.

Besides, another important observation in our experimental results in Tables 1 and 2 is that the standard deviation we
present is quite high. This result is understandable since in each round, the random procedure will select probably different
sets of activities in the source domain and/or the target domain. Therefore, the fact that the standard deviation is high
probably means that for some specific sets of source domain activities and target domain activities, the performance can be
high, whereas for some other sets of source and target domain activities, the performance will be poor. However, the mean
accuracy can still give us a general idea about the overall performance level of the algorithm.

Therefore, our experimental results on three datasets validates the effectiveness of our algorithm.

5.3. Choice of similarity functions

The Maximum Mean Discrepancy (MMD) function in our proposed approach seems to be an ad hoc choice, and it is
natural for one to ask the question about whether it is chosen deliberately to improve the performance of our algorithm
or whether other similarity functions would also achieve a comparative performance, compared to MMD? To answer this
question, we also evaluated our algorithm using another similarity function that is also popular in calculating the similarity
in information retrieval, i.e. the cosine similarity [38].

In short, the cosine similarity is defined as the cosine of the angle between two vectors, defined as:

similarity = cos(θ) =
A · B
|A||B|

, (4)

where A and B are two vectors. Such a value is easy to calculate based on theWebpages we crawled. In our case, we generate
A and B bymerging the term-frequency inverse-document frequency (tf-idf) vectors of the documents for the two candidate
activities. For example, given the K Web pages extracted for some activity aA, we will add up all the corresponding K tf-idf
values to get such a vector A. Similarly, we can get the tf-idf vector B for some activity aB, so that we can compute the Eq. (4).
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Table 3
Mined similarity values between activities.

Leave Toilet Shower Bed Breakfast Dinner Drink

Leave 1 0.29 0.21 0.19 0.15 0.16 0.25
Toilet 0.29 1 0.30 0.25 0.20 0.19 0.26
Shower 0.21 0.30 1 0.28 0.19 0.19 0.26
Bed 0.20 0.25 0.28 1. 0.18 0.17 0.29
Breakfast 0.15 0.20 0.19 0.18 1 0.23 0.18
Dinner 0.16 0.19 0.19 0.17 0.23 1 0.21
Drink 0.25 0.26 0.26 0.29 0.18 0.21 1

Table 4
Algorithm performance on UvA and intel dataset with cosine similarities and MMD similarities.

K Cosine similarity MMD similarity
UvA Acc (Std) Intel Acc (Std) UvA Acc (Std) Intel Acc (Std)

5 48.7% (19.5%) 42.4% (20.5%) 40.2% (21.7%) 39.8% (19.7%)
10 53.2% (20.7%) 45.3% (20.2%) 53.7% (22.8%) 47.3% (20.2%)
20 58.3% (20.2%) 52.1% (20.7%) 65.8% (22.1%) 58.1% (20.7%)
50 62.1% (19.2%) 57.3% (19.0%) 66.7% (21.2%) 63.2% (23.5%)

100 65.3% (16.7%) 62.3% (21.7%) 66.0% (22.4%) 63.1% (20.7%)

We provide an example of the mined similarities with a set of seven activities: leave house, use toilet, take shower, go to
bed, prepare breakfast, prepare dinner and get drink. The similarity values are shown in Table 3.

From the values in Table 3, we could see that the cosine similarity also provides a reasonable estimate about the
‘‘closeness’’ of activities. For example, ‘‘Use toilet’’ probably should be closest to ‘‘Take shower’’ since the location of the
two activities are often close together. Another example is that ‘‘Prepare breakfast’’ and ‘‘Prepare dinner’’ should also be
close. Such examples of ‘‘closeness’’ are all correctly reflected in the values shown in Table 3. However, there are some other
erroneous cases such as ‘‘Get drink’’ and ‘‘Go to bed’’ having a very high similarity value, which cannot be explained using
our intuition.

Using the same algorithm except the choice of similarity function being changed, we report our results for the UvA
dataset [40] and the Intel dataset [7] in Table 4.

In Table 4, the left two columns are results using cosine similarity functions and the right two columns are results
using MMD functions, which is the same as the results reported in Table 1. We could see that although the results using
cosine similarity functions are slightly worse than the results we report using MMD functions, it still achieves comparable
performance to MMD. Therefore, we could make the conclusion that by incorporating other ‘‘meaningful’’ and ‘‘reasonable’’
similarity functions, our cross-domain activity recognition algorithm could still achieve reasonable performance.

5.4. Using similarities rated by humans

Besides the cosine similarity function chosen above, onemight also askwhether amanually-specified similarity function,
i.e. similarity functions generated by human knowledge, can also achieve similar results? To answer this question,we further
conducted user studies to check whether a similarity function generated (or voted) by a human, could also achieve similar
results. We have approached five students ranging from different departments to fill a table which encodes the similarity
values of different activities, in a similar form as the above Table 3. The only difference lies in that this time the values of the
tables are filled with their own beliefs, with the ratings ranging from 1–5.7 To avoid potential drawbacks in our user studies,
all the students we have approached are not related to our research and also have no background knowledge about activity
recognition. The students are all Ph.D. students, but not necessarily majoring in computer science. Of the five of them, two
of them are females.

More specifically, the ratings state the degree of belief of whether the two activities are correlated or linked. For example,
score 1 indicates that these two activities ‘‘are not correlated at all and I cannot imagine these two activities have any links or
relationships’’; score 2 indicates that these two activities ‘‘may have someweak correlations, but the probability of these two
actions co-occurring or sharing similar features are not high’’. And finally a score of 5 indicates that these two activities ‘‘are
definitely correlated and they share many features, like the items used, the view of the actions, etc’’. We asked five people
to fill in their own similarity beliefs to get a more balanced view of different people with different background knowledge
and understandings of human actions. Finally, we averaged the similarity ratings across all the similarity tables they filled
and divide the rating by 5 in order to normalize the rating in the range [0, 1]. The average ratings of all 5 users across all
activity pairs are shown in Table 5 as a reference. Such a similarity ratings is also fed into our proposed algorithm to check
whether it can also provide reasonable results.

7 We use the dataset from University of Amsterdam for this user study, rather than the Intel Research Lab dataset or the MIT PlaceLab dataset. The main
reason is that the number of activity pairs in the other two datasets are simply too large for humans to label them.
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Table 5
Similarity values between activities based on user studies.

Leave Toilet Shower Bed Breakfast Dinner Drink

Leave 1 0.48 0.48 0.24 0.4 0.4 0.48
Toilet 0.48 1 0.72 0.48 0.36 0.32 0.44
Shower 0.48 0.72 1 0.6 0.36 0.36 0.28
Bed 0.24 0.48 0.6 1 0.36 0.28 0.32
Breakfast 0.4 0.36 0.36 0.36 1 0.76 0.72
Dinner 0.4 0.32 0.36 0.28 0.76 1 0.72
Drink 0.48 0.44 0.28 0.32 0.72 0.72 1

The above-mentioned similarity matrix could achieve an average accuracy of 59.5%, which is worse than the accuracy
achieved using mined similarities when K is larger than 50 but better than the accuracy achieved when K is smaller than
50, but such an accuracy is still acceptable. Since we just replace the similarities mined from the Web knowledge with this
similarity matrix based on user studies, therefore the result does not depend on any parameter. Hence, it can be shown that
our algorithm could achieve a reasonable result with any choice of similarity function as long as such a similarity function
is reasonable as well.

Here we provide some informal analysis on why similarities mined from the Web performs better than the similarities
we got from such a user study. Different people have different views about what ‘‘similarity’’ between two activities means,
for example, in our user studies, some students rate the similarity between ‘‘breakfast’’ and ‘‘dinner’’ as 5 whereas others
only rated 2.When asking them for the specific reason to do so, the response from the one rated 5was ‘‘they are both having
meals’’ and the response from the one rated 2was ‘‘how can these two activities co-occur’’? Therefore, different people have
their own standards and ways of measuring similarities and therefore the similarities of a specific pair of activities is not
coherent between different people. However, mined similarities do not have such a problem. Since the similarity metric we
use are based on termoccurrence overlap from the documentsmined from theWeb, different aspects of similarities between
activities are considered including object-usage overlap (nouns), action similarities (verbs), location overlap (places), etc.
Therefore, such a similarity mined from theWeb takesmultiple aspects of similarities between activities into consideration,
and is better than manually constructed similarity.

5.5. Discussion of experiments

Here we briefly discuss and summarize some characteristics of the results we report from our experiments.

1. Our algorithm CDAR, could successfully transfer knowledge between the source domain and the target domain and thus
solve the cross-domain activity recognition task. From Tables 1, 2 and 4, we could see that in most cases, our algorithm
could achieve an accuracy of more than 60% when evaluating on the target domain activity set. Such a performance is
rather promising since (i) we did not use any sequential information, which had proved to be of great help in traditional
activity recognition tasks; (ii) we did not use any labeled data in the target domain, such a feature of our algorithm is
especially effective in real world use, since the activity recognition systemwill be trained on a predefined set of activities
and thenwhen users use such an activity recognition system, hemay perform activities outside of the predefined activity
set. Therefore, such an algorithm that could perform cross-domain activity recognition and does not acquire training data
in the target domain would be especially useful.

2. The number of K Web pages we extract from the search engine results would affect the algorithm’s performance
but would be rather close to the optimal results or converge when K is larger than 50. This means that we could
approximate the underlying similarity score between different activities by using around 50 related Web documents.
Another advantage is that the cost of performing such a Web search would not be heavy to put into real world usage.

3. The choice of similarity functions would not affect our algorithm’s performance that much as long as a reasonable
similarity function that approximates the underlying similarity would be used. In our experiments we have already
validated this conclusion through the usage of both MMD and cosine similarity functions and from the comparison
between these two functions, we arrive at such a conclusion.

4. Whether the cross-domain activity recognition performance would be successful or not depends not only on the
algorithm but on some underlying characteristics of the activity set. In Table 2, we could note that some activity pairs
perform worse than others, for example, when we are transferring knowledge from activities under the subcategory
of ‘‘Hygiene’’ (Source Domain) to activities under the subcategory of ‘‘Information/Leisure’’ (Target Domain), we could
only achieve an accuracy of around 42% at the best. (Corresponding to the last row in Table 2.) Such a result might be of
the reason that there is a relatively larger distance between ‘‘Hygiene’’ activities and ‘‘Information/Leisure’’ activities.
In contrast, we could also find that when we use activities in the ‘‘Dishwashing’’ subcategory as the source domain
and activities in the ‘‘Cleaning’’ or ‘‘Laundry’’ subcategory as the target domain, the accuracy we achieve is much
higher, suggesting that these two kind of activities have closer relationships, which also follows our intuition. Thus,
one interesting topic to study is to determine when we could successfully ‘‘transfer the knowledge’’ between the source
domain and the target domain, or, if we had known the activity set in the target domain in advance, what source domain
would be best for us to use to ensure that the algorithm performance can be guaranteed? One possible choice can be
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using some activity ontology and shrinkage based approach to combine data from similar activities for training the
classifier [21].

6. Conclusion and future work

In this paper, we have proposed a simple yet effective approach to solve the cross-domain activity recognition problem.
The basic setting of our problem is that we have labeled training data in the source domain but no labeled training data in
the target domain; and our goal is to recognize the activities in the target domain. Furthermore, the activities in the source
and target domains do not overlap, which means that traditional supervised learning approaches cannot be applied in this
scenario. Our proposed approach makes use of top ranked Web pages returned by search engines to mine the similarities
between the activities in the two domains. By doing so, we aim to create some ‘‘pseudo training data’’ in the target domain
by making use of the training data in the source domain as well as the similarities between activities in the two domains.
We validate our approach in several real-world sensor-based activity recognition datasets, and achieve results comparable
to those of traditional activity recognition algorithms based on supervised learning.

In the future, we aim to extend our work in several directions.
First, we aim to investigate into cases where not only the activity label spaces, but also the feature spaces in two domains

are different. Our proposed approach will not be able to solve this problem since the same supervised learning algorithm is
applied to train the classifier in the target domain, which clearly requires the equality of feature spaces in the two domains.
In the relatedwork section, we havementioned a recent paper [36]which attempts to solve the activity recognition problem
under such a transfer learning setting. However, we have also mentioned that such an algorithm still needs much human
effort in creating the meta feature space.

Second, in this paper, our proposed approach does not take the sequential nature of sensor readings into account.
Furthermore, as we mentioned in the Related Work section, state-based models like Hidden Markov Models or Conditional
Random Fields are easy to model such a sequential nature. Therefore, another possible direction is to propose new
approaches for cross-domain activity recognition which could make better use of sequential information.

Third, in our experiments, we had observed that if we fix the activities in the target domain, applying our algorithm
on some particular set of activities in the source domain would achieve better performance than using some other set of
activities as the source domain. Such a phenomenon suggests that the ‘‘relatedness’’ of activities in the source domain and
the target domain would affect the algorithm’s performance greatly. In transfer learning literature, such a problem is also
referred to as ‘‘negative transfer’’ [26] and some empirical studies also show that if two tasks are too dissimilar, brute-force
transfer may hurt the performance of the target task [42]. In our cross-domain activity recognition task, when we aim to
recognize the activities from a target domain, if we can calculate the ‘‘relatedness’’ between activities in the two domains,
it could help us choose appropriate activities in the source domain to carry out the transfer procedure.
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