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ABSTRACT
Recent advances in search users’ click modeling consider
both users’ search queries and click/skip behavior on docu-
ments to infer the user’s perceived relevance. Most of these
models, including dynamic Bayesian networks (DBN) and
user browsing models (UBM), use probabilistic models to
understand user click behavior based on individual queries.
The user behavior is more complex when her actions to sat-
isfy her information needs form a search session, which may
include multiple queries and subsequent click behaviors on
various items on search result pages. Previous research is
limited to treating each query within a search session in
isolation, without paying attention to their dynamic inter-
actions with other queries in a search session.

Investigating this problem, we consider the sequence of
queries and their clicks in a search session as a task and pro-
pose a task-centric click model (TCM). TCM characterizes
user behavior related to a task as a collective whole. Specif-
ically, we identify and consider two new biases in TCM as
the basis for user modeling. The first indicates that users
tend to express their information needs incrementally in a
task, and thus perform more clicks as their needs become
clearer. The other illustrates that users tend to click fresh
documents that are not included in the results of previous
queries. Using these biases, TCM is more accurately able to
capture user search behavior. Extensive experimental result-
s demonstrate that by considering all the task information
collectively, TCM can better interpret user click behavior
and achieve significant improvements in terms of ranking
metrics of NDCG and perplexity.

Categories and Subject Descriptors
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1. INTRODUCTION
Search engine click-through logs are an invaluable resource

that can provide a rich source of data on user preferences in
their search results. The analysis of click-through logs can
be used in many search-related applications, such as web
search ranking [1], predicting click-through rate (CTR) [16],
or predicting user satisfaction [7]. In analyzing click-through
logs, a central question is how to construct a click model to
infer a user’s perceived relevance for each query-document
pair based on a massive amount of search click data. Us-
ing a click model, a commercial search engine can develop
a better understanding of search users’ behavior and pro-
vide improved user services. Previous investigations of click
models include dynamic Bayesian networks (DBN) [4], the
user browsing model (UBM) [8], the click chain model (C-
CM) [11] and the pure relevance model (PRM) [18].

While previous research seeks to model a user’s click be-
havior based on browsing and click actions after she enters
a single query, often several queries are entered sequentially
and multiple search results obtained from different queries
are clicked to accomplish a single search task. Take for ex-
ample a typical scenario. A user may first issue a query, ex-
amine the returned results and then click on some of them.
If the existing results do not satisfy her information need-
s, she may narrow her search and reformulate her query to
construct a new query. This process can be repeated until
she finds the desired results or gives up. Clearly, a typical
search can include complex user behavior, including multiple
queries and multiple clicks for each query, etc. Collectively,
all the user’s actions provide an overall picture of the us-
er’s intention as she interacts with the search engine. The
multiple queries, clicked results, and underlying documents
are all sources of information that can help reveal the user’s
search intent.

Traditionally, user sessions are obtained from a consecu-
tive sequence of user search and browsing actions within a
fixed time interval [15]. These sessions can be partitioned
into two categories: a (query) session and a search session,
where the former refers to the browsing actions for an in-
dividual query while the latter encompasses all queries and
browsing actions that a user performs to satisfy her infor-
mation need. In this paper, we consider the latter, and refer
to a search session as a task. As mentioned above, the previ-
ous research considers query sessions only, but ignores other
sources of information and their relations to the same task.
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Thus, most previous research suffers from a lack of accuracy
in many cases. The DBN model, for example, assumes that
users are always satisfied with the last click of each query,
without considering subsequent queries and clicks.
Contributions.

The above line of thinking has led us to consider the ad-
vantage of a task-centric click model (TCM) in this paper
for understanding and predicting click behavior. In this pa-
per, we first point out the necessity of modeling task level
user behavior by letting the real data speak for itself. We
then define and describe two new user-biases that influence a
search task but have been ignored in previous investigations.
We address these biases via our TCM.

The first bias indicates that users tend to express their in-
formation needs incrementally and then perform more clicks
as their needs become clearer. The second bias illustrates
that users tend to click on fresh documents that they have
not seen before under the same task. We design our TCM
using a probabilistic Bayesian method to address these two
biases. TCM is general enough to integrate most other ex-
isting click models. Finally, we verify the effectiveness of the
TCM by comparing its performance to the DBN and UBM
models. We conduct experiments with a large-scale real-
world dataset which shows that the TCM can be scaled up.
Our experiments used more than 9.5 million search tasks as
the research dataset. The experimental results show that,
by considering all of the task information, the TCM can
better model and interpret user click behavior and achieve
significant improvements in terms of NDCG and perplexity.

2. PRELIMINARIES & RELATED WORKS
We start by introducing some background concerning tra-

ditional click models and related works for mining search
session information for search-related applications.

2.1 Click Models
A well-known challenge for click modeling is the position

bias. This bias was first noticed by Granka et al. [10],
which states that a document appearing in a higher posi-
tion is likely to attract more user clicks even if it is not
relevant. Thereafter, Richardson et al. [16] proposed to in-
crease the relevance of documents in lower positions by a
multiplicative factor; Craswell et al. [6] later formalized this
idea as an examination hypothesis. Given a query q and a
document dφ(i) at the position i, the examination hypothesis
assumes the probability of the binary click event Ci given
the examination event Ei as follows:

P (Ci = 1|Ei = 0) = 0 (1)

P (Ci = 1|Ei = 1, q, dφ(i)) = aφ(i) (2)

Here we use Ci = 1 to indicate the document at the position
i is clicked and otherwise Ci = 0, with a similar definition
for Ei. Moreover, aφ(i) measures the degree of relevance be-
tween the query q and the document dφ(i). Obviously, aφ(i)

is the conditional probability of a click after examination.
Thus, the Click-Through Rate (CTR) is represented as

P (Ci = 1) = P (Ei = 1)︸ ︷︷ ︸
position bias

P (Ci = 1|Ei = 1)︸ ︷︷ ︸
document relevance

(3)

where CTR is decomposed into position bias and document
relevance.

One important extension of the examination hypothesis is
the UBM. It assumes that the examination event Ei depends

not only on the position i but also on the previous clicked
position li in the same query session, where li = max{j ∈
{1, · · · , i−1}|Cj = 1}, and li = 0 means no preceding clicks.
Global parameters βli,i measure the transition probability
from position li to position i, and Ci:j = 0 is an abbreviation
for Ci = Ci+1 = · · · = Cj = 0:

P (Ei = 1|C1:i−1 = 0) = β0,i (4)

P (Ei = 1|Cli = 1, Cli+1:i−1 = 0) = βli,i (5)

P (Ci = 1|Ei = 0) = 0 (6)

P (Ci = 1|Ei = 1) = aφ(i) (7)

A similar investigation using UBM is the Bayesian browsing
model (BBM) [14], which adopts a Bayesian approach for in-
ference with each random variable as a probability distribu-
tion. This is similar to the work on the General Click Model
(GCM)[22]. It extends the model to consider multiple biases
and shows that previous models are special cases of GCM.
Hu et al. [12] extend UBM to characterize the diversity of
search intents in click-through logs. Chen et al. [5] proposed
a whole-page click model which considers the search result
page including the organic search and advertising entries as
a whole to help the CTR prediction.

Another extension is the cascade model. It assumes that
users always examine documents without skipping from top
to bottom. Therefore, a document is examined only if all
previous documents are examined.

P (E1 = 1) = 1 (8)

P (Ei+1 = 1|Ei = 0) = 0 (9)

P (Ci = 1|Ei = 1) = aφ(i) (10)

P (Ei+1 = 1|Ei = 1, Ci) = 1− Ci (11)

Two important improvements to the cascade model are
the CCM [11] and DBN [4] models. Both emphasize that
the examination probability also depends on the clicks and
the relevance of previous documents. Moreover, allow users
to stop the examination. CCM uses the relevance of previous
documents for this while DBN uses a satisfaction parameter
si. The parameter states that if the user is satisfied with the
clicked document, she will not examine the next document.
Otherwise, there is a probability γ that the user will continue
her search.

P (Si = 1|Ci = 0) = 0 (12)

P (Si = 1|Ci = 1) = sφ(i) (13)

P (Ei+1 = 1|Si = 1) = 0 (14)

P (Ei+1 = 1|Ei = 1, Si = 0) = γ (15)

where Si is a hidden event indicating user satisfaction.
There are three other models that do not employ the cas-

cade assumption. The session utility model (SUM) [7], giv-
en a single query, measures the relevance of a set of clicked
documents as the probability that a user stops the query ses-
sion. The adPredictor model [9] interprets the click-through
rate as a linear combination of weighted features. The pure
relevance model (PRM) [18] states that the relevance of a
document is not a constant but affected by clicks in other
positions.

The research presented in this paper differs in its assump-
tions and approach from the previous research summarized
above. We focused on how to explore the whole search ses-
sion as an integrated and dynamic entity including multiple
queries and query sessions. It incorporates the data from the
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Table 1: The click rate on query sessions with re-
spect to the position of the query session in the task.
It is observed that users tend to click more on the
last query session in a task.

# of Sessions First Second Third Fourth Fifth
in Task Session Session Session Session Session

1-Session Task 62.9% - - - -
2-Session Task 46.7% 65.7% - - -
3-Session Task 48.4% 49.9% 67.0% - -
4-Session Task 47.8% 50.1% 49.2% 65.5% -
5-Session Task 47.5% 48.6% 48.4% 49.5% 65.3%

whole search session to develop a more nuanced and effective
click model.

2.2 Search Session Mining
Search session information has been used for many search

applications. The single query is often ambiguous through
and hard to use as an accurate representation of a user’s
intent. Thus, several works use previous queries or click
behavior within the same search session to enrich the cur-
rent query. White et al. [19] represented the search session
information as ODP categories and used them to predict
user interests. Xiang et al. [20] considered how users re-
formulate queries and used this information for Web search
ranking. Shen et al. [17] proposed a method for context-
aware ranking by enriching the current query with search
session information. Cao et al. used conditioned random
field and a hidden Markov model to model search session
information for query classification [2] and query suggestion
[3]. Our work differs from these studies. We focus on a click
modeling problem: how to understand and predict user click
behavior by learning the user’s perceived relevance for each
query-document pair. Our proposed model is a generative
model, which learns its parameters by maximizing the w-
hole search session likelihood with considering previous click
model assumptions.

3. TASK-CENTRIC BEHAVIOR ANALYSIS
When a user is searching information in a search engine,

however, she is performing a search task instead of a sin-
gle query session, where a task may contain one or multiple
query sessions. Simultaneously, user behavior in different
query sessions under the same task should not be treated as
the same or independent. There might exist some relation-
ship between them. In this section, we process a real dataset
to verify this assumption to obtain some findings to make
the case for the necessity of task-centric modeling. For this
motivating experiment, we collected the dataset in one week
in September, 2010 from a commercial search engine. The
dataset consists of 9.6 million tasks and 21.4 million query
sessions. To have a better understanding of this dataset,
we grouped all the search tasks by the number of query
sessions in each task. More than 49.8% of the tasks con-
tain more than one query session and include 77.5% of the
search traffic. The proportion of tasks containing query ses-
sion numbers from 2 to 5 are 21.0%, 10.7%, 6.4% and 4.1%
respectively.

A well-known metric for characterizing user click behavior
from search logs is the click-through rate (CTR). In the first
designed experiment, we first explore variances in CTR (a
query session is “clicked” if any of its documents is clicked) in
terms of the position of each query session under a task. The
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Figure 1: The probability of click on top documents
with respect to the number of previous impressions.

results are presented in Table 1. It is observed that the CTR
in the last query session, with a value ranging from 62.9%
to 67.0%, is consistently higher despite the number of query
sessions in a task. In other positions, the click rates are
all significantly lower, ranging from 46.7% to 50.1%. This
result clearly illustrates that users commonly tend to click
more in the last query session of a task.

In the second experiment, we focused on the users’ behav-
ior when the same document is presented to them more than
once in the same task. To alleviate the effect of the position
bias, we only consider the top position in this experiment.
We found that in 23.6% of the tasks, the the top document
appears more than once. In most cases this is because the
repetitions of the same query, which happens when the us-
er returns to the search engine after viewing one previous
search result page and wants to check the remaining results.
Even if the queries are different, the search engine may also
return same documents because of the similarity of search
intent. Moreover, what we are interested in is the user’s
click behavior when she sees a duplicate document. Thus
we grouped the documents by the number of their previous
presentations under the same task. Obviously, this number
is 0 if the document is retrieved for the first time and larger
than 0 for recurring documents. We report its CTR results
in Figure 1. It shows that recurring documents have a sig-
nificantly lower CTR. For documents which are presented
for the first time, the averaged CTR is 32.7%. The CTR
decreases to 20.3%, however, if there is one previous impres-
sion, and to 14.7% if there are two previous impressions.
When a document has been presented five times, the CTR
drops to 8.6% . A general observation is that users have a
lower (but not zero) probability of clicking on stale results
in the same task; i.e., users like to click fresh results.

4. TASK-CENTRIC CLICK MODEL
In this section, we propose a new model framework in-

terpreting for the observations in Section 3. We have given
two assumptions on the user’s behavior in the tasks. Then,
we designed the model according to the assumptions. In
the next section, we will introduce a parameter estimation
algorithm to infer the model.

4.1 Assumptions
Task (search session) identification is on-going work. There

is no specific evidence to indicate that whether or not two
adjacent query sessions belong to the same task. Thus we
use the method proposed in work [15] with the default time
threshold and similarity threshold to break the tasks. They
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have reported a promising result, and we assume it as a reli-
able method. Generally speaking, our observations reported
in Section 3 involve two kinds of click biases:

1. Users tend to click more at the end of a task.
2. When a document is presented more than once, its

CTR decreases after the first presentation. The more
times it is presented under the same task, the less CTR
it will have.

The first bias can be interpreted as follows. When a user is
searching with an intent, especially for an informational in-
tent or difficult intent, she might not know how to formalize
a perfect query to represent it. In this case, she may first
formalize a query to check its search results. Normally, the
query may not reflect her final intent and the results may
not be satisfactory. She may examine some results (snip-
pets) without a click but learn from them to re-formalize
her query. In this situation, there is no user click, but it
does not indicate that all the results are irrelevant to the
query. Instead, we may attribute the no click behavior to the
mismatch between the users’ intent and the results. Thus,
before the final query, a user tends to investigate a perfect
query to represent her intent. While in the last query, she
is more likely to find the query matches her intent, and so
she performs more clicks. This is consistent with what we
observed in Table 1, where the CTR of the last query session
is consistently high in a task. We formalize this assumption
as follows:

Assumption 1 (Query Bias). If a query does not match
a user’s intent, she will perform no clicks but learn from the
search results to re-formalize a new query.

It is worth noting that whether a query matches a user’s
intent or not cannot be observed from the logs. We need to
model this as a random variable in the coming section. Be-
sides the query bias mentioned above, the documents under
different queries in the same task might have other relation-
ships. Since all the queries under the same task are related,
their returned documents may overlap each other. Thus,
here we consider some documents which are presented in
the same task more than once. When a document is ex-
amined the first time, the user will judge its usefulness and
decide whether or not to click it. If a click happens, it means
that she has acquired the information contained in the doc-
ument. If no click happens, it means that the user is not
interested in the document. In both cases, the document is
less likely to be clicked again when it is repeatedly presented
in the same task: i.e., users like fresh documents. This phe-
nomenon, therefore, explains why the CTR decreases with
the time of presentations in Figure 1. We formalize this
assumption as:

Assumption 2 (Duplicate Bias). When a document
has been examined before, it will have a lower probability to
be clicked when the user examines it again.

4.2 Model
Based on the two assumptions mentioned above, we present

our task-centric click model (TCM) in this section. The
TCM has a two-layer structure. We call these layers the
macro model and the micro model, respectively.

The macro model incorporates the query bias assumption
into the TCM as illustrated in Figure 2. When a user sub-
mits a query to a search engine, the TCM first uses a random
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Figure 2: The Macro Model of TCM.
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Figure 3: The Micro Model of TCM

variable to characterize whether or not this query matches
her intent. In both cases, the user starts browsing the search
result page following the micro model introduced in the next
paragraph. There is difference, however, between these two
cases. If the query does not match the user’s intent, there
should be no click in the browsing process. Otherwise, the
TCM will use a general micro model to interpret user click
behavior and continue to model whether she will reformu-
late a new query in the same task. As is shown in figure
2, the TCM uses two binary random variables, M and N ,
to characterize the macro model. M represents whether the
query is good, or in other words, whether it matches the
user’s intent, while N represents whether the user wants to
continue her search if her previous query is good. It is worth
noting that the value of M will influence how model inter-
prets user behavior for the current query. The probability
distribution, though, is not only learnt according to the in-
formation in the current query. Instead, it is a contextual
variable which can be affected by the previous and follow-
ing queries in the same task, i.e, it is learnt based on all of
the task information. Intuitively, when all the task data are
available, we use them to determine if the current query is
appropriate to represent the user’s intent for the whole task.

The micro model, as shown in Figure 3, describes the
browsing process in a single query session. We may integrate
into the micro model existing click models while considering
document freshness. Here in order to make the explana-
tion easy to understand and the inference clear, we use a
simple model to illustrate the definition of a micro model
and illustrate its extension later to include other models.
Our micro model is built with the examination hypothesis,
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Figure 4: The graphical model of TCM.

which states that the user should first examine a document
before clicking it. We assume the probability of a document
being examined is uniquely determined by its ranking po-
sition. This strategy aims at eliminating the position bias
in a query session. As we mentioned in the macro model,
if a query does not reflect a user’s intent, she will not click
documents after the examination. Otherwise, it will turn
to document freshness to judge whether the document has
been examined in previous query sessions. If it is a first-time
examination, we follow the general examination hypothesis,
which states that the probability of a click is determined
by the document’s relevance, denoted as rd. On the other
hand, if the document has been examined before, she will
decide whether the document is still “fresh”, which is charac-
terized as a random variable F . For a non-fresh document,
its click behavior is no longer exclusively determined by its
relevance, so we need to characterize the freshness to inter-
pret user click behavior. In other words, the user will tend to
skip a non-fresh document, since it might have been exam-
ined before. With the fact that P (F = 1) ≤ 1, intuitively,
we may regard the current design as multiplying a discount
factor to the relevance of non-fresh documents. In this way,
we follow the duplicate assumption in assumption 2 which
states that the CTR of the document decreases after being
examined more than once.

To give a formal definition to the TCM, we present it as
a graphical model in Figure 4. In this graph, we assume
that a task contains m queries (sessions), with each query
session containing n ordered documents. We use (i, j) to
indicate the j-th ranking position in the i-th query session.
The symbols in Figure 4 and their descriptions are listed in
Table 2. All the variables are binary variables.

Table 2: Notations Used in TCM
Symbol Description
Mi Whether the i-th query matches the user’s intent.
Ni Whether the user submits another query after the

i-th query session.
Ei,j Examination of the document at (i, j).
Hi,j Previous Examination of the document at (i, j).
Fi,j Freshness of the document at (i, j).
Ri,j Relevance of the document at (i, j).
Ci,j Whether the document at (i, j) is clicked.
(i′, j′) Assume that d is the document at (i, j). i′ is the

latest query session where d has appeared in pre-
vious query sessions, and j′ is the ranking position
of this appearance.

To represent the TCM with another approach, we may
formalize the definition in Figure 4 with the following con-

ditional probabilities:

P (Mi = 1) = α1; (16)

P (Ni = 1|Mi = 1) = α2; (17)

P (Fi,j = 1|Hi,j = 1) = α3; (18)

P (Ei,j = 1) = βj (19)

P (Ri,j = 1) = rd. (20)

Mi = 0⇒ Ni = 1; (21)

Hi,j = 0⇒ Fi,j = 1; (22)

Hi,j = 0⇔ Hi′,j′ = 0, Ei′,j′ = 0; (23)

Ci,j = 1⇔Mi = 1, Ei,j = 1, Ri,j = 1, Fi,j = 1;(24)

Here, α1, α2 and α3 are parameters of the TCM. α1 repre-
sents the probability of Mi = 1 learnt from the whole task’s
contextual information. α2 and α3 are parameters which
hold similar meanings.

We model Assumption 1 by (16), (21) and (24). We model
Assumption 2 by (22), (23) and (24). The formula (19) mod-
els the position bias. As mentioned above, we can replace
(19) with other formulas to embed existing click models into
the TCM to explain the position bias. For example, if we
want to integrate the UBM model, we simply need to replace
(19) by

P (Ei,j = 1|Ci,lj = 1, Ci,lj+1:j−1 = 0) = βlj ,j (25)

If we want to leverage the DBN model into the TCM, we
need to introduce a new class of variables, namely Si,j , to
represent the user’s satisfaction. Then we can replace (19)
by

Ei,j−1 = 0⇒ Ei,j = 0

Ci,j = 0⇒ Si,j = 0

Si,j−1 = 1⇒ Ei,j = 0

P (Si,j = 1|Ci,j = 1) = sd

P (Ei,j = 1|Ei,j−1 = 0, Si,j−1 = 0) = γ

where sd is the satisfaction parameter for the document
retrieved in the i-th query session and ranked at the j-th
position. Obviously, the TCM can be viewed as a general
framework for enhancing existing click models and helping
to eliminate their cross-query bias. In this paper, to focus
on the demonstration of the effectiveness of the biases to
interpret the task-centric user behavior, we use it in its sim-
plest form, namely the formula from (19). The experimental
results in section 6 demonstrate that even with the simple
model, the TCM outperforms state-of-the-art models like
DBN and UBM.

5. INFERENCE & IMPLEMENTATION
The inference algorithm estimates the value of three glob-

al parameters α1, α2, α3 and other probability parameters
defined in the browsing model. We perform our inferences
using the Expectation-Maximization (EM) algorithm. The
target of EM is to maximize the log-likelihood over the log
data, which is also the sum of all log-likelihoods over tasks.
For each task, the TCM treats the task as a whole in which
all the query sessions are mutually correlated. Thus, the
likelihood of an entire task is a joint distribution over all its
query sessions instead of the product of the likelihood of each
individual query session. Since the basic unit of the TCM
inference is the task, its implementation is more complicated
than the implementation for traditional click models such as
UBM and DBN.
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To perform EM, we need to compute the posterior dis-
tribution for each hidden variable in the task. Such hidden
variables include Mi, Ei,j and Ri,j , which satisfy P (Mi =
1) = α1, P (Ei,j = 1) = βj and P (Ri,j = 1) = rd. We
also introduce two classes of auxiliary variables N ′

i and F ′
i,j

satisfying P (N ′
i = 1) = α2 and P (F ′

i i, j) = α3. Then we
rewrite (17) as Ni = 1 ⇔ Mi = 1, N ′

i = 1; and (18) as
Fi,j = 1 ⇔ Hi,j = 1, F ′

i,j = 1. In this way, all the pa-
rameters in the TCM can relate to their associated hidden
variables. These variables are binary, mutually independen-
t, and their probability of being 1 is equal to the value of
some specific parameters.

With these hidden variables, we can perform the EM it-
erations. In the E-Step, we compute the marginal posterior
distribution of each hidden variable to associate parameters
that we introduced. The computation is performed based
on the parameter values updated in the previous iteration,
which are further discussed in Section 5.1. In the M-Step,
all posterior probabilities associated with the same param-
eter are averaged to update the parameters. In particular,
if we assume that Hθ is the set of hidden variables which
associate with the parameter θ, we may have

θ ←
∑

X∈Hθ
P (X = 1|D)

|Hθ| . (26)

Here, D represents the entire click-through log dataset. Ac-
tually, the posterior distribution of each hidden variable de-
pends only on its related task.

5.1 A Fast Implementation of EM
One problem remaining is to compute the marginal poste-

rior distributions. Unfortunately, the observed variables and
hidden variables are mutually correlated in the task mak-
ing the computation of marginal distributions exponentially
complicated. In order to tackle the complexity problem,
we have to temporally violate some specific assumptions in
the TCM and assume that most variables are independent
from each other. We wish to minimize the impact of this
modification in the calculation of the marginal posterior. In
particular, we notice that every hidden variable we consider
in the TCM is closely associated with at most one documen-
t. For example, Ri,j , E

′
i,j and F ′

i,j are associated with the
document located at (i, j), while Mi and N ′

i have no asso-
ciation with any document directly. Suppose that we want
to compute the marginal posterior distribution of a hidden
variable X; d is the document associated with X. In this
case, we preserve the relation (23) where d is located at (i, j).
For all other positions where d does not appear, we redefine
Hi,j ≡ 0. In this way, we consider the duplicate bias only
for d and assume that there is no duplicate bias for all other
documents. This modification certainly changes the TCM,
but it has relatively little impact on the marginal distribu-
tion of X, because d is the only document which directly
interacts with X.

Under this modification, we are able to compute more
efficiently the marginal posterior distribution of X. Assume
that the document d is retrieved t times in the query chain
at position (i1, j1), · · · , (it, jt). Since

P (X|D) = (27)
t∑

k=0

P (X,Ei1,j1 = · · · = Eik,jk = 0, Eik+1,jk+1 = 1|D)

we transformed the problem of computing P (X|D) to the
problem of computing each of the terms on the right hand of
(27). Note that when the position of the first examination
of d is given, all the query sessions in the task are mutually
independent. Thus, every term on the right hand of (27) can
be calculated in O(tn) time. Because there are at most t+1
terms in total, the time complexity of computing P (X|D) is
O(t2n).

Another problem is that the EM inference is iterative, so
its efficiency is largely dependent on its convergence rate.
However, the traditional EM update converges slowly in in-
ferring click models. To see this, suppose that we want to
update a relevance parameter rd for some document d. We
rewrite the update formula (26) with Bayes’ Rule:

rd ←
∑

R∈Hrd
P (R = 1)P (D|R = 1)/P (D)

|Hrd |
. (28)

If we use TR to indicate the task where R lies, then P (D|R =
1)/P (D) = P (TR|R = 1)/P (TR). The value of P (TR|R = 1)
and P (TR) can be computed following the same approximate
strategy used above. Since P (R = 1) = r, so we have

rd ← rd ·
∑

R∈Hrd
P (D|R = 1)/P (D)

|Hrd |
. (29)

The update formula (29) usually takes many iterations
before rd converges to a stable value, especially when doc-

ument d is ranked in a low position which causes P (D|R=1)
P (D)

to be very close to 1. To accelerate the EM inference, we
modify the update formula (28) but keep the fixed point of
rd unchanged. We note that for any relevance variable R,
it must be related to an examination of some document d.
There are two possibilities in this examination: either the
document is clicked or it is skipped. We use H+

rd
to indicate

the set of R where d is clicked, and use H−
rd

to indicate the
set of R where d is skipped. If d is clicked, then we have
P (R = 1|D) = 1; otherwise, we have

P (R = 1|D) = r · P (D|R = 1)

P (D)
.

When we substitute these two relations into (26) and replace
the “←” operator by an equation, we can resolve rd as

rd ← |H+
rd
|

|H+
rd |+

∑
R∈H−

rd

P (D|R = 1)/P (D)
. (30)

When we update rd by formula (30), it converges much
faster. In particular, if H+

rd
= ∅, then rd converges to ze-

ro immediately after the first iteration. Note that (30) is
not a standard EM update, so it does not guarantee every
convergence property of EM. According to our real-data ex-
periments, however, the new update converges well in all
cases.

6. EXPERIMENTS
In this section, we report the results of our experiments

to demonstrate the advantages of the TCM by comparing
them to the results achieved using the UBM model and the
DBN model. The effectiveness of a click model is measured
using both the NDCG metric [13] and the click perplexity
metric.

6.1 Experimental Setup
The click logs used to develop and test the click models

were collected from a popular commercial search engine for
three consecutive days in December 2010. The click logs
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Table 3: The summary of the data set in exper-
iments. Task Length means the number of query
sessions in the task. The same query may exist in
tasks of different lengths.

Task # Task # Query # Session
Length

1 4,699,387 562,648 4,699,387
2 2,115,676 570,360 4,231,352
3 1,067,730 623,356 3,203,190
4 629,624 564,109 2,518,496
5 391,127 474,891 1,955,635
6 265,471 401,145 1,592,826
7 182,418 332,216 1,276,926
8 134,124 280,980 1,072,992

≥ 9 97,046 228,596 873,414
All 9,582,603 3,761,986 21,424,218
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Figure 5: Overall NDCG evaluation

comprise 9.6 million search tasks and 21.4 million query ses-
sions. The dataset is then divided randomly and evenly into
a training set with 4.8 million tasks and a test set with the
other 4.8 million tasks. Note that we grouped the tasks by
their users in advance so that all the tasks from a user is
either in the training set or the testing set. The distribution
of the tasks, queries and sessions is reported in Table 3.

We also collected human editorial judgements to deter-
mine the relevance between queries and documents. This
dataset is used to evaluate the effectiveness of a commercial
search engine with a similar description in [21]. There are
totally 17, 551 queries that appear in both the click logs and
the editorial judgement data set. In our experiments, we
use them to calculate the normalized discounted cumulative
gain (NDCG).

6.2 NDCG Evaluation
To evaluate relevance estimation accuracy, we trained TCM,

UBM and DBN models on the same training set. The train-
ing of TCM follows the algorithm in Section 5.1. The train-
ing of UBM and DBN follows the inference algorithm intro-
duced in the original papers. The γ parameter of DBN is
set to its optimal value, namely γ = 0.9. The inference of
TCM, UBM and DBN are all based on EM performed in an
iterative manner. The initial value of EM parameters are
set at 0.5. The iterative training has been performed until
all parameters converge.

After the completed training, we obtain a relevance value
for each query-document pair in the training set. We sorted
the documents with respect to this estimated relevance pro-
duced by the click model and compared the ranking result
with the ideal ranking derived from the editorial judgement.
We then calculated the NDCG to evaluate the effectiveness
of each click model.
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Figure 6: The NDCG@5 Improvements over query
frequencies.

Table 4: The NDCG@5 scores over query types.
Navigational Informational

Queries Queries
TCM 0.623 0.615
UBM 0.552 0.458
DBN 0.521 0.422

The NDCG scores (at different positions) for TCM, UB-
M and DBN are reported in Figure 5. It shows that the
task-centric model significantly outperforms the traditional
models. The improvements in TCM over UBM in terms of
NDCG@1, NDCG@3, NDCG@5 are 0.056, 0.107, 0.145 re-
spectively. Similarly, the improvements over DBN are 0.042,
0.127 and 0.187. It is clear that the relative improvements
are all more than 10%. We also performed a t-test for the
improvements and found that all the P-values of a t-test
are less than 0.01%. These results verify the necessity of
considering task-related biases in TCM for estimating more
accurate relevance. In addition, it is worth noting that the
improvements in NDCG@1 are not as significant as those in
the other two positions. This might be attributed to the fact
that there is no position bias in position 1. Existing models
like DBN and UBM can have an acceptable performance in
this position, but TCM can still show small gains over them
in efficiency.

To draw a conclusion about the consistency of the im-
provements, we first grouped the queries with respect to
their frequencies, which are the number of times a query ex-
ists in the training set. We then calculated the NDCG@5
improvements for each frequency. The results are reported
in Figure 6. It is informative to note that the improvements
in the low frequency queries are much more significant than
those of in high frequency queries. This might demonstrate
that existing click models are not effective for modeling low
frequency queries due to the inefficient information. How-
ever, considering all of the task information, the TCM can
determine a good relevance for these queries despite their
infrequency. In Figure 6, the TCM upon UBM curve has
a dip for middle frequencies. This might be attributed to
the fact that UBM has a particularly good performance
on middle frequency queries: it maintains the most com-
plex transition matrix among the three models. Note that
the middle frequency queries are more diversified than high
frequency queries (high frequency queries like “google” and
“facebook” are typically navigational) and has more data-
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per-query than tail queries. Thus, the structure of UBM
enables it to capture more sophisticated position bias infor-
mation in a single session for middle frequencies.

Second, we grouped the queries based on their query en-
tropy, which characterizes the diversity of clicks on returned
documents. A low entropy means that users tend to click
the same document, which usually suggests a navigation-
al query. In contrast, a high entropy indicates that the user
clicks on a variety of documents usually suggests that it is an
informational query. In our data set, 33.6% of the queries
have entropy ranges in [0, 0.05], and 28.1% of the queries
have entropy ranges in [1.6, 1.65]. Other queries have their
entropies distributed within [0.05, 1.6]. Therefore, we sim-
ply assume that queries in the first range are navigation-
al queries and those in the second range are informational
queries. We present the results of NDCG@5 in Table 4. It is
notable that improvements in informational queries are more
significant than those of navigational queries. This may be
due to the well known observation that compared to navi-
gational queries, informational queries are more ambiguous
and difficult for a search engine to accurately gauge. Thus,
to satisfy a search task, users have to frequently reformulate
their queries to get better search results. This might bring
more task information to enrich the current query. This
enrichment in turn enables the TCM to learn a better rele-
vance. To sum up, both query grouping approaches consis-
tently verify the importance of the search task information
for inferring a more accurate document relevance.

6.3 Perplexity Evaluation
In addition to NDCG, click perplexity is a widely used

metric for evaluating click model accuracy. Perplexity can
be seen as the log-likelihood powers which are computed
independently at each position. For example, we assume
that qsj is the probability of some click calculated from a click
model, i.e. P (Cs

j = 1) where Cs
j is a binary value indicating

the click event at position j in query session s. Then the
click perplexity at position j is computed as follows:

pj = 2
− 1

|S|
∑

s∈S(Cs
j log2q

s
j+(1−Cs

j )log2(1−qsj ))

The perplexity of a data set is defined as the average of
perplexities in all positions. Thus, a smaller perplexity value
indicates a better consistency between the click model and
the actual click data. The improvement of perplexity value
p1 over p2 is given by p2−p1

p2−1
× 100%.

As mentioned above, the two biases introduced in the
TCM are supposed to better interpret user click data and
learn a better relevance in training. Thus, our first experi-
ment on perplexity is designed to verify the relevance accu-
racy in the test set. To remove the effect of biases in the test
set to focus on pure relevance, we considered the tasks with
only one query session in the test set and calculated their
perplexity in prediction. In table 5, we first read the overall
perplexity in the last column. It shows that the TCM can
achieve 2.6% and 6.5% improvements over UBM and DBN
respectively. We performed the t-test and it shows that the
P-values are both less than 0.01% due to the large-scale of
the dataset. We further investigated the perplexity in dif-
ferent ranking positions. It first showed that UBM perform-
s better than DBN on perplexity. This is consistent with
the results reported in [21]. Second, it demonstrates that
the TCM achieves improvements over almost all position-
s. One exception happens in the lower positions (position 4

Table 5: The perplexity comparison over ranking
positions. “@n”represents the perplexity at position
n. “Impr.” represents the improvements of TCM
over UBM and DBN.

@1 @2 @3 @4 @5 Overall
TCM 1.731 1.262 1.159 1.090 1.070 1.262
UBM 1.758 1.264 1.160 1.090 1.070 1.269
Impr. 3.5% 0.6% 0.4% 0.0% 0.0% 2.6%
DBN 1.765 1.263 1.171 1.112 1.092 1.280
Impr. 4.4% 0.1% 6.7% 19.6% 23.1% 6.5%

Table 6: The perplexity comparison over query ses-
sion positions

First Second Third Fourth Fifth
Session Session Session Session Session

TCM 1.190 1.224 1.242 1.247 1.244
UBM 1.192 1.249 1.278 1.289 1.290
Impr. 1.1% 9.9% 13.0% 14.8% 15.9%
DBN 1.195 1.233 1.252 1.261 1.264
Impr. 2.6% 3.6% 4.2% 5.5% 7.6%

and position 5) when the TCM performance is comparable
with UBM. The perplexity on this dataset is the same for
these two positions. Different from the DBN model, the UB-
M model maintains a global matrix, such as equation (5).
Thus in prediction, documents in lower positions can ben-
efit from the click/skip information in the higher positions.
The lower a position is, the more information it can obtain
from higher positions. Therefore, for a document in posi-
tion 4 or 5, it may have enough information to calculate the
click probability: i.e., enriching more task information is no
longer necessary in these positions for the UBM model, even
though it is very beneficial in the high positions.

Next, we are interested in the relationship between the
quantity of task information and the improvements in per-
plexity. We grouped all the query sessions based on their
positions in each task and used the entire test set to calcu-
late the perplexity. For the calculation of probability of a
click in the TCM of each current query (from position 2),
we used its previous queries as task information in order to
help determine the “freshness” of all the documents in the
current query session according to (22) and (23). We report
the results in Table 6. It is clear that as the query session po-
sition rises, the improvements monotonically increase. This
trend is consistent in both UBM and DBN. This leads to an
intuitive conclusion that the more task information that is
for available enrichment, the more significant are improve-
ments the TCM can achieve. This observation verifies the
importance of task information for inferring better relevance
in click models.

7. CONCLUSION
In this paper, we have investigated the necessity of incor-

porating enriched task information to develop a better click
model. We first used real data to prove this truth and then
proposed two task-related biases to better model user click
behavior under a task. We have proposed a task-centric click
model (TCM) to address these two biases and illustrated it-
s advantages in interpreting user click data. Furthermore,
we have performed experiments from multiple perspectives
to verify the effectiveness of the TCM. The large-scale ex-
periments demonstrate that the TCM can consistently and
significantly outperform the other two state-of-the-art mod-
els.
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We believe that taking into account a wider arrange of
task information is the key to learning a better click model,
since a single query is often ambiguous and only imperfect-
ly represent user intent. As demonstrated in this research,
the task information is especially beneficial for low frequent
(tailed) queries, which are believed to be hard to do on com-
mercial search engines. On the other hand, the modeling ap-
proach used in this paper can possibly be applied to other
search related applications with consideration of task infor-
mation, such as query classifications or suggestions. More-
over, how to investigate more user personalized biases and
simultaneously consider task-related biases is a promising
direction for designing new click models. These are research
topics for our future investigations.
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