
Wisdom of the Better Few: Cold Start Recommendation
via Representative based Rating Elicitation

Nathan Liu
Hong Kong University of
Science and Technology

nliu@cse.ust.hk

Xiangrui Meng
Stanford University

mengxr@stanford.edu

Chao Liu
Microsoft Research

chaoliu@microsoft.com

Qiang Yang
Hong Kong University of
Science and Technology
qyang@cse.ust.hk

ABSTRACT
Recommender systems have to deal with the cold start prob-
lem as new users and/or items are always present. Rating
elicitation is a common approach for handling cold start.
However, there still lacks a principled model for guiding how
to select the most useful ratings. In this paper, we propose
a principled approach to identify representative users and
items using representative-based matrix factorization. Not
only do we show that the selected representatives are supe-
rior to other competing methods in terms of achieving good
balance between coverage and diversity, but we also demon-
strate that ratings on the selected representatives are much
more useful for making recommendations (about 10% better
than competing methods). In addition to illustrating how
representatives help solve the cold start problem, we also
argue that the problem of finding representatives itself is an
important problem that would deserve further investigation-
s, for both its practical values and technical challenges.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval—Information Filtering

General Terms
Algorithms, Experimentation

Keywords
Collaborative Filtering, Recommender Systems, Cold Start

1. INTRODUCTION
In recent years, recommender systems have become indis-

pensable tools for coping with information overload in a wide

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RecSys’11, October 23–27, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-0683-6/11/10 ...$10.00.

range of Web services such as E-commerce (e.g., Amazon),
internet radio (e.g., Last.FM) and online news aggregators
(e.g. Digg). Collaborative filtering (CF) is the de facto
mechanism for recommendations: it generates recommen-
dations for a user by utilizing the observed ratings of other
users whose past ratings are correlated with the target user.
Albeit effective, CF falls short when it comes to new users
and/or new items. This is a well-known problem, commonly
referred to as the cold start problem.

Due to its practical importance, cold start has attracted
numerous research in recent years [15, 9, 6]. The immediate
remedy to cold start is to leverage meta data for estimating
the taste of new users and items based on similar users and
items [15, 9, 6]. However, as meta data is not always avail-
able, as an alterative, the recommender system could explic-
itly ask the new user’s ratings on some seed items. Ratings
on seed items could help the recommender system calibrate
the taste of new users. In the past, various heuristic meth-
ods on how to strategically selecting seed items have been
proposed [19, 17], but a principled approach is still lacking
for determining the valuable seed items and users.

In this paper, we propose a principled approach to deter-
mining the seeds by locating the representatives in a recom-
mender system. Roughly speaking, representatives are those
users whose linear combinations of tastes would accurately
approximate other users’ (the same for items). Specifical-
ly, we leverage the maximal-volume concept [8] for low-rank
matrix approximations, a recent result from computational
mathematics, and devise a representative-based matrix fac-
torization (RBMF) model. This model directly optimizes a
criterion that reflects the prediction accuracy for user-item
ratings, which leads to superior results than existing meth-
ods for representative selection. In addition to providing
a highly effective approach to rating elicitation, the RBMF
model also provides a highly intuitive and interpretable view
of the item or user population of a recommender system, as
the factors correspond to actual users or items rather than
some latent dimensions as in traditional matrix factorization
models.

In summary, the major contributions of the paper are as
follows:
• Proposing a principled approach to rating elicitation

for new users and item via finding the set of most rep-
resentative users and items based on observed ratings.
• Designing a novel matrix factorization model both for

37

finding most representative users and items in a recom-
mender systems and an efficient representative pursuit
algorithm for solving the model.

The remainder of the paper is organized as follows. In sec-
tion 2, we describe in detail the representative-based matrix
factorization model for identifying representative users and
items based on past ratings. Then in section 3, we show how
to efficiently learn model parameters for new users and new
items given the ratings on representative items and from rep-
resentative users, respectively. In section 4, we report and
discuss our experimental results. In section 5, we introduce
related work. Finally, in section 6, we draw conclusions and
point out several directions for future work.

2. REPRESENTATIVE-BASED
MATRIX FACTORIZATIONS

2.1 Problem Definition
Collaborative filtering usually takes a collection of n users
U = {u1, u2, . . . , un} and m items I = {i1, i2, . . . , im} as in-
puts. The observed ratings in a recommender system could
be represented by a matrix Y ∈ Rm×n where each entry
yij corresponds to user j’s rating on item i. Most exist-
ing matrix factorization models for CF are based on rank-k
factorizations of the form Y ≈ UV , where U ∈ Rm×k and
V ∈ Rk×n are often referred to as item and user latent factor
matrices, both of which consist of free parameters that are
to be learnt by minimizing certain forms of reconstruction
error, for instance, the Frobenius distance ‖Y − UV ‖F .

In this paper, we are interested in finding rank-k factor-
izations of the form Y ≈ CX or Y ≈ XR, where X is a
loading matrix consisting of free parameters while the oth-
er matrix C ∈ Rm×k or R ∈ Rk×n are component matrices
formed by actual columns or rows of Y respectively. We
refer to these two forms of factorizations as representative-
based matrix factorizations (RBMF) of Y , which can be cast
into the following optimization problems:

minimize
1

2
‖Y − CX‖2F (1)

subject to C ∈ Rm×k consists of exactly k columns of Y,

X ∈ Rk×n,

and

minimize
1

2
‖Y −XR‖2F (2)

subject to R ∈ Rk×n consists of exactly k rows of Y,

X ∈ Rm×k.

This kind of factorizations are highly interpretable. For
example, given a user representative based factorization CX,
any prediction ŷij is generated by (CX)ij =

∑k
t=1 citxtj ,

that is, taking the k representative user’s ratings on item
i and then computing a weighted average of those ratings
based on the coefficients in xj , the j-th column of X, the
values in which can be naturally interpreted as user j’s co-
ordinates under the bases of the k representative users.

Note that any algorithm for user representative-based fac-
torization Y ≈ CX can be easily turned into an algorithm
for item representative-based factorization Y ≈ XR by tak-
ing Y T as input. So in the remaining subsections, we would
focus on the problem of finding user representative-based
factorization: Y ≈ CX.

The representative-based matrix factorizations could be
naturally divided into two stages:

1. Finding representatives: forming the component ma-
trix C by selecting k columns of Y ,

2. Computing the loading matrix X given C to minimize
the reconstruction error.

In the following two subsections, we describe our algo-
rithms for performing these two steps respectively.

2.2 Finding Representatives

2.2.1 Overview
The representative set should consists of active users who

well represent the whole population but with little taste
overlap. We design the Representative Pursuit algorithm
following this guideline. It consists of the following two ma-
jor steps:

1. Dimension reduction: reducing the dimensionality of
the column space of Y from m to k, while trying to
preserve the relationships between users maximally,

2. Basis selection: selecting k representative users to form
a well-conditioned set of bases in the reduced space.

These two steps define a framework for representative se-
lection. For each step, we have choices in choosing suitable
algorithms. Representative Pursuit (Algorithm 1) employs
the rank-k SVD approximation for dimension reduction and
the maxvol algorithm by Goreinov et al [7] for basis selection
to implement the two steps.

Algorithm 1 Representative Pursuit

1: Compute the rank-k SVD approximation to Y ,

Yk = UΣV T , (3)

where U ∈ Rm×k, Σ ∈ Rk×k is a diagonal matrix with
Y ’s k largest singular values as diagonals and V ∈ Rn×k.

2: Find a k×k submatrix C of V such that all the entries of
V C−1 are not greater than 1 in absolute value (Algorith-
m 2). Select the corresponding users as representative
users.

2.2.2 Dimension Reduction
In this step, we want to map the column space of Y to

a k-dimensional space while preserving the relationships a-
mong users as much as possible. In Algorithm 1, we choose
the factor matrix V from the rank-k SVD approximation
to Y as the dimension reduction result. The rank-k SVD
approximation gives the best rank-k approximation to Y in
2-norm and Frobenius norm, where the missing values in Y
are treated as zeros. In practice, other rank-k approxima-
tions may give better handling of missing values, e.g., Funk’s
stochastic gradient descent method [12]. In this work, we
choose rank-k SVD for simplicity, which already generates
very good results and saves us from tuning parameters. It
is worth noting that other dimension reduction algorithms,
such as multidimensional scaling and random projections,
may also be incorporated here.

Given a rank-k approximation Yk = UV T , the factor ma-
trices are not unique. For example, we have

Yk = UV T =
(
UG−T

)
(V G)T = U1V

T
1

38

hold for any non-singular matrix G ∈ Rk×k. It raises the
question that how G affects the basis selection. We will see
in the following subsection that, using the maxvol algorithm,
the basis selection is invariant to G. This unique property
frees us from defining a proper axis for the latent space.

2.2.3 Basis Selection
In this section, we consider the problem of selecting a well-

conditioned set of bases in the latent space by exploring the
maximal-volume concept [5]. In detail, it suggests selecting
columns to maximize the parallelepiped spanned by them
to form low-rank approximations. To maximize the volume,
the columns selected should be large in magnitudes which in-
dicates importance, and evenly distributed to prevent linear
dependency, both of which fit our purpose well. To the best
of our knowledge, the best approximation ratio of column-
based matrix factorizations was achieved using random vol-
ume sampling by Deshpande and Vempala [5]. This result
provides theoretical foundations for exploring the maximal-
volume concept for representative selection. However, the
problem of finding the maximal-volume k columns is prov-
ably NP-hard [4] and, moreover, we should not apply any
approximation algorithm to a rating matrix directly due to
its high portion of missing values. A more robust approach
is to first reduce the dimensionality of the column space of
Y and then search for the maximal-volume submatrix in the
latent space for representative/basis selection.

Since we already reduce the dimensionality of Y ’s column
space to k. Finding k columns from V T maximizing the
parallelepiped spanned by them is equivalent to finding a
k × k submatrix of V having the maximal determinant in
absolute value because

Vol(S) = | det(S)| (4)

for any square matrix S. Goreinov et al [7] presented a
practical algorithm, named maxvol, for searching the maximal-
volume k × k submatrix of a n × k matrix V based on a
dominant property of the maximal-volume submatrix. In
the remainder of this subsection, we first show the domi-
nant property and demonstrate how it leads to the maxvol

algorithm. Then we prove the invariant property and show
how we incorporate activeness scores into the framework.

Without loss of generality, let’s assume that the submatrix
formed by the first k rows of V has the maximal volume.
Then we must have

|V V (1 : k, :)−1|∞ ≤ 1, (5)

where MATLAB notations are adopted and | · |∞ is the ele-
mentwise ∞-norm. We prove (5) by contradiction. Let

V V (1 : k, :)−1 =

(
Ik
Z

)
.

If |Z|∞ > 1, again without loss of generality, let us assume
that |z11| > 1. Then we swap the first row and the (k+1)-th
row of V , and denote the resulting matrix by V̄ . We have

V̄ (1 : k, 0)V (1 : k, :)−1 =

(
z11 zT1
0 Ik−1

)
.

Therefore,

|det(V̄ (1 : k, :))|
= |det(V̄ (1 : k, :)V (1 : k, :)−1V (1 : k, :))|
= |det(V̄ (1 : k, :)V (1 : k, :)−1)|| det(V (1 : k, :))|
= |z11|| det(V (1 : k, :))|
> |det(V (1 : k, :))|,

which contradicts the maximal-volume assumption on V (1 :
k, :). Hence (5) holds, which says the maximal-volume sub-
matrix is dominant in this sense. However, the reverse s-
tatement is not always true: If a k × k submatrix V (I, :)
with |I| = k is dominant, i.e. V (I, :) satisfies

|V V (I, :)−1| ≤ 1,

V (I, :) does not necessarily have the maximal volume among
all the k × k submatrices. Although V (I, :) may not be the
maximal-volume one, Goreinov et al [7] showed that at the
worst case we have

|det(V (I, :))| ≥ k−k/2| det(V (I∗, :))|,

where V (I∗, :) is the maximal-volume k × k submatrix.
More importantly, the insight from the proof of (5) leads

to a local search algorithm, maxvol, to find a local maximal-
volume submatrix, which works well in practice.

Algorithm 2 maxvol [7]

1: Compute the LU factorization of V with row pivoting,

V (p, :) = LV UV .

2: Compute

B = V V (p(1 : k), :)−1.

3: Let (i, j) = arg maxs,t |bst|.
If |bij | > 1, swap p(i) and p(j) and go to 2.

4: Output p(1 : k).

The LU factorization with partial pivoting provides a rea-
sonable initial guess. The volume of V (p(1 : k), :) is strictly
increasing after swapping p(i) and p(j) in step 3. Hence the
algorithm will terminate in finite number of steps, less than
100 in practice. A careful implementation only takes one LU
factorization with partial pivoting to initialize, and a rank
one update for each iteration.

2.3 Solving Loading Matrix X
In this section, we consider the problem of computing X

given C to minimize the objective function of (1), which is
a least squares problem. The optimal solution is given by

X∗ = (CTC)−1CTY, (6)

assuming C has full rank. To avoid breakdown due to rank
deficiency, which is rare for the problem we are considering,
we add a small positive λ to the diagonals of CTC in (6) to
increase numerical stability,

X∗ = (CTC + λI)−1CTY, (7)

where I is k×k identity matrix. Note that (7) is the optimal
solution to the following regularized least squares problem,

minimizeX∈Rk×n
1

2
‖Y − CX‖2F +

λ

2
‖X‖2F .

39

3. COLD START RECOMMENDATION
VIA REPRESENTATIVES

The representative-based matrix factorization (RBMF) mod-
el allows us to identify the set of most representative users
and items based on past ratings and make recommendation
to existing users. It also provides us an intuitive rating elic-
itation strategy for new users and items. In this section,
we discuss how an existing RBMF model can be efficiently
updated to cope with new users and new items.

In most real world systems, new items and new users
would be added to the system constantly. A recommender
system should be able to adjust its model rapidly in order
to be able to make recommendations regarding new users
and new items as soon as possible. This require techniques
for learning the parameters associated with new users and
new items based on an increment of new data without the
need to retrain the whole model entirely. This type of tech-
niques have also been known as folding in. Using the RBMF
model, folding in is effortless. In particular, we only need
to obtain ratings from the k representative users for a new
item in order to recommend it to other users. Similarly, we
only need to ask a new user to rate k representative items
to recommend other items to him.

Let’s first consider the new item case, given a user repre-
sentative based factorization Y ≈ CX. Denote the index set
of selected user representatives by J such that C = Y (:, J).
And let the new rating matrix be Ȳ , which contains m + 1
rows and n columns. Our goal is to predict the newly in-
serted row Ȳ (m + 1, :) in order to effectively recommend
the new item to users. Via representative users, it is s-
traightforward to estimate Ȳ (m + 1, :) by eliciting ratings
on the new item from representative users. To see this, let’s
consider how the newly inserted item would effect the user
representative-based factorization of Y . With only one ad-
ditional item inserted into the system, it is reasonable to as-
sume that the representative set J remains the same as well
as the relationships between users and representatives de-
picted by X. Hence a suboptimal user representative-based
matrix factorization of the new rating matrix Ȳ is given by

Ȳ ≈ Ȳ (:, J)X =

(
Y (:, J)

Ȳ (m+ 1, J)

)
X. (8)

The only unknowns in the factorization above are the entries
of Ȳ (m+ 1, J), i.e., the ratings from representative users on
the new item. Therefore, if Ȳ (m + 1, J) is available, or
partially available, the newly inserted row Ȳ (m + 1, :) can
be well approximated by

Ȳ (m+ 1, :) ≈ Ȳ (m+ 1, J)X. (9)

By similar arguments, we can easily fold in a new user into
an item representative-based factorization model by asking
the new user to rate representative items. The estimate of
the newly inserted column of the rating matrix is given by

Ȳ (:, n+ 1) ≈ XȲ (I, n+ 1), (10)

where I is the index set of representative items.
Recall that we use activeness scores to promote active

users or popular items to be selected as representatives in
order to increase the success rate of obtaining ratings from
representative users on new items, or ratings from new users
on representative items. In practice, we have many other
ways to increase the success rate, e.g., offering free trials of

new items to representative users, or offering bonus points
to new users for rating representative items.

We note that new ratings can also be folded into a general
matrix factorization (MF) model, e.g., rank-k SVD, at the
cost of solving a least squares problem. In the experiment
section, we will try both MF model and RBMF model for
folding in new items and new users and show that RBMF
is not only costless compared to MF for folding in, but also
generates comparable recommendations.

4. EXPERIMENTS

4.1 Data Sets
We used three different data sets for both movie and mu-

sic recommendation in our experiments. The first data set is
a randomly sampled subset of the Netflix data set1 contain-
ing about 20 million ratings by 100,000 users on over 17,000
movies. Our second data set is the Movielens dataset2 con-
taining over 10 million ratings by over 60,000 users on about
10,000 movies. The third data set is obtained from the online
radio service Last.fm3 containing over 2 million records of
play counts on around 5,000 artists by around 50,000 users.

4.2 Baseline Methods
In this section, we describe several simple strategies for

finding a set of representative users and items, whose perfor-
mances are compared with our representative-based matrix
factorization (RBMF) model.

4.2.1 Random Strategy
A naive method to choose the representatives is simply to

randomly select a subset of users or items. This strategy
corresponds to the assumption that users or items are in-
different in terms of their predictive power on other users’
and items’ ratings and therefore there would be no gain in
strategically choosing which users and items to elicit ratings
from.

4.2.2 Most Ratings Strategy
Another simple method to select the representative is to

choose the k users or k items which had the most observed
ratings. This strategy is also easy to calculate. However,
popularity in many cases are not equivalent to informative-
ness. For example, the most popular movies tend to be
widely liked by almost any user and a rating on such movies
would provide little information regarding the new user’s
unique preferences. Similarly, a very active user may be
someone who frequently watches randomly selected movies
and may not serve as a good user prototype.

4.2.3 K-Medoids Strategy
The previous two methods do not consider the correla-

tion between the selected representatives and could poten-
tially choose multiple highly similar users or items. To avoid
such redundancy problem, we also consider another more
complicated strategy based on k-medoids clustering [11]. k-
medoids tries to group data objects into k clusters. Each
cluster is represented by an actual data object, i.e. the
representative. The other instances are clustered with the

1http://www.netflixprize.com/
2http://www.grouplens.org/node/73
3http://mtg.upf.edu/node/1671

40

representative to which it is most similar to. In our ex-
periments, we used the CLARA algorithm [11] to generate
the k-medoids clustering. It tries to maximize the sum of
similarities between each object and its corresponding repre-
sentative and uses an iterative process to repeatedly assign
objects to clusters and choose new cluster representatives to
improve the clustering.

4.3 Analysis of the Selected Representatives
In this set of experiments, we tried to evaluate the quality

of a selected representative user or item sets with respect to
the population based on the following quantitative measures:

• Coverage: the proportion of users (or items) which
have rated the set of representative items (or have been
rated by the representative users). This metric allows
us to measure how widely are the user or item pop-
ulation being covered by the representative set as a
whole.

• Diversity:the proportion of users (or items) which
have rated less than 10% of the representative items
(or have been rated by less than 10% of the represen-
tative users). This metric reflects how much unique
information are carried by each representative.

The results of analysis are summarized in Table 1 and Table
2. We can see that the Most strategy tends to have the
highest coverage but very low diversity. In contrast, the
representatives chosen by RBMF tend to have much higher
diversity while attaining similar coverage. This shows that
RBMF based representative selection is highly effective for
achieving a good balance between coverage and diversity.

Table 1: Analysis of User Representatives Selected
by Different Algorithms

Coverage Diversity
most 0.9450 0.2273
kmedoids 0.9210 0.2613
rbmf 0.8657 0.4611

(a) Netflix
Coverage Diversity

most 0.9561 0.1072
kmedoids 0.9544 0.1298
rbmf 0.8918 0.3552

(b) Movielens
Coverage Diversity

most 0.3790 0.7474
kmedoids 0.2768 0.7525
rbmf 0.2868 0.7759

(c) Lastfm

4.4 Experiments on Rating Elicitation
In the following experiments, we try to compare the ef-

fectiveness of different representative selection strategies for
the task of rating elicitation under both user and item cold
start. To simulate user cold start setting, we split the users
into a disjoint training set and a test set. The representative
items are selected only based on the ratings by the users in
the training set. Then for the users in the test set, we make
predictions only based on their ratings on the representa-
tive items. The effectiveness of the representative items are
then evaluated based on how well they help identify which of

Table 2: Analysis of Item Representatives Selected
by Different Algorithms

Coverage Diversity
most 0.8784 0.1705
kmedoids 0.8737 0.2203
rbmf 0.8533 0.3164

(a) Netflix
Coverage Diversity

most 0.9271 0.1357
kmedoids 0.9471 0.1491
rbmf 0.9183 0.3270

(b) Movielens
Coverage Diversity

most 0.9399 0.2815
kmedoids 0.9435 0.3821
rbmf 0.9603 0.3135

(c) Last.FM

nonrepresentative items a users also likes. Similarly, for the
item cold start setting, we split the items into a training and
a test set. The representative users are determined based on
the training set only. Then for the test set of items, we try
to predict which other users would like the test items based
only on the representative users’ ratings.

4.4.1 Evaluation Protocol
We evaluate different algorithm’s ability to distinguish

good recommendations from bad ones. Following most re-
cently proposed evaluation schemes [12, 20], we consider
both observed and missing ratings in our evaluation to ac-
count for the Not Missing At Random(NMAR) effect [13].
For Netflix and Movielens data sets, we consider an item as
a good recommendation if the corresponding rating is higher
than 4. Otherwise, we consider it as a bad recommendation
if the rating is either lower than 4 or unknown. Similarly,
for the Last.FM data set, we consider an artist to be a good
recommendation to a user if he/she had played the artist
more than 20 times and both unplayed artists or less played
artists as bad recommendations.

For both settings, different methods are used either to
rank items for each user in the user cold start setting or to
rank users for each item in the item cold start setting. Since
each result in a ranking is either good or bad, we adopted
several binary relevance based information retrieval perfor-
mance metrics including Precision at K (Pre@K), Mean Av-
erage Precision (MAP) and Area under Curve (AUC), which
are described in the following.

Precision at K is a widely used performance metric which
is defined as the fraction of good recommendations among
the top k recommendations.

Pre@K =
N+

K

N+
K +N−K

(11)

where N+
K and N−K are the number of good and bad recom-

mendations among the top k results in a ranking. In our
experiment, the Pre@K for the rankings for different cold
start items and users are first computed independently and
the average over all users and items in the test set are then
taken as the final performance.

Rather than considering the precision at only the K-th po-
sition, the metric average precision (AP) considers all rank

41

positions with good results and is defined as the average of
the precisions at these positions:

AP =

∑N
i=1 Pre@i× δ

+(i)

N+
(12)

where Pre@i is the precision at the i-th position and δ+(i)
is a binary indicator function that returns 1 if the result
at the i-th position is good and 0 if otherwise. The mean
average precision (MAP) is simply the mean of the average
precisions over all users and items in the test set.

Area under Curve(AUC) is defined the area under the re-
ceiver operating characteristic (ROC) curve, which is math-
ematically equivalent to the proportion of correctly ordered
pairs in the ranking. A pair of result is mis-ordered if the
result at the higher rank position is a bad result while the
result at the lower rank position is a good result:

AUC = 1− N∓

N+ ·N−

where N∓ denotes the number of mis-ordered result pairs.
Similar to Pre@K, we compute the AUC for each user and
item in the test and then take the average of these AUC
scores as the overall performance.

4.4.2 Results
We empirically compared different representative selection

strategies in terms of the effectiveness of the elicited ratings
for making recommendations on new users and new items.
For evaluating item representatives, we split the users into
a training set and test set and then apply different meth-
ods to determine a set of representative items based on the
complete rating matrix of the training users. Similarly, for
evaluating user representatives, we construct a training and
a test set of items and use different methods to identify the
most representative users based on the rating matrix of the
training items. In both cases, we use 80% of the users or
items for training and the remaining 20% for test.

Once the representative users/items are determined based
on the training data, we could then simulate rating elici-
tation on new users/items by extracting the set of ratings
from the representative users and items from the test set.
We then apply the folding in techniques described in sec-
tion 3 to learn the parameters for the simulated new users
or new items based on their ratings on the representative
items or from representative users. In our experiments, we
first built both a representative-based matrix factorization
(RBMF) model and a traditional matrix factorization mod-
el (MF) [12] from the training data. We then try to fold
in the new users and items based on the ratings from the
representatives for both models following the procedure in
section 3. Finally, we use the model after folding in to make
recommendations. Comparing the effectiveness of different
representative selection strategies would allow us to study
whether they perform consistently for different models.

In our experiments, we also tried to vary the number of
representative users from 20 to 100 and the number of rep-
resentative items from 5 to 20 to simulate increasing rating
elicitation cost budget. This allows us to compare the effec-
tiveness of different strategies under different budgets.

The complete results are shown in Table 3 and Table 4
respectively, which reveals the following findings:

1. The naive random strategy generally performed signif-
icantly worse than the other strategies. This confirmed

our belief that it is necessary to carefully choose which
users and items to elicit ratings under cold start.

2. The RBMF based representative selection outperformed
the other methods by a significant margin under al-
most all settings except for the user representative task
on the Last.FM data set, in which it attained similar
performance as k-medoids.

3. We can see that the relative effectiveness of different
methods were quite consistent irrespective of whether
RBMF or MF was used for folding in. Moreover, the
relative performances are also rather consistent across
different values of k, the number of representatives.

5. RELATED WORKS
Recently, Amatriain et. al. [1] investigated how to ac-

curately predict a users’ movie preferences only based on
only a small set of experts’ ratings, where the experts are
movie critics who regularly publish online reviews. While
this model relies on a set of predefined experts, the repre-
sentative users in our model are automatically chosen from
the existing user population of the system. Moreover, as the
representative users or items are within the target system
itself rather than some independent third parties.

While there are very few works to study the problem of
finding representative users/items in recommender system,
the social network analysis community have long recognized
that a small number of influential users could often be in-
strumental in affecting other users’ adoption of products.
This had let to various viral marketing strategies [2, 18, 16],
which first targets the influencers in a social network and
then relies social influence to escalate the impact. More-
over, the reaction to new products by influencers can al-
so serve as strong evidence for predicting the community’s
adoption rates [3]. These existing methods heavily relied on
the underlying network connections between users in order
to discover influencers and design information propagation
models. In contrast, our model only requires user feedback
and is applicable to recommender systems without explicit
social networks.

Matrix factorizations using original columns or rows (CX),
or using both (CUR), have received increasing interests in
the fields of scientific computing and theoretical computer
science. Deshpande and Vempala [5] proved that, in theory,
given a matrix A ∈ Rm×n and an integer k � m,n, there
exists a submatrix C consisting of k columns of A such that
‖A − C(C+A)‖F ≤

√
k + 1‖A − Ak‖F , where Ak denotes

the best rank-k approximation to the matrix A in Frobenius
norm. Practical algorithms generally fall into two categories:
1) using Rank Revealing QR (RRQR) factorizations [14], 2)
exploring the maximal-volume concept [8].

In the data mining community, there exists very few work-
s on algorithms and applications of CX or CUR type fac-
torizations and the existing works have mostly emphasized
the sparsity and interpretability of these models. Sun et al
applied CX factorization on large graphs and showed that
the sparse nature of the matrix C could lead much more
compact yet highly accurate decomposition of large sparse
matrices [21]. Hyvonen et. al. [10] considered non-negative
CX and CUR problems. They proposed two algorithms,
both of which solve non-negative least squares problems at
each iteration. We don’t consider the non-negative option
since it is easy to interpret negative factors for matrix fac-
torizations in recommender systems.

42

Table 3: Comparing Different Strategies for Selecting User Representatives for Item Cold Start
Netflix Movielens Last.fm

K P@10 MAP AUC P@10 MAP AUC P@10 MAP AUC
random

20

0.080 0.032 0.523 0.118 0.049 0.553 0.036 0.016 0.528
most 0.272 0.053 0.693 0.405 0.118 0.814 0.032 0.015 0.533
kmedoids 0.129 0.057 0.701 0.138 0.051 0.554 0.053 0.025 0.539
rbmf 0.330 0.102 0.714 0.482 0.144 0.833 0.057 0.025 0.540
random

40

0.123 0.043 0.549 0.244 0.053 0.567 0.051 0.021 0.548
most 0.281 0.089 0.746 0.415 0.124 0.817 0.049 0.020 0.555
kmedoids 0.124 0.049 0.544 0.179 0.063 0.576 0.078 0.034 0.562
rbmf 0.356 0.111 0.728 0.515 0.162 0.825 0.060 0.026 0.557
random

100

0.164 0.057 0.576 0.239 0.076 0.619 0.084 0.032 0.582
most 0.296 0.094 0.747 0.014 0.044 0.736 0.079 0.029 0.593
kmedoids 0.176 0.067 0.575 0.217 0.066 0.651 0.136 0.051 0.601
rbmf 0.374 0.122 0.765 0.536 0.173 0.839 0.122 0.046 0.596

(a) Results of Folding in the RBMF model

Netflix Movielens Last.fm
K P@10 MAP AUC P@10 MAP AUC P@10 MAP AUC

random

20

0.200 0.056 0.637 0.224 0.059 0.65 0.024 0.015 0.528
most 0.083 0.049 0.737 0.125 0.075 0.798 0.028 0.016 0.530
kmedoids 0.176 0.053 0.631 0.261 0.072 0.664 0.042 0.023 0.537
rbmf 0.308 0.082 0.726 0.444 0.120 0.805 0.045 0.022 0.537
random

40

0.211 0.057 0.628 0.236 0.064 0.664 0.040 0.020 0.544
most 0.034 0.047 0.729 0.075 0.071 0.803 0.038 0.019 0.547
kmedoids 0.197 0.060 0.641 0.275 0.077 0.672 0.052 0.026 0.553
rbmf 0.299 0.080 0.734 0.425 0.117 0.813 0.055 0.027 0.555
random

100

0.224 0.066 0.654 0.347 0.099 0.713 0.055 0.027 0.581
most 0.014 0.044 0.736 0.024 0.064 0.811 0.051 0.025 0.584
kmedoids 0.217 0.066 0.651 0.316 0.094 0.707 0.067 0.032 0.590
rbmf 0.255 0.079 0.744 0.428 0.122 0.836 0.065 0.032 0.592

(b) Results of Folding in the MF model

Table 4: Comparing Different Strategies for Selecting Item Representatives for User Cold Start
Netflix Movielens Last.fm

K P@10 MAP AUC P@10 MAP AUC P@10 MAP AUC
random

5

0.017 0.017 0.516 0.012 0.016 0.537 0.012 0.011 0.506
most 0.459 0.227 0.819 0.432 0.215 0.821 0.193 0.091 0.696
kmedoids 0.172 0.089 0.594 0.191 0.092 0.620 0.198 0.095 0.638
rbmf 0.465 0.226 0.815 0.501 0.262 0.831 0.211 0.099 0.692
random

10

0.158 0.085 0.592 0.037 0.026 0.545 0.023 0.016 0.506
most 0.488 0.236 0.833 0.500 0.254 0.851 0.224 0.105 0.749
kmedoids 0.167 0.087 0.589 0.256 0.120 0.660 0.235 0.112 0.739
rbmf 0.519 0.248 0.820 0.559 0.299 0.862 0.252 0.117 0.762
random

20

0.215 0.110 0.632 0.134 0.070 0.591 0.096 0.048 0.575
most 0.503 0.239 0.850 0.530 0.277 0.874 0.263 0.124 0.788
kmedoids 0.252 0.126 0.644 0.380 0.199 0.724 0.287 0.139 0.781
rbmf 0.563 0.273 0.848 0.637 0.343 0.888 0.322 0.152 0.814

(a) Results of Folding in the RBMF Model

Netflix Movielens Last.fm
K P@10 MAP AUC P@10 MAP AUC P@10 MAP AUC

random

5

0.278 0.112 0.746 0.261 0.111 0.727 0.174 0.074 0.725
most 0.369 0.166 0.748 0.400 0.198 0.773 0.191 0.090 0.750
kmedoids 0.300 0.122 0.746 0.309 0.133 0.732 0.213 0.099 0.760
rbmf 0.459 0.200 0.783 0.495 0.251 0.804 0.219 0.101 0.763
random

10

0.278 0.114 0.748 0.291 0.128 0.731 0.187 0.077 0.725
most 0.316 0.155 0.748 0.351 0.202 0.789 0.179 0.089 0.764
kmedoids 0.304 0.126 0.751 0.304 0.130 0.736 0.243 0.101 0.764
rbmf 0.512 0.228 0.807 0.520 0.266 0.829 0.234 0.111 0.773
random

20

0.305 0.123 0.754 0.354 0.143 0.742 0.201 0.085 0.736
most 0.254 0.153 0.766 0.288 0.197 0.805 0.167 0.090 0.789
kmedoids 0.340 0.133 0.753 0.424 0.206 0.778 0.279 0.123 0.771
rbmf 0.520 0.246 0.831 0.586 0.309 0.854 0.261 0.125 0.811

(b) Results of Folding in the MF model

43

6. CONCLUSION AND FUTURE WORK
In this paper, we proposed a principled approach to find-

ing the most representative users and items in a recom-
mender system via the representative-based matrix factor-
ization (RBMF) model. We show that the representative
users and items can be used as targets from which to elic-
it ratings during cold start. We conducted extensive ex-
periments on both movie and music rating data sets and
demonstrated that the representative-based rating elicita-
tion significantly outperforms existing heuristic strategies
for both user and item cold start. We also designed sev-
eral quantitative measures including coverage and diversity
for characterizing the representative set and showed that the
representatives chosen by the RBMF model is able to attain
both high coverage and high diversity.

The problem of finding representative users and items in
a recommender systems present many new and interesting
challenges for data mining. One potential to improve our
current model for representative selection is to incorporate
user/item meta-data in addition to ratings. Another issue is
to design refined objective functions based on the coverage
and diversity metrics we identified. Moreover, we will also
try to explore the use of representative finding in other novel
applications (e.g., behavioral targeting) to further validate
its usefulness.

7. ACKNOWLEDGEMENT
We would like to thank the support from grant Hong Kong

RGC project 621010.

8. REFERENCES
[1] X. Amatriain, N. Lathia, J. M. Pujol, H. Kwak, and

N. Oliver. The wisdom of the few: a collaborative
filtering approach based on expert opinions from the
web. In SIGIR ’09: Proceedings of the 32nd
international ACM SIGIR conference on Research and
development in information retrieval.

[2] H. Bao and E. Y. Chang. Adheat: an influence-based
diffusion model for propagating hints to match ads. In
WWW ’10: Proceedings of the 19th international
conference on World wide web, 2010.

[3] R. Bhatt, V. Chaoji, and P. Rajesh. Predicting
product adoption in large-scale social networks. In
CIKM ’10: Proceedings of the 19th international
conference on World wide web, 2010.

[4] A. Civril and M. Magdon-Ismail. Finding maximum
Volume sub-matrices of a matrix. RPI Comp Sci Dept
TR, pages 07–08, 2007.

[5] A. Deshpande and S. Vempala. Adaptive sampling and
fast low-rank matrix approximation. Approximation,
Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pages 292–303, 2006.

[6] Z. Gantner, L. Drumond, C. Freudenthaler, S. Rendle,
and L. Schmidt-Thieme. Learning attribute-to-feature
mapping for cold-start recommendations. In ICDM’10:
Proceedings of the 10th IEEE international conference
on data mining, 2010.

[7] S. Goreinov, L. Oaeledets, D. Savostyanov,
E. Tyrtyshnikov, and N. Zamarashkin. How to find a
good submatrix. Matrix Methods: Theory, Algorithms
and Applications, page 247, 2010.

[8] S. Goreinov and E. Tyrtyshnikov. The
maximal-volume concept in approximation by
low-rank matrices. In Structured matrices in
mathematics, computer science, and engineering:
proceedings of an AMS-IMS-SIAM joint summer
research conference, University of Colorado, Boulder,
June 27-July 1, 1999, volume 280, page 47. Amer
Mathematical Society, 2001.

[9] A. Gunawardana and C. Meek. Tied boltzmann
machines for cold start recommendations. In RecSys
’08: Proceedings of the 2008 ACM conference on
Recommender systems, 2008.

[10] S. Hyvonen, P. Miettinen, and E. Terzi. Interpretable
nonnegative matrix decompositions. In Proceeding of
the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2008.

[11] L. Kaufman and P. J. Rousseeuw. Finding Groups in
Data: An Introduction to Cluster Analysis.
Wiley-Interscience, 2005.

[12] Y. Koren, R. M. Bell, and C. Volinsky. Matrix
factorization techniques for recommender systems.
IEEE Computer, 42(8):30–37, 2009.

[13] B. M. Marlin and R. S. Zemel. Collaborative
prediction and ranking with non-random missing data.
In RecSys ’09: Proceedings of the third ACM
conference on Recommender systems, 2009.

[14] C. Pan. On the existence and computation of
rank-revealing LU factorizations* 1. Linear Algebra
and its Applications, 316(1-3):199–222, 2000.

[15] S.-T. Park, D. Pennock, O. Madani, N. Good, and
D. DeCoste. Näıve filterbots for robust cold-start
recommendations. In KDD ’06: Proceedings of the
12th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2006.

[16] F. J. Provost, B. Dalessandro, R. Hook, X. Zhang,
and A. Murray. Audience selection for on-line brand
advertising: privacy-friendly social network targeting.
In SIGKDD 2009.

[17] A. M. Rashid, I. Albert, D. Cosley, S. K. Lam, S. M.
McNee, J. A. Konstan, and J. Riedl. Getting to know
you: learning new user preferences in recommender
systems. In IUI ’02: Proceedings of the 7th
international conference on Intelligent user interfaces.

[18] M. Richardson and P. Domingos. Mining
knowledge-sharing sites for viral marketing. In KDD
’02: Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and
data mining, 2002.

[19] S. Shearin and H. Lieberman. Intelligent profiling by
example. In IUI ’01: Proceedings of the 6th
international conference on Intelligent user interfaces.

[20] H. Steck. Training and testing of recommender
systems on data missing not at random. In KDD ’10:
Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining

[21] J. Sun, Y. Xie, H. Zhang, and C. Faloutsos. Less is
more: Compact matrix decomposition for large sparse
graphs. In Proceedings of the 2007 SIAM International
Conference on Data Mining (SDM), 2007.

44

