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Abstract

Transfer learning proves to be effective for leveraging
labeled data in the source domain to build an accurate
classifier in the target domain. The basic assumption be-
hind transfer learning is that the involved domains share
some common latent factors. Previous methods usually
explore these latent factors by optimizing two separate
objective functions, i.e., either maximizing the empir-
ical likelihood, or preserving the geometric structure.
Actually, these two objective functions are complemen-
tary to each other and optimizing them simultaneously
can make the solution smoother and further improve the
accuracy of the final model. In this paper, we propose
a novel approach called Graph co-regularized Transfer
Learning (GTL) for this purpose, which integrates the
two objective functions seamlessly into one unified op-
timization problem. Thereafter, we present an iterative
algorithm for the optimization problem with rigorous
analysis on convergence and complexity. Our empirical
study on two open data sets validates that GTL can con-
sistently improve the classification accuracy compared
to the state-of-the-art transfer learning methods.

Introduction
A striking aspect of machine learning is the ability to process
a large amount of unorganized information by learning mod-
els from labeled data in a domain. Unfortunately, it is often
very expensive to obtain sufficient labeled data. In the mean-
while, it is not uncommon that abundant labeled data exist in
other relevant domains. However, traditional machine learn-
ing algorithms cannot leverage the labeled data from differ-
ent domains since they require the same distribution across
all the data. To address this situation, transfer learning (Pan
and Yang 2010) has been widely studied to explore the di-
vergent distributions among multiple data domains and train
accurate classifiers in the domains of interest. It proves to
be very effective in many real-life applications such as text
categorization (Zhuang et al. 2011), sentiment analysis (Pan
et al. 2010a), image classification (Zhu et al. 2011) and col-
laborative filtering (Pan et al. 2010b).

The basic assumption behind transfer learning is that there
exist some common latent factors shared by all domains.
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These latent factors can be exploited to reduce the distri-
bution divergence and bridge different domains. Previous
methods usually uncover these latent factors by optimizing
predefined objective functions, including maximizing the
empirical likelihood (Dai et al. 2007; Zhuang et al. 2010;
Wang et al. 2011; Zhuang et al. 2011), and preserving the in-
trinsic geometric structure (Ling et al. 2008; Pan et al. 2011;
Wang and Mahadevan 2009; 2011). Actually, these objective
functions focus on different aspects of the data and are com-
plementary to each other to some extent (Zhu and Lafferty
2005). On one hand, each data point may be associated with
some latent factors. For example, a text document can be re-
garded as a combination of several hidden topics. Extracting
these latent factors involves maximizing the empirical likeli-
hood of data statistics. On the other hand, from a geometric
perspective, the data points may be sampled from a distri-
bution supported by a low-dimensional manifold embedded
in a high-dimensional space (Cai et al. 2009). This geomet-
ric structure, meaning close samples tend to have the same
label, should be preserved when the common latent factors
are discovered as the bridge for knowledge transfer. Other-
wise, transfer learners based on the discovered bridge may
fail to predict labels smoothly with respect to the geometric
structure. However, most of the existing works in the litera-
ture consider the two objective functions separately without
exploring the benefit of integrating them in a unified manner.

In this paper, we address the aforementioned issue by
developing a novel approach called Graph co-regularized
Transfer Learning (GTL). GTL combines the maximization
of empirical likelihood and the preservation of geometric
structure into one unified objective function so that it can
optimize the empirical likelihood and the geometric struc-
ture simultaneously. As a result, GTL can successfully ex-
plore the common latent factors to facilitate smooth transfer
learning without breaking the geometric structure.

GTL is implemented as a novel algorithm named Graph
co-regularized Collective Matrix tri-Factorization (GCMF).
The main idea of GCMF is illustrated in Figure 1. GCMF
works for any number of domains, but for the ease of expla-
nation, we use two domains: one source domain Ds and one
target domain Dt. The domain indices are I = {s, t}. Each
domain Dπ , π ∈ I has a feature-example matrix Xπ . To
uncover the latent factors, we decompose Xπ into a product
of three nonnegative matrices, i.e., Xπ = UπHVT

π , where
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Figure 1: Illustration of graph co-regularized collective ma-
trix tri-factorization (GCMF) algorithm for GTL. Small cir-
cles represent latent factors, among which the unfilled ones
are the groundtruth example classes in the source domain.

Uπ = [uπ
∗1, . . . ,u

π
∗k], Vπ = [vπ

∗1, . . . ,v
π
∗c], and a∗i is the

ith column of matrix A. The matrix tri-factorization per-
forms feature-example co-clustering by maximizing the em-
pirical likelihood in domain Dπ (Ding, Li, and Peng 2006),
with H representing the association between feature clusters
Uπ and example classes Vπ . H is shown to remain stable
across domains, which can therefore be treated as a shared
bridge for knowledge transfer (Zhuang et al. 2011). Further-
more, we construct affinity graphs Gu

π and Gv
π to encode the

geometrical information underlying the feature space and
the example space in domain Dπ , respectively. Intuitively,
similar features tend to represent the same semantic, while
close examples tend to have the same label. Taking these two
graphs as co-regularization for the matrix tri-factorization,
the geometrical information is seamlessly incorporated into
the co-clustering procedure, making the labels predicted by
the learned model sufficiently smooth with respect to the in-
trinsic geometric structure. This will guarantee the uncov-
ered common latent factors H to be a smooth bridge and
facilitate more effective transfer learning.

The main contribution of this paper is the GTL frame-
work to address transfer learning with constrained informa-
tion. We specifically study the simultaneous optimization of
empirical likelihood and geometric structure by formulating
a matrix factorization with graph regularization. We believe
that GTL can handle transfer learning when any prior knowl-
edge is available and can be incorporated into graph regular-
ization. Typical prior knowledge includes links in network
mining, or user trust relations in collaborative filtering. It
can also be easily extended to handle multiple data domains.
Extensive experiments on the widely adopted data sets vali-
date the effectiveness of our proposed approach.

Related Work
Previous works in transfer learning assume a set of common
latent factors existing across the source domain and the tar-
get domain, which behave as a bridge to transfer knowledge
between them (Pan and Yang 2010). These latent factors are
discovered by optimizing certain predefined objective func-
tions, such as empirical likelihood and geometric structure.

Collective Matrix Factorization (CMF) (Singh and Gor-
don 2008) and its tri-factorization variants have been ex-

tensively studied for transfer learning recently (Gupta et al.
2010; Long et al. 2010; Wang et al. 2011; Zhu et al. 2011;
Zhuang et al. 2011; Long et al. 2012). CMF jointly factorizes
multiple matrices with correspondences between rows and
columns while enforcing a set of common latent factors that
match rows and columns across different matrices. The com-
mon latent factors are then used as a bridge for knowledge
transfer. Existing CMF-based methods mainly maximize the
empirical likelihood among multiple domains (Singh and
Gordon 2008). If we can explore deeper in the data beyond
the empirical likelihood, we may discover more connections
among the domains and build up a better transfer model.

Recently, the geometric structure has been explored for
transfer learning, including Cross-Domain Spectral Classi-
fication (CDSC) (Ling et al. 2008), Transfer Component
Analysis (TCA) (Pan et al. 2011) and Manifold Alignment
(MA) (Wang and Mahadevan 2009; 2011). CDSC and TCA
seek consistency between the in-domain supervision and the
out-of-domain geometric structure via spectral learning. MA
maps different domains to a new latent space, simultane-
ously matching corresponding examples and preserving the
geometric structure of each domain. Contrary to the CMF
based methods, these methods focus only on the geometric
structure and do not optimize the empirical likelihood.

In this paper, we put forward an algorithm called Graph
co-regularized Collective Matrix tri-Factorization (GCMF)
to simultaneously maximize the empirical likelihood and
preserve the geometric structure across domains so that we
can combine the advantages of the aforementioned two sets
of methods. In GCMF, we explore the geometrical informa-
tion underlying both example space and feature space when
considering the geometric structure, while CDSC, TCA and
MA only handle the geometrical information underlying the
example space. Beyond the geometric structure, GTL can
be treated as a general framework in which we can easily in-
corporate various prior knowledge, such as links in network
mining and user trust relations in collaborative filtering.

Graph Co-Regularized Transfer Learning
Problem Definition
We focus on transductive transfer learning where the source
domain has abundant labeled examples while the target do-
main has only unlabeled data. We consider one source do-
main Ds and one target domain Dt. The domain indices
are I = {s, t}. Ds and Dt share the same feature space
and label space. There are m features and c classes. Let
Xπ = [xπ

∗1, . . . ,x
π
∗nπ

] ∈ Rm×nπ , π ∈ I represent the
feature-example matrix of domain Dπ , where xπ

∗i is the ith
example in domainDπ . Labels of the examples in the source
domain Dπ are given as Yπ ∈ Rnπ×c, where yπ

ij = 1 if xπ
∗i

belongs to class j, and yπ
ij = 0 otherwise. Frequently used

notations and descriptions are summarized in Table 1.
The goal of Graph co-regularized Transfer Learning

(GTL) is to uncover the common latent factors underlying
multiple domains as the bridge for knowledge transfer which
simultaneously (1) maximizes the empirical likelihood of all
domains, (2) preserves the geometric structure in each do-
main.



Table 1: Notations and descriptions used in this paper.
Notation Description
I domain indices, I = {s, t}
Dπ domain π, π ∈ I
nπ #examples in domain Dπ

m #features in the shared feature space
c #classes in the shared label space

k, p #feature clusters, #nearest neighbors
λ, γ regularization parameters
Xπ m× nπ data matrix of domain Dπ

Yπ nπ × c label matrix of domain Dπ

Uπ k feature clusters in domain Dπ

Vπ c example classes in domain Dπ

Hπ,H association between Uπ and Vπ

Gu
π, Gv

π feature graph, example graph in domain Dπ

a∗i, ai∗ ith column of matrix A, ith row of matrix A

The Proposed Approach
To achieve the goal of GTL, we propose an algorithm called
Graph co-regularized Collective Matrix tri-Factorization
(GCMF) which can seamlessly optimize both the empirical
likelihood and the geometric structure for effective transfer
learning. An illustration of GCMF is given in Figure 1.

Collective Matrix Tri-Factorization We first discover
the latent factors in each domain Dπ . These latent factors
can be uncovered using nonnegative matrix tri-factorization
(NMTF) (Ding et al. 2006) which performs co-clustering on
the feature-example matrix Xπ,∀π ∈ I,

min
Uπ,Hπ,Vπ≥0

Lπ =
∥∥Xπ −UπHπVT

π

∥∥2
(1)

where ‖A‖ is the Frobenius norm of matrix A. Uπ =
[uπ
∗1, . . . ,u

π
∗k] ∈ Rm×k, each uπ

∗i represents a semantic
concept, i.e., a feature cluster. Vπ = [vπ

∗1, . . . ,v
π
∗c] ∈

Rnπ×c, each vπ
∗i represents an example class. Uπ and Vπ

are the co-clustering results on features and examples re-
spectively. Hπ ∈ Rk×c is the association between feature
clusters Uπ and example classes Vπ , which has been shown
to remain more stable underlying different domains than
Uπ , Vπ (Zhuang et al. 2011). Therefore, we can assume
Hπ = H for each domain Dπ . This leads to the following
collective matrix tri-factorization formulation

min
Uπ,H,Vπ≥0

L =
∑

π∈I

∥∥∥Xπ −UπHVT
π

∥∥∥
2

(2)

The common latent factors H are uncovered as a stable
bridge for knowledge transfer, with the enforcement of the
supervised information in the source domain, i.e., enforc-
ing Vs ≡ Ys. Through the bridge, knowledge from source
domain labels Ys is transferred to the target domain sam-
ples Vt. This procedure corresponds to maximizing the em-
pirical likelihood of multiple domains (Ding, Li, and Peng
2006).

Graph Co-Regularization From a geometric perspective,
the data points may be sampled from a distribution sup-
ported by a low-dimensional manifold embedded in a high-
dimensional space (Cai et al. 2009). So we hope that the

geometric structure can be preserved during the transfer pro-
cedure to avoid violating the intrinsic data distributions. By
the manifold assumption (Belkin and Niyogi 2001), if two
examples xπ

∗i,x
π
∗j in domain Dπ are close in the intrinsic

geometry of the data distribution, then their labels vπ
i∗ and

vπ
j∗ should also be close. The geometric structure can be

modeled by a nearest neighbor graph in the example space.
Consider an example graph Gv

π with nπ vertices each repre-
senting an example in domainDπ . Define the affinity matrix

(Wv
π)ij =

{
cos

(
xπ
∗i,x

π
∗j

)
, if xπ

∗i ∈ Np

(
xπ
∗j

)
or xπ

∗j ∈ Np (xπ
∗i)

0, otherwise
(3)

where Np (xπ
∗i) denotes the set of p nearest neighbors of

example xπ
∗i. Let Dv

π = diag
(∑

i (Wv
π)ij

)
. Preserving the

geometric structure in domain Dπ is reduced to minimizing
the example graph regularizer

Rv
π =

1

2

∑
ij

∥∥vπ
i∗ − vπ

j∗
∥∥2

(Wv
π)ij

=
∑

i

vπ
i∗(v

π
i∗)

T(Wv
π)ii −

∑
ij

vπ
i∗

(
vπ

j∗
)T

(Wv
π)ij

=tr
(
VT

π (Dv
π −Wv

π)Vπ

)
(4)

Furthermore, from the duality property between features and
examples, the features are also sampled from a distribution
supported by another low-dimensional manifold (Gu and
Zhou 2009). Thus we construct a feature graph Gu

π with m
vertices each representing a feature in domain Dπ as

(Wu
π)ij =

{
cos

(
xπ

i∗,x
π
j∗

)
, if xπ

i∗ ∈ Np

(
xπ

j∗
)

or xπ
j∗ ∈ Np (xπ

i∗)
0, otherwise

(5)
whereNp (xπ

i∗) denotes the set of p nearest neighbors of fea-

ture xπ
i∗. Let Du

π = diag
(∑

i (Wu
π)ij

)
. Preserving the ge-

ometric structure in domain Dπ further includes minimizing
the feature graph regularizer

Ru
π =

1

2

∑
ij

∥∥uπ
i∗ − uπ

j∗
∥∥2

(Wu
π)ij = tr

(
UT

π (Du
π −Wu

π)Uπ

)

(6)

Optimization Clearly, the graph regularizers defined in
Equations (4) and (6) can preserve the geometric structure
for the co-clustering on examples and features. Therefore,
we can treat them as graph co-regularization and incorpo-
rate them into Equation (2). This allows us to reach the op-
timization problem of Graph co-regularized Collective Ma-
trix tri-Factorization (GCMF) as defined in Equation (7)

min
Uπ,H,Vπ≥0

O = L+
∑

π∈I
(λRu

π + γRv
π)

s.t. UT
π1m = 1k,VT

π 1nπ = 1c,∀π ∈ I
(7)

where λ, γ are regularization parameters. The `1 normaliza-
tion constraints on each column of Uπ and Vπ are used
to make the optimization well-defined (Gu, Ding, and Han
2011). With the optimization results, the label for any exam-
ple xπ

∗i in the target domain Dπ can be easily inferred by

f (xπ
∗i) = arg maxj (Vπ)ij



In optimization (7), the discovered common latent factors H
are subject to maximizing the empirical likelihood and pre-
serving the geometric structure simultaneously. Therefore,
their smoothness is enhanced during the transfer procedure.

GCMF can be easily extended to handle multiple domains
by expanding I to include more domains and exploring their
common underlying structure collectively. It can also han-
dle transfer learning when some prior knowledge is avail-
able and can be incorporated into graph regularization, by
following the graph construction steps as defined in Equa-
tions (3) and (5).

Learning Algorithm
The optimal solution to the GCMF optimization problem
in Equation (7) is achieved through the following theorem.
More detailed analysis is presented in the next subsection.

Theorem 1 Updating Uπ , Vπ , H with Equations (8)∼(10)
for each domain Dπ,∀π ∈ I will monotonically decrease
the objective function in Equation (7) until convergence.

Uπ ← Uπ ◦
√√√√ [XπVπHT + λWu

πUπ][
UπHVT

πVπHT + λDu
πUπ

] (8)

Vπ ← Vπ ◦
√

[XT
πUπH + γWv

πVπ]
[VπHTUT

πUπH + γDv
πVπ]

(9)

H ← H ◦
√√√√

[∑
π∈I UT

πXπVπ

]
[∑

π∈I UT
πUπHVT

πVπ

] (10)

where ◦ denotes element-wise product, [·]
[·] denotes element-

wise division,
√· denotes element-wise square root.

Algorithm 1: GCMF: Graph Co-Regularized Collective
Matrix Tri-Factorization for Transfer Learning

Input: data sets {Xπ}π∈I , Ys, parameters k, p, λ, γ.
Output: classification results in the target domain Vt.
begin

construct graphs Gv
π , Gu

π by Equations (3) and (5).
normalize data sets by Xπ ← Xπ/ ‖Xπ‖ ,∀π ∈ I.
initialize {Uπ}π∈I , H by random positives, Vs by
Ys, Vt by logistic regression trained on {Xs,Ys}.
for iter ← 1 to maxIter do

foreach π ∈ I do
update Uπ,Vπ,H by Equations (8)∼(10)
fixing Vs ≡ Ys.
normalize each column of Uπ,Vπ by `1
norm.
compute objective Oiter by Equation (7).

end

With Theorem 1, the learning algorithm for the GCMF
optimization is summarized in Algorithm 1. To make the al-
gorithm converge faster, we train a logistic regression clas-
sifier over the source domain and use it to classify the

examples in the target domain so that we can initialize
the estimated labels of the target domain better than ran-
dom assignments. We keep the labels of the source do-
main data fixed, i.e., Vs ≡ Ys, instead of updating them
during iterations. The time complexity of Algorithm 1 is
O (∑

π∈I
(
maxIter · kmnπ + mn2

π + m2nπ

))
on |I| do-

mains, which is the sum of NMTF cost plus the nearest
neighbor graph construction cost in each domain.

Theoretical Analysis
Derivation We derive the solution to the optimization
problem in Equation (7) following the theory of constrained
optimization (Boyd and Vandenberghe 2004). Specifically,
we optimize one variable and derive its updating rule while
fixing the rest variables. The procedure repeats until conver-
gence. We formulate a Lagrange function for the optimiza-
tion with nonnegative and `1 normalization constraints as

L = O+
∑

π∈I
tr

(
Λπ

(
UT

π1m − 1k

) (
UT

π1m − 1k

)T
)

+
∑

π∈I
tr

(
Γπ

(
VT

π 1nπ
− 1c

) (
VT

π 1nπ
− 1c

)T
)

where Λπ ∈ Rk×k,Γπ ∈ Rc×c are the Lagrange multipliers
for the two constraints, 1m is the vector of ones. We then de-
rive the updating rule for Uπ using the Karush-Kuhn-Tucker
(KKT) complementarity condition (Boyd and Vandenberghe
2004) for the constraints on Uπ we have

1

2
∇Uπ L ◦Uπ =

(
VπHTUT

πUπH−XπVπHT
)
◦Uπ

+
(
λDu

πUπ − λWu
πUπ + 1m1T

mUπΛπ − 1m1T
k Λπ

)
◦Uπ = 0

The KKT condition leads to the following updating formula

Uπ ← Uπ ◦
√

[XπVπHT + λWu
πUπ + 1m1T

k Λπ][
UπHVT

πVπHT + λDu
πUπ + 1m1T

mUπΛπ

]

We avoid computing Λπ by using an iterative normalization
technique (Zhuang et al. 2010). For each iteration, we nor-
malize each column of Uπ in Algorithm 1 so that UT

π1m =
1k. After that, we obtain two equal terms 1m1T

mUπΛπ =
1m1T

k Λπ that depend only on Λπ . They can be omitted from
the updating formula without impacting the convergence.
This leads to the updating rule for Uπ in Equation (8).

Convergence We use the auxiliary function approach (Lee
and Seung 2000) to prove the convergence property of Theo-
rem 1 and Algorithm 1. Firstly, the definitions and properties
of the auxiliary function are introduced as follows.

Definition 1 (Lee and Seung 2000) A(Z, Z̃) is an auxiliary
function for L(Z) if the conditions

A(Z, Z̃) ≥ L(Z) and A(Z,Z) = L(Z)

are satisfied for any given Z, Z̃.

Lemma 1 (Lee and Seung 2000) If A is an auxiliary func-
tion for L, then L is non-increasing under the update

Z(t+1) = arg minZ A(Z,Z(t))



Theorem 2 Let L(Uπ) denote the sum of all terms in L that
contain Uπ . The following function

A
(
Uπ, Ũπ

)
=

∑

ij

(
ŨπHV

T
π VπH

T
+ λD

u
πŨπ + 1m1

T
mŨπΛπ

)
ij

(Uπ)2ij

(Ũπ)ij

− 2
∑

ij

(
XπVπH

T
+ λW

u
πŨπ + 1m1

T
k Λπ

)
ij

(Ũπ)ij

(
1 + log

(Uπ)ij

(Ũπ)ij

)

is an auxiliary function for L(Uπ). Furthermore, it is a con-
vex function with respect to Uπ and has a global minimum.

Theorem 2 can be proved similarly as (Ding et al. 2006) by
validating A(Uπ, Ũπ) ≥ L(Uπ), A(Uπ,Uπ) = L(Uπ),
and the Hessian matrix∇∇Uπ

A(Uπ, Ũπ) º 0. Due to lim-
ited space, we omit the details of the validation here. Based
on Theorem 2, we can minimize A(Uπ, Ũπ) with respect to
Uπ with Ũπ fixed. Set ∇Uπ

A(Uπ, Ũπ) = 0 we obtain the
following updating formula

Uπ ← Ũπ ◦

√√√√√
[
XπVπHT + λWu

πŨπ + 1m1T
k Λπ

]
[
ŨπHVT

πVπHT + λDu
πŨπ + 1m1T

mŨπΛπ

]

which is consistent with the updating formula derived from
the KKT condition aforementioned. By Lemma 1 and Theo-
rem 2, for each iteration of updating Uπ , we have L(U0

π) =
Z(U0

π,U0
π) ≥ Z(U1

π,U0
π) ≥ Z(U1

π,U1
π) = L(U1

π) ≥
. . . ≥ L(UmaxIter

π ). So L(Uπ) is monotonically decreasing
during iteration. Since the objective function in Equation (7)
is lower bounded by 0, the correctness and convergence of
Theorem 1 and Algorithm 1 are established.

Experiments
Data Sets and Evaluation Criteria
We evaluate the proposed GCMF approach on nine cross-
domain data sets generated from two benchmark text data
sets 20-Newsgroups1 and Reuters-215782, which are widely
adopted for transfer learning evaluation (Dai et al. 2007;
Ling et al. 2008; Pan et al. 2011; Zhuang et al. 2011).

20-Newsgroups has approximately 20,000 documents
distributed evenly in 20 different subcategories. The corpus
contains four top categories comp, rec, sci and talk. Each
top category has four subcategories, which are split into two
groups A and B, as listed in Table 2. Following the approach
in (Dai et al. 2007), to set up one data set (including source
domain and target domain), we randomly select two out of
the four top categories, denoted by P and Q. Then, groups A
in P (denoted by P.A) and Q (denoted by Q.A) are merged as
the source domain, while P.B and Q.B are merged as the tar-
get domain. Clearly, for each example in the source domain
and target domain, its class label is either P or Q. In this way,
we generate six data sets comp vs rec (i.e., P = comp, Q=rec;
we can explain the other pairs in the same way), comp vs sci,
comp vs talk, rec vs sci, rec vs talk, and sci vs talk. For fair
comparison, the six data sets are constructed using a prepro-
cessed version of 20-Newsgroups in (Zhuang et al. 2011).

1http://people.csail.mit.edu/jrennie/20Newsgroups/
2http://www.daviddlewis.com/resources/testcollections/

reuters21578/

Table 2: Top categories and their subcategories. Each top
category is partitioned into two groups A and B.

Top Categories Subcategories

comp (A) comp.graphics, comp.os.ms-windows.misc
(B) comp.sys.ibm.pc.hardware, comp.sys.mac.hardware

rec (A) rec.autos, rec.motorcycles
(B) rec.sport.baseball, rec.sport.hokey

sci (A) sci.crypt, sci.electronics
(B) sci.med, sci.space

talk (A) talk.politics.guns, talk.politics.mideast
(B) talk.politics.misc, talk.religion.misc

Reuters-21578 is another widely used data set for evalu-
ating learning algorithms. It contains five top categories and
many subcategories. For easy comparison, we use a prepro-
cessed version adopted in previous work (Gao et al. 2008;
Zhuang et al. 2010), which contains three cross-domain data
sets orgs vs people, orgs vs place and people vs place.

We use Accuracy as the evaluation criteria, as it is widely
adopted in the literature (Pan et al. 2011; Zhuang et al. 2011)

Accuracy =
|{x : x ∈ Dt ∧ f (x) = y (x)}|

|{x : x ∈ Dt}|
where y(x) is the groundtruth label of example x while f(x)
is the label predicted by the classification algorithm.

Baseline Methods and Parameter Settings
We compare our proposed GCMF approach with six state-
of-the-art baselines, as shown below.
• Unsupervised learning method Nonnegative Matrix Fac-

torization (NMF); supervised learning methods Logistic
Regression (LG) and Support Vector Machine (SVM);
semi-supervised learning method Transductive Support
Vector Machine (TSVM) (Joachims 1999).

• State-of-the-art transfer learning methods Matrix Tri-
factorization based Classification (MTrick) (Zhuang et al.
2010) and Dual Knowledge Transfer (DKT) (Wang et al.
2011). These methods are applied in a transductive con-
figuration, i.e., trained on all available data and tested on
target domain data, using their optimal parameter settings.
GCMF involves a few parameters. The number of classes

c is 2 in our data sets. We set the iteration number maxIter
as 100. There are four more parameters: regularization pa-
rameters λ and γ, number of feature clusters k, number of
nearest neighbors p. In the coming sections, we provide de-
tailed analysis on parameter sensitivity, where we evaluate
λ = γ with the values among {0.1, 1, 10, 100, 1000}. Simi-
larly, we evaluate k among {2, 4, 8, 16, 32, 64} and p among
{2, 4, 6, 8, 10}. From the analysis, we can see that GCMF
achieves stable performance with a wide range of parameter
values. When comparing with the baselines, we use the fol-
lowing parameter settings: λ = γ = 100, k = 64, p = 10.

Experimental Results
The best results of the baselines and GCMF on all the data
sets are presented in Table 3. Note that Algorithm 1 involves
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Figure 2: Parameter sensitivity and convergence of GCMF on the cross-domain data sets generated from 20-Newsgroups.

Table 3: Average classification accuracy (%) on the cross-
domain data sets (10 repeated experiments).

Data Set NMF LG SVM TSVM MTrick DKT GCMF

comp vs rec 79.11 81.71 81.04 82.23 86.75 85.83 92.36±0.00
comp vs sci 65.88 67.89 64.95 69.75 95.27 92.44 96.75±0.01
comp vs talk 56.62 93.05 89.42 95.37 98.08 98.04 98.11±0.00

rec vs sci 75.10 67.22 67.44 70.86 73.74 70.48 85.84±0.01
rec vs talk 58.80 65.95 65.29 67.84 72.15 68.96 88.61±0.07
sci vs talk 61.75 78.42 73.76 80.22 90.08 91.28 94.35±0.39

orgs vs people 63.29 74.25 74.88 73.80 80.96 81.46 85.48±0.04
orgs vs place 72.63 69.99 71.89 69.89 76.41 76.70 77.82±0.13

people vs place 60.49 59.05 58.06 58.43 67.87 66.11 68.69±0.13
Average 65.96 73.06 71.86 74.27 82.37 81.26 87.56±0.09

random initializations. Therefore we run GCMF 10 times
and then report its average classification accuracy with stan-
dard deviation on the test set (target domain unlabeled data).

From Table 3, we can see that Non-transfer methods can-
not perform well on most data sets. NMF performs poorly
since the samples in these data sets are not well separated
originally. For LG and SVM, the classifiers trained on the
source domain data cannot discriminate the target domain
data. Transductive method TSVM outperforms NMF, LG
and SVM in most cases. However, its performance is far
from satisfactory. Generally, traditional non-transfer meth-
ods treat data from different domains as if they were drawn
from a homogenous distribution, which explains why their
performance is not optimal on the cross-domain data sets.

Transfer learning methods MTrick and DKT work bet-
ter than the non-transfer methods. These transfer learning
methods try to build classifier by leveraging the knowledge
from the source domain. However, these methods individ-
ually have not reached the best performance yet for some
of the data sets (e.g., rec vs sci, rec vs talk). The reason is
that they each build models by exploiting only certain na-
ture of the data, that is, either the empirical likelihood or the
geometric structure. They will be at risk when the data are
governed by the specific nature which they do not explore.

The proposed GCMF approach obtains much better per-
formance than all the baselines on all data sets with statis-
tical significance. The average classification accuracy im-
provement is 5.2% on all data sets, which means 29.4% er-

ror reduction compared to the best baseline. This proves that
by maximizing the empirical likelihood and preserving the
geometric structure simultaneously, GCMF can successfully
discover the common latent factors as a robust bridge for
knowledge transfer. This facilitates smooth transfer learning
and results in high classification accuracy.

Parameter Sensitivity

To study the parameter sensitivity of GCMF, we tune the
parameters one at each time while fixing others to their op-
timal values. We do the experiments on all the data sets, but
just report the results on the six data sets generated from 20-
Newsgroups for simplicity and clarity.

Figure 2a shows the average classification accuracy of
GCMF under varying values of λ and γ. We can find that
GCMF performs very well and steadily when λ and γ span
over a wide range, i.e., [10, 1000]. The dashed curves with
corresponding colors represent the best performance ob-
tained by the baselines on these data sets, which are below
the GCMF curves in most cases. This validates that preserv-
ing the geometric structure can indeed help discover more
transferrable common latent factors which facilitate smooth
knowledge transfer. Similarly, we also studied the parameter
sensitivity of p (the number of nearest neighbors) and found
that GCMF reaches the best performance when p ∈ [4, 10],
which is consistent with (Cai et al. 2009).

Figure 2b shows the average classification accuracy of
GCMF under varying values of k, the number of feature
clusters. We can see that GCMF performs steadily when k
takes value in a wide range, i.e., [16, 64].

Convergence and Time Complexity

We investigate the convergence of GCMF empirically. Fig-
ure 2c shows the average classification accuracy with respect
to the number of iterations. We can find that the average clas-
sification accuracy of GCMF increases steadily with more
iterations and then converges after 100 iterations.

Finally, we check the time complexity of GCMF empir-
ically on the six data sets generated from 20-Newsgroups.
We find that GCMF runs very efficiently and takes no more
than 100 seconds (when k = 64) on each data set containing
approximately 8,000 documents and 25,800 features.



Conclusion
In this paper, we propose a novel transfer learning approach
to maximize the empirical likelihood and preserve the geo-
metric structure simultaneously. This solves the shortcom-
ings of most existing transfer learning methods which focus
only one aspect of the data. Our approach can also serve
as a general framework to incorporate various prior knowl-
edge so long as it can be represented by a graph structure.
We compare our proposed approach against six state-of-the-
art baselines over the widely adopted data sets. The experi-
ments prove that our approach significantly outperforms all
the baselines under different settings. After validating our
approach on the public data sets, we plan to apply it to some
large-scale and real-life applications in the future.
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