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Abstract

Transfer learning, which aims to help the learning task
in a target domain by leveraging knowledge from auxil-
iary domains, has been demonstrated to be effective in
different applications, e.g., text mining, sentiment anal-
ysis, etc. In addition, in many real-world applications,
auxiliary data are described from multiple perspectives
and usually carried by multiple sources. For example,
to help classify videos on Youtube, which include three
views/perspectives: image, voice and subtitles, one may
borrow data from Flickr, Last.FM and Google News.
Although any single instance in these domains can only
cover a part of the views available on Youtube, actually
the piece of information carried by them may compen-
sate with each other. In this paper, we define this trans-
fer learning problem as Transfer Learning with Multi-
ple Views and Multiple Sources. As different sources
may have different probability distributions and differ-
ent views may be compensate or inconsistent with each
other, merging all data in a simplistic manner will not
give optimal result. Thus, we propose a novel algorithm
to leverage knowledge from different views and sources
collaboratively, by letting different views from differen-
t sources complement each other through a co-training
style framework, while revise the distribution differences
in different domains. We conduct empirical studies on
several real-world datasets to show that the proposed
approach can improve the classification accuracy by up
to 8% against different state-of-the-art baselines.

Keywords:Transfer Learning, Multi-View Learn-
ing, Multiple Data Sources

1 Introduction

In real-world applications, the lack of labeled data
makes many supervised learning algorithms fail to build
accurate models. To solve the limited supervision prob-
lem, transfer learning aims to borrow knowledge from
auxiliary domains to improve the target-domain mod-
el performance. Many applications have been report-
ed, ranging from text classification [5], sentiment analy-
sis [4], event recognition [6], to multimedia analysis [16].
Although traditional transfer works for single-source
and single-view scenario, in fact, many real-world appli-
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cations are complex where the auxiliary examples are of-
ten described from different perspectives and come from
a variety of potential sources. For example, in video
analysis, a video can be described by different issues,
such as images, voice, and subtitles, where data from
different views can be borrowed from different domains,
such as news from Google News 1, voice from Last.FM 2

and images from Flickr 3. Another example is text clas-
sification on Google News, where 20Newsgroups 4 and
Reuters 5 can considered as source domains and cover
different vocabularies of google news.

In the recent years, several approaches have been
proposed to place transfer learning under the multi-
view (MVTL) setting [18] or the multi-source setting
(MSTL) [10]. Existing algorithms in MVTL solve the
transfer learning problem where source and target do-
mains share the same views while existing MSTL ap-
proaches consider that there are multiple sources but
with one view for source and target data. In fact, in
many real-world applications, multi-view information is
distributed on multiple source domains and each source
domain can cover only parts of the target views. For ex-
ample, in video analysis, a video can be described from
three different views, including images in each frame,
voices and texts in subtitles. Then, different image, text
and voice sources can be exploited while these sources
can only cover parts of the target views. We define this
problem as Transfer Learning with Multiple Views and
Multiple Sources, and TL-MVMS for short. An intuitive
way to use these rich data is to simply merge all sources
or all views together, and directly employ MVTL or M-
STL respectively. Unfortunately, different sources have
different feature spaces and may follow different distri-
butions, while different views from different sources may
be even inconsistent with each other. Such intuitive so-
lution may make us fail to make full use of rich source
information. For example, songs on Last.FM and im-
ages from Flickr may have different probability densi-
ties and may not agree with each other on categorizing
videos. On one hand, if we apply MSTL, different views
will be considered equally and the inconsistence cannot

1http://news.google.com/
2http://www.last.fm
3http://www.flickr.com/
4http://qwone.com/~jason/20Newsgroups/
5http://www.daviddlewis.com/resources/testcollections/



be removed; on the other hand, if MVTL is applied, dif-
ferent source distributions may make algorithms fail to
build a consistent model.

Recently, co-training [2] has been demonstrated to
be effective to utilize multi-view data, where a classifi-
er built from one view will provide pseudo labeled da-
ta with high confidences to enhance the performance
of another classifier from another view. Thus, even the
knowledge in each view is incomplete, they can compen-
sate each other by exchanging information. However,
applying co-training simply may cause two problems: 1.
due to the distribution shift in both the marginal distri-
bution and conditional probability between source and
target domains, the decision boundaries of source and
target domains can be very different and hence the con-
fidence measure is not an accurate indicator anymore;
2. on account of the joint-distribution differences, the
predictions across domains are no longer consistent.

To cope with the nature of multiple views and mul-
tiple sources in TL-MVMS, we extend co-training ac-
cordingly and develop a novel solution called multi-
transfer. Multi-transfer overcomes the above chal-
lenges from two aspects. It first introduces a harmonic-
function based criterion to select the appropriate tar-
get instances. Such criterion is insensitive to the con-
ditional probability shift. Secondly, it applies a densi-
ty ratio weighting scheme to account for the marginal-
distribution shift and exploits a non-parametric method
to measure the joint-distribution ratio between data
from two domains. This strategy re-weights the in-
stances in source domains, in order to revise the dis-
tribution shift and build a consistent model for the tar-
get domain. We will show that, on one hand, the co-
training style procedure can exploit knowledge from d-
ifferent views to help each other; on the other hand,
the distribution revision can guarantee the robustness
of knowledge transfer across different source domains.
We show extensive experimental studies that our pro-
posed method can outperform state-of-the-art transfer
learning techniques on real datasets.

2 Problem Formulation

We define the problem, Transfer Learning with Mul-
tiple Views and Multiple Sources (TL-MVMS) as fol-
lows. The notations are summarized in Table 1. Let
S = {Sk}Nk=1 denote the source domains, where N
is the number of sources. For each Sk, we have
Sk = {Xk

s , Y
k
s } = {(xk

i , y
k
i )}

nk
i=1, where nk denotes the

number of instances in the k-th source domain. Let
T = {Xt} = {x}mj=1 denote the target domain, where
m is the number of instances. We define the view set-
s as V = {vℓ}Fℓ=1, where F is the number of views.
For each source domain Sc, its view set is defined as

Table 1: Definition of Notations

Notation Notation Description

S Source domains, S = {Sk}N
k=1

Sk The k-th source domain, Sk = {Xk
s , Y

k
s }

T The target domain, T = {Xu}
V k
s The view set of the k-th source domain

Vt The view set of the target domain

nk Number of instances in Sk

m Number of instances in T
N Number of source domains
F Number of views
p(x) Marginal distribution of x
p(y|x) Conditional distribution of (x, y)
p(y,x) Joint distribution of (x, y)

Figure 1: TL-MVMS and Other Learning Problems

V c
s = {vcℓ}

fc
s

ℓ=1 ∈ V and for the target domain, its view

set is Vt = {vtℓ}
ft
ℓ=1 ∈ V. Let pks(x), pks(y|x) and pks(x, y)

denote the marginal, conditional and joint distribution-
s of the k-th source domain respectively, and pt(x),
pt(y|x) and pt(x, y) be the parallel definitions for the
target domain. The goal of TL-MVMS is to build mod-
els for T with the help of S. We emphasize that this
is a general framework. The difference between TL-
MVMS and the previous learning problems, i.e., tra-
ditional transfer learning (TTL), multi-view learning,
multi-view transfer learning (MVTL) and multi-source
transfer learning (MSTL) are illustrated in Figure 1.
These approaches can be considered as special cases of
TL-MVMS.
• Multi-view learning: N = 0 and ft > 1
• TTL: N = 1 and fk

s = ft = 1
• MVTL: N = 1, fk

s = ft > 1 and Vt = V k
s

• MSTL: N > 1 and fk
s = ft = 1:

Clearly, due to the distribution shift between source
and target, existing multi-view learning algorithms may
fail to build consistent models for the target domain
based on source data. In addition, TTL and MSTL do
not consider the multi-view setting, and hence cannot
take the full advantage of the source data. Finally, on
account of the distribution shift among sources, MVTL
may not build consistent models if simply merging all
source domains together.

3 The Multi-Transfer Algorithm

The intuition of the multi-transfer algorithm is to
regulate the model built from some views in one source



domain from the knowledge of other views in another
source domain while avoiding any negative impacts
of domain differences. We implement this idea by
embedding transfer learning in a co-training framework.
For simplicity, we assume that there are two source
domains and one target domain, where the target
domain contains two views and each source domain
covers each of them respectively.

3.1 Multi-transfer Based on the co-training frame-
work, in each iteration, we build two models f1 and f2
from two different view sets V 1

s and V 2
s , from two d-

ifferent source domains S1 and S2 respectively. Then,
these two models are used to predict the pseudo label-
s of the remaining unlabeled target instances. Analog
to co-training, those target instances with high predic-
tion confidence and their predicted labels will be used
to build two new models with the existing source do-
main data for the next iteration. However, due to the
domain differences, multi-transfer needs to address t-
wo challenges (1). how to solve the distribution shift
across domains for selecting appropriate unlabeled tar-
get data and (2). how to revise the distribution gap
between source and target domains, for building consis-
tent models. To select the target instances, we propose
a harmonic function based instance-selection criterion
that considers the join distribution shift between two
domains. Then, we introduce a non-parametric method
to estimate the joint distribution ratio of each source
instance, which can be treated as clues for setting their
weights and used to reduce the negative effects of distri-
bution shift. We discuss these two processes as follows.

3.2 Target Instance Selection In each iteration,
multi-transfer selects several target instances with pre-
dicted labels to enlarge the training set of each source
domain and exchange knowledge across different views.
To avoid the negative impact of distribution shift, i.e,
pt(x, y) ̸= ps(x, y), we propose an unbiased criterion.
Since the marginal distributions of two domains are dif-
ferent, i.e. pt(x) ̸= ps(x), the models learned in source
domains are inconsistent to the target domain [12]. For-
mally, let f∗

t denote the ideal hypothesis of the target
domain and fs denote the hypothesis constructed from
n source instances. Then, if pt(x) ̸= ps(x), we obtain
limn→∞(fs) ̸= f∗. Instead, if the density ratio of one
instance x between two domains is close to 1, its predic-
tion is consistent and would be correct with high prob-
ability. Thus, we define a marginal distance-measure
|pcs(x) − pct(x)| for each target instance x ∈ Xt under
view vc. As we assume each source domain covers one
target view, the index c also indicates the c-th source
domain, i.e., Sc. However, it may be hard to estimate

each probability density. We rewrite it as

(3.1)
∣∣ log pcs(x)− log pct(x)

∣∣ = ∣∣ log pcs(x)

pct(x)

∣∣
We estimate the ratio gc(x) =

pc
s(x)

pc
t(x)

via Gaussian

Process (GP) [14], which generates a function from a
Gaussian distribution. Specifically, under the view vc,
we consider that the labels of all source instances from
Sc to be positive and the labels of all target instances
to be negative. Subsequently, after building the GP

model, we can obtain the estimation
pc
s(x|GP )

pc
t(x|GP ) ≈ pc

s(x)
pc
t(x)

.

Following the analysis in [12], the selection of unlabeled
target data is unbiased after weighting with Eq.(3.1).
As the conditional distributions of two domains are
different, i.e., pt(y|x) ̸= ps(y|x), the decision boundaries
of two domains are different too. The confidence
measure |p(y = 1|x, f) − p(y = −1|x, f)| in co-training
is no longer an indicator to the prediction risk. Thus,
we utilize the local data structure in the target domain
to generate a more robust criterion. We propose a
harmonic-function based method, which is similar to the
one in [20]. Let wc

ij = exp
(
− σ(xc

i − xc
j)

2
)
denote the

similarity between two target instances under view vc.
The harmonic measure of xc

i is

(3.2)
∑

j∈N(i)

wc
ij

(
f¬c(xi)− f¬c(xj)

)2
where N(i) is the nearest neighbors of xi and f¬c is
the model trained from another source. Its physical
meaning is that the predictions of two instances should
be similar if they are neighbors. Under the cluster-
manifold assumption [1], of which meaning is that t-
wo instances are close geometrically, they tend to have
the same label. We obtain that, if the conditional dis-
tributions of two domains are not very different, e.g,
pt(y = 1|x) ≈ ps(y = −1|x) does not hold, the predic-
tions of f¬c and the true labels would be identical on
some target instances. Consequently, if the instances
in the target domain follow the manifold assumption,
the value of Eq.(3.2) can identify these instances. Com-
bining Eq.(3.1) and Eq.(3.2) together, we obtain a final
selection criterion as
(3.3)

vc(xi) =
∣∣ log(pcs(xi)

pct(xi)
+ λ)

∣∣ ∑
j∈N(i)

wc
ij

(
f¬c(xi)− f¬c(xj)

)2
where λ > 0 is to avoid the zero value. Then, in each
iteration, we select na instances with smallest vc values
to help build new models for the next iteration.

3.3 Source Instance Weighting Due to the joint-
distribution shift, i.e., ps(x, y) ̸= pt(x, y), the models
built on source domains may produce biased predictions



on the target domain. In other words, for a given
instance, its existing probabilities are different in the
source and target domains. We solve this problem by
weighting the source instances with the ratio between
the target and source joint-distributions. We first show
that, after weighting, the models would be unbiased. In
model building, we aim to build a model fc in the source
domain Sc by minimizing the objective

(3.4) min
fc

1

nc

∑
(x,y)∈Sc

pct(x, y)

pcs(x, y)

(
fc(x)− y

)2
+ βR(fc)

Clearly, the losses of different instances are different
and hence those source instances which are close to the
target instances can obtain higher impacts. Due to the
irrelevance to x and y, we can ignore the regularization
term βR(fc) and obtain the empirical loss of fc as
follows when nc → ∞.

ε(fc) =
1

nc

∑
(x,y)∈Sc

pct(x, y)

pcs(x, y)

(
fc(x)− y

)2
= E(x,y)∼pcs(x,y)

∫
x

∫
y

pct(x, y)

pcs(x, y)

(
fc(x)− y

)2
pcs(x, y)dxdy

= E(x,y)∼pcs(x,y)

∫
x

∫
y

(
fc(x)− y

)2
pct(x, y)dxdy

=
1

nc

∑
(x,y)∼pct (x,y)

(
fc(x)− y

)2
To estimate the ratio, we extend the method in [8].
Let g(x, y)c denote the ratio under view c and ĝ(x, y)c
denote the estimated one. Let T p

c represent the target
data under the view vc with pseudo labels from another
view in each iteration. For each labeled instance (x, y)
in source Sc, we model ĝ(x, y)c as a kernel function:

(3.5) ĝ(x, y)c =

|Tp
c |∑

i=1

αikx(x,xi)ky(y, yi) (xi, yi) ∈ T p
c

where kx and ky denote the kernel functions on instances
and labels. We define kx(a, b) = ky(a, b) = exp(−σ(a−
b)2), where σ is the kernel parameter. The estimated
joint distribution of the target domain is represented as
p̂ct(x, y) = ĝ(x, y)cp

c
s(x, y). The objective is to learn the

parameters αi so that the Kullback-Leibler divergence
from p̂ct(x, y) to pct(x, y) can be minimized:

KL[pct(x, y)∥p̂ct(x, y)] =
∫
D

pct(x, y) log
pct(x, y)

p̂ct(x, y)
dxdy

=

∫
D

pct(x, y)
pct(x, y)

pcs(x, y)
dxdy −

∫
D

pct(x, y) log ĝ(x, y)cdxdy

We can ignore the first term, which is independent of
the parameters. In addition, we add a normalized term

for the parameters α = {αi}
|Tp

c |
i=1 , since pct(x, y) is a

probability density function. The objective becomes

maxα

[∑|Tp
c |

i=1 log
(
ĝ(xi, yi)c

)]
(3.6)

s.t.
∑nc

i=1 ĝ(xi, yi)c = nc ∀αj ≥ 0

Algorithm 1 Multi-transfer

1: Input: source domains: S = {S1, S2}, unlabeled target data:
Xu, I, na

2: Output: Built model f
3: Set instances’ weights of S1 and S2 as 1/n1 and 1/n2

4: Build two models f0
1 and f0

2 using S1 and S2 respectively
5: Let X1 = Xu, X2 = Xu, T

p
1 = ∅, Tp

2 = ∅
6: for i = 1 to I do
7: Perform prediction on X1 using fi−1

2 : {X1, Ŷ1}
8: Perform prediction on X2 using fi−1

1 : {X2, Ŷ2}
9: Select instances from {X1, Ŷ1} and {X2, Ŷ2} as P1 and P2

using Eq.(3.3)
10: X1 = X1 \ P1, X2 = X2 \ P2, T

p
1 = Tp

1 ∪ P1, T
p
2 = Tp

2 ∪ P2

11: Re-estimate the weights of instances of using Eq.(3.6)

12: Build two models fi
1 and fi

2 using S1 ∪ Tp
1 and S2 ∪ Tp

2
13: end for
14: Return f = (fI

1 + fI
2 )/2

Figure 2: Main Flow of Multi-transfer

where nc denotes the number of instances in source Sc

and xc is an instance under view vc. This is a convex
optimization problem and the globally optimal solution
can be obtained. After learning the α, we can obtain
the weight of each source instance under different views
and then utilize weighted source instances to build a
unbiased model for the target domain.

3.4 The Proposed Framework The framework of
Multi-Transfer is illustrated in Figure 2 and Algorith-
m 1. Initially, instances in two source domains are
weighted as 1/n1 and 1/n2, respectively. In each itera-
tion, two models are built from two sources under two
different view sets. After that, they are utilized to pre-
dict the labels of target instances and obtain two labeled
sets. To avoid the negative impact from the wrongly la-
beled target data, we only select those instances in these
two sets with high correct prediction probability, using
the adaptive criterion in Eq.(3.3). Second, these two
sets can be utilized to estimate the weights of each in-
stance in source domains. This process is repeated until
exceeds the maximal iterations. Finally, the predictions
of the classifiers in the last iteration will be averaged as
the final predictions. We notice that, if we merge two
sources into one and exploit multi-view transfer learn-
ing approaches, the different distributions and feature
spaces between two source domains will misguide the
model building. In addition, if we ignore the multi-
view nature and exploit multi-source transfer learning
approaches, we cannot utilize the cross-view compensa-
tions and may suffer from the negative impacts of in-
consistences across different views.



We analyze the time complexity as follows. Suppose
the number of iterations is I and the time complexity
of the base model is O(Q). In each iteration, multi-
transfer needs O(n2

t ) to compute the selection criterion
values for every target instances and O(nt log nt) to
select the appropriate target instances. Then, it needs
O(n1nt + n2nt) to compute the weight of each source
instance and O(n1 + n2) to update. In summary, the
whole time complexity is O(I(Q+ (nt + n1 + n2)nt)).

4 Experiment

4.1 A Synthetic Example We begin by analyzing
multi-transfer on a synthetic dataset, which has two
source domains and one target domain with differen-
t views, as shown in Figure 3. Clearly, source domains
have their own domain specific views, i.e., audio feature,
and also have shared views, image feature for source do-
main 1 (Figure 3(a)) and text feature for source domain
2 (Figure 3(b)), with the target domain (Figure 3(c))
respectively. In addition, instances in different domains
follow different distributions. Specifically, data from dif-
ferent source domains follow two Gaussian distributions
under different views, while target data is constructed
along parabola curves under another feature space.

First of all, suppose we have already learned the
correct decision boundaries of source domains. As dif-
ferent source domains only cover one view of the target
domain, when we apply the constructed boundaries on
the target data, the boundaries reduce to a vertical or
horizontal line due to absence of source specific view in
target domain. That is to say, target data’s audio fea-
ture is equal to zero. The boundaries are shown as dash
dot lines in Figure 3(c). We notice that, using single
boundary from source domain will misclassify many in-
stances. However, if we combine these two boundaries
together, the boundary (the dash line) can discriminate
the target data much better. Thus, we should exploit
multiple views together to improve the performance.

However, due to the distribution shift, we cannot
directly apply multi-view learning algorithms, e.g., co-
training, whose selection criterion is purely based on
confidence. Inappropriate target examples could be s-
elected to mislead classifier updating. For example, in
Figure 3(c), classifier 2 (i.e., Boundary 2) will assign
negative labels to points around [−0.2,−0.3] with high
confidence. Likewise, it will confidently assign positive
labels to points around [−1.3, 0.9], although, which ac-
tually are belonging to negative class. Followed by pass-
ing these selected points to source domain 1, we get
Figure 3(d), where data points along line L (L: audio
feature = 0) are newly added. These data will push the
boundary down along image feature axis, and deterio-
rate the final performance. Similar incorrect results of

source domain 2 can be found in Figure 3(e). On the
contrary, by revising the distribution shift, the selection
process of multi-transfer is an unbiased model. It se-
lects data points with high confidence as well as large
distribution similarity. For example, data in source do-
main 2 are mainly distributed around [−0.5,−0.5] and
[0.5, 0.5]. Taken this data distribution and classifier 2’s
confidences into account, classifier 2 will select points
around [−0.3,−0.35] and [0.4, 0.5] in target domain
for source domain 1 (Figure 3(f)). Likewise, classifi-
er 1 will select proper data for source domain 2 (Fig-
ure 3(g)). These selected data will push the boundaries
up along image and text feature respectively and im-
prove the performance. After re-weighting new train-
ing instances in this iteration, the decision boundaries
constructed by co-training and multi-transfer are shown
in Figure 3(h), from which we can see multi-transfer’s
boundary is moving towards the ground-truth boundary
(the solid line) and correctly classifies most data points,
while co-training misclassifies lots of target instances.

4.2 Experimental Setting We evaluate the perfor-
mance of multi-transfer algorithm on two real-world
text data collections, 20 Newsgroups and spam de-
tection, and compare to three state-of-the-art meth-
ods, i.e., LatentMap [15], co-adaptation [13] and co-
training [2]. These baseline methods stand different
learning paradigms. LatentMap is a traditional transfer
learning approach that considers only one source do-
main under single-view, co-adaptation is a multi-view
transfer learning which does not consider the domain
differences across multiple sources, and co-training is a
representative multi-view learning algorithm. The per-
formance is measured with classification accuracy on
unlabeled target data. For co-adaptation, LatentMap
is introduced as a base classifier. For co-training and
multi-transfer, SVM and C4.5 are adopted.

4.3 Data Description The data processing proce-
dure is as follows. First, each document is converted to
a term-frequency vector. Secondly, to reduce the num-
ber of features, we remove the vocabularies whose fre-
quency counts are less than 1% of the document coun-
t. Finally, term frequency is used as the feature val-
ue in the experiments. The 20 Newsgroups data
set contains the top categories, such as ‘comp’, ‘sci’,
‘rec’ and ‘talk’. Each category has some sub-categories,
such as ‘sci.crypt’ and ‘sci.med’. We use 4 main cate-
gories to generate 5 datasets, in each of which two top
categories are chosen for generating binary classifica-
tion tasks. With a hierarchical structure, for each cat-
egory, all of the subcategories are then organized into
three parts, where each part is of different distribution.
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Figure 3: A Synthetic Example to Illustrate the Problem of Transfer Learning with Multiple Views and Multiple Sources.
( ∗CT: for co-training; MT: multi-transfer; Boundary CT: Boundary constructed by co-training; Boundary MT: boundary
constructed by multi-transfer.)

Table 2: Dataset Description

Dataset Source domain-1 Source domain-2 Target domain #S-1 #S-2 #T
20-Newsgroup

rec-vs-comp autos : misc baseball : mac hockey : windows 1164 1169 1190
rec-vs-tech autos : guns motorcycles : mideast hockey : misc 1137 1160 1062
sci-vs-comp electronics : graphics med : misc space : windows 1172 1166 1185
sci-vs-tech crypt : guns electronics : mideast med : misc 1139 1155 970

comp-vs-tech graphics : guns misc : mideast windows : politics 1126 1136 1065
Spam Detection

Filter 1 User 0 User 1 User 2 2500 2500 2500
Filter 2 User 0 User 2 User 1 2500 2500 2500
Filter 3 User 1 User 2 User 0 2500 2500 2500

Therefore, one part can be treated as the target domain
data and the other two are used for the source domain
purpose. To generate the multi-view in multi-source,
we further let the vocabularies of these two source do-
mains be overlapping the ones in the target domain but
not identical. To this end, we can see that each dataset
has two source domains and one target domain, each of
which discusses different sub-category topics. We can
also notice that the dataset has four views: (1) each
source domain has one specific view (i.e., domain spe-
cific vocabularies) and one shared view with the target
domain (i.e., vocabularies shared with target domain)
and (2) target domain has two views, which are respec-
tively shared with two source domains. Besides, the
distribution of shared views in the target domain is d-
ifferent from that in the source domains due to the dis-
tinct sub-category topics. The spam detection data
set is from Task A of ECML/PKDD Discovery Chal-
lenge 2006. The task aims to construct spam filters for
3 users, each of which has 2500 emails. The emails of a
user consist of 50% spams and 50% non-spams. In ad-
dition, the data distribution between users is different.
That is to say, users have their specific vocabularies as
well as common ones. In our experiment, we use two

users as two source domains and another user as the
target domain. The details of datasets are reported in
Table 2. Their dimensions range from 2405 to 5984. In
all datasets, the source instances are fully labeled, while
the target domain contains only unlabeled data.

4.4 Performance Figure 4 presents the performance
on each data set given by LatentMap, co-adaptation,
co-training and multi-transfer. In each subfigure, the
method with higher histogram has better performance
than that with lower one. Multi-transfer always achieves
the best classification accuracy. LatentMap and co-
adaptation seems fail to transfer knowledge from source
domain to target domain in this multi-view setting.
Specifically, LatentMap does not consider the multi-
view nature in the problem and co-adaptation does
not consider the differences between source domains.
Besides, without taking distribution shift into account,
co-training obtains lower accuracy than multi-transfer.
Within multi-transfer, we can see that SVM as base
learner is more accurate than C4.5, since SVM is known
as a first choice classifier for traditional classification
problem. However, when using C4.5 as base learner,
multi-transfer obtains much higher accuracy than co-



LM CA CTS CTC MTS MTC
70

75

80

85

90

Learning Methods

Ac
cu

rac
y

(a) rec-vs-comp

LM CA CTS CTC MTS MTC
60

65

70

75

80

Learning Methods

Ac
cu

rac
y

(b) rec-vs-tech

LM CA CTS CTC MTS MTC
60

65

70

75

80

Learning Methods

Ac
cu

rac
y

(c) sci-vs-comp

LM CA CTS CTC MTS MTC
50

60

70

80

Learning Methods

Ac
cu

rac
y

(d) sci-vs-tech

LM CA CTS CTC MTS MTC
70

80

90

100

Learning Methods

Ac
cu

rac
y

(e) comp-vs-tech

LM CA CTS CTC MTS MTC
70

80

90

100

Learning Methods

Ac
cu

rac
y

(f) Filter 1

LM CA CTS CTC MTS MTC
80

85

90

95

100

Learning Methods

Ac
cu

rac
y

(g) Filter 2

LM CA CTS CTC MTS MTC
80

85

90

95

100

Learning Methods

Ac
cu

rac
y

(h) Filter 3

Figure 4: Performance on Different Datasets. (LM: LatentMap; CA: Co-Adaptation; CTS: Co-Training with SVM; CTC:
Co-Training with C4.5; MTS: Multi-Transfer with SVM; MTC: Multi-Transfer with C4.5.)

training. Especially, on 20NG sci-vs-comp dataset, the
accuracy of multi-transfer is over 10 percent higher.

4.5 Effect of Model Parameter As mentioned be-
fore, our algorithm has three parameters, which directly
impact the final performance. The first one is the num-
ber of nearest neighbors in KNN. The selection process
is easily influenced by noise when small K is used, while
large K leads to a very smooth confidence distribution
on unlabeled data. From Figure 5(a), we can see the
trend where the performance improves when K grows
and decreases when K grows too large. So K = {5, 7}
are suitable choices. From the result, we can also see
that our method always outperforms co-training.

Secondly, na, the number of selected unlabeled
data with most confident labels, is also important
for classifier updating. It is easy to understand that
the classifier is updated in a smooth way when small
value na is used. On the contrary, large value na

brings unstable updating process. This phenomenon
can be seen in Figure 5(b). However, adding a large
set augments labeled data quickly and accelerates the
algorithm. Considering the pros and cons, we add 10
percent unlabeled data in each iteration. Therefore, the
algorithm evolves fast at the beginning and goes stable
afterwards, as shown in Figure 5(c).

The last aspect we care about is the convergence.
From Figure 5(c) we can see that the classifier becomes
more accurate on target domain when target data are
added into the learning process successively and then
converges. In the experiments, we find that setting
maximum iteration as 25 works well in most cases.

4.6 Model Analysis Besides the parameters, base
learner selection and the relationship between source
and target domains also have important impacts up-
on the classification accuracy. We conduct extensive
experiments to test these impacts. Firstly, the strate-

gy of base learner selection in one iteration affects the
performance in the next iteration. For example, an al-
ternative way of using a same base learner is running
different classifiers on two domains. In this method,
classifiers can learn from each other in each iteration.
We use this strategy on 20NG’s rec-vs-comp data set
and get its classification accuracy of 87.82%, which lies
between performances of multi-transfer with SVM or
C4.5 as base learner. Also, from the Figure 6(a), we
can see that the algorithm converges.

Secondly, we test how the relationship between
source and target domains influences the performance
of multi-transfer. For instance, in both source domains,
we remove part of common features shared by source
and target domains, then train classifiers on these in-
complete views. By changing the removal-ratio, which
is the percentage of removed features, we obtain the per-
formance curve given by the solid line in Figure 6(b). In
this figure, we can see that even 60% common features
in each view are removed, the performance of multi-
transfer is still better than that of classifier trained on
single complete domain, whose features are never delet-
ed. We also remove the common features in one view
while keeping the other unchanged. This allows us to
study how source views affect the final performance.
By removing with increasing proportions, we obtain the
classification accuracy results in Figure 6(c). Clearly, in
this setting, the performance is better than a complete
single source. In addition, the effect of each source is
quite different, since the gap between curves is large.
That is why we exploit multi-view knowledge collabo-
ratively rather than combining views.

Finally, we analyze the situation where only com-
mon features are used as a single view in source and tar-
get domains followed by randomly splitting them into
two views. This setting is used to test the performance
of multi-transfer and co-adaptation with the condition
where the distribution of two source views is the same.
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Figure 5: Parameter Analysis on 20NG’s rec-vs-comp Dataset
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Figure 6: Model Analysis on 20NG’s rec-vs-comp Dataset

By repeating the splitting five times, we plot the means
and variances of classification accuracies in Figure 6(d),
where multi-transfer is still better than co-adaptation.

It is worth noting that the experiments are conduct-
ed on text data sets, but the algorithm could be directly
applied on data set with multiple heterogeneous views.
The reason is that, all the views are using completely
different words in data sets; any view can be replaced
by other type of feature, such as image.

5 Related Works

We summarize the related works on multi-view learning,
transfer learning and their variants. Generally, the
studied problem in this paper can be considered as a
general framework which unifies all these learning tasks.

Multi-view Learning In many real-world applica-
tions, examples are represented by multiple views. Co-
training [2] is a representing multi-view learning method
which first learns a separate classifier for each view us-
ing any labeled examples and then pick the most confi-
dent predictions of each classifier on the unlabeled data
to iteratively construct additional labeled training data.
In [9], the authors incorporate the consistency Laplacian
term into multi-view semi-supervised learning problems.
However, most existing multi-view learning methods are
for the single-domain settings instead of cross-domain.

Traditional Transfer Learning (TLL) Trans-
fer learning (TL) addresses the problem of insufficien-
t labeled data in a target domain by using auxiliary
data in related but different source domains [11]. T-
wo representative techniques for transfer learning are
instance weighting [5], which extends Adaboost to fil-
ter those useless source domain data, and feature map-
ping [15, 19] which transfers knowledge across domain-
s through kernel based dimension reduction. Howev-
er, these traditional transfer learning approaches focus

on addressing the distribution shift across domains but
work with a single source domain under a single-view.

Multi-view Transfer Learning (MVTL) Sev-
eral approaches have been proposed to handle the situ-
ation where data from source and target domains are
composed by multiple views. For example, the co-
adaptation algorithm proposed in [13] uses the labeled
source domain examples to construct classifiers and then
applies the co-training algorithm to construct the clas-
sifier for the target domain. Co-training has been ex-
tended to cross-domain context by adding a feature s-
election process [4]. Recently, a maximal margin based
method [18] is introduced to integrate the multi-view
and transfer learning nature in a principled way. How-
ever, these works assume that there is only one source
domain and source and target views are identical.

Multi-source Transfer Learning (MSTL)
There are a few research works on multi-source trans-
fer learning. For example, the work in [17] extends
TrAdaboost [5] by adding a wrapper boosting frame-
work on weighting each source domain. [3] presents a
linear combination over multiple sources to reach a con-
sensus. However, these approaches work under single-
view setting. Recently, a close related work is proposed
in [7], which addresses a multi-task learning problem
under multiple views. It proposes a graph-based algo-
rithm to capture the relations among different views in
different tasks. However, it requires that all tasks con-
tain labeled data and does not consider the distribution
shift among domains.

6 Conclusion
In this paper, we studied a novel and general trans-
fer learning problem: Transfer Learning with Multiple
Views and Multiple Sources, where the source and tar-
get domains are under multiple views and the knowledge
of target views are distributed on different source do-



mains. We have introduced a multi-transfer algorithm,
which works in an iterative manner to predict the labels
of the unlabeled target data. Comparing with previous
works, multi-transfer considers the domain differences
and multi-view nature together to perform cross-domain
knowledge transfer. Following the co-training process,
in each iteration, the target data with pseudo labels
from one domain can be exploited to enhance the mod-
el building in another domain. Besides, we proposed
two novel heuristics in each iteration to overcome the
distribution shift. We found that by applying density-
weighted harmonic function, the proposed criterion is
unbiased to select high-confidence target data. In ad-
dition, it is better to estimate the importance of each
source instance, which helps build a consistent model
for the target domain. We conducted empirical studies
on two real text collections, 20-newsgroup and spam de-
tection, where the proposed method can boost several
state-of-the-art algorithms as high as 8% on accuracy.

We carried out experiments under a setting that
contains two source domains and one target domain
while each source domain covers one view of the target.
In our future work, we plan to extend the experiments
over multiple sources and multiple views, and on a more
general setting that the source and target views may be
inconsistent and the source views may be overlapping.
In addition, we would consider extending the algorithm
under heterogeneous contexts, where the feature or label
spaces are different in source and target domains.
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