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Abstract

Music emotion recognition (MER) aims to recognize the

affective content of a piece of music, which is important

for applications such as automatic soundtrack generation

and music recommendation. MER is commonly formulated

as a supervised learning problem. In practice, except for

Pop music, there is little labeled data in most genres. In

addition, emotion is genre specific in music and thus the

labeled data of Pop music cannot be used for other genres.

In this paper, we aim to solve the genre-specific MER

problem by exploiting two kinds of auxiliary data: unlabeled

songs and social tags. However, using these two kinds of

data effectively is a non-trivial task, e.g. tags are noisy

and therefore cannot be treated as fully trustworthy. To

build an accurate model with the help from the unlabeled

songs and noisy tags, we present SMART, which stands

for Semi-Supervised Music Affective Emotion Recognition

with Social Tagging, combining of a graph-based semi-

supervised learning algorithm with a novel tag refinement

method. Experiments on the Million Song Dataset show

that our proposed approach, trained with only 10 labeled

instances, is as accurate as Support Vector Regression

trained with 750 labeled songs.

1 Introduction.

Music emotion1 recognition (MER) aims to extract
emotion information from the musical content, which
has attracted more and more attention in recent years,
since it is essential for many important and interesting
tasks, e.g. automatic soundtrack generation for online
videos, images, etc. [1] , music recommendation [2]
and emotion-based mobile device music players , e.g.,
Mood Pal2. Armed with the MER technique, users can
retrieve and index music according to their moods.

In psychology, emotion is usually represented in a
two-dimension-emotion plane [3]. Typically, MER is
formulated as a classification problem by separating the
emotion plane into a few categories [4, 5], or a regres-
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this paper, we use “emotion”.
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Figure 1: Thayer’s valence-arousal emotion plane.

sion problem which predicts the coordinate position of
music in the emotion plane [6, 7]. Formulating MER as
a regression problem is generally considered more ap-
propriate because it resolves the ambiguity issue, as no
categorial classes are needed [6].

Although several approaches have been proposed to
solve the MER problem by supervised learning meth-
ods [4,6–8], none are genre-aware. They build accurate
models relying on a large amount of labeled data. In
practice, however, labeled data is very hard to obtain in
most genres except for Pop music [9] (automatic index-
ing systems can still be built given a genre [10]). This
is because, human labor and “expert time” iare expen-
sive. Recently researchers have found that emotion is
genre specific [11] in music, which means that we can
neither apply the model trained on one genre to another
nor build accurate models based on the limited labeled
data for a particular genre, (e.g., it would be not possi-
ble to infer the emotion of a Classical song based on Pop
songs). Therefore, the MER problem should be viewed
from different perspective. Fortunately, with the de-
velopment of Web 2.0, many music websites have been
launched that provide a great deal of music-related data
such as MP3, tags. These can shed light on how to solve
the data sparsity problem in MER.

First, compared to the limited number of labeled
songs with emotion, there are plenty of unlabeled songs
on music websites which can be easily obtained, e.g.,
free music on Last.fm. Under a reasonable assumption
that songs which have similar contents tend to have
similar emotional labels [12], we can iteratively predict



and assign labels by propagating them from labeled to
unlabeled data that are similar, and thereby increase
the amount of labeled data.

Second, on most music websites, such as Last.fm,
users can create tags3 for songs and these tags are
emotion-related. The challenge in exploiting social tags
is that tagging is socially-distributed and inherently
noisy. Emotions tagged by casual users may be different
from those by experts. For example, sadness in music
is rarely perceived as an unpleasant emotion by casual
users [13]. As shown in Figure.2, ‘Yesterday Once
More’ was labeled as ‘Sad’ in the All Music Guide4

(AMG), but only received a small number of ‘Sad’
tags in Last.fm. Moreover, in social tagging, there
are some spammers or novices who simply cannot
recognize a song emotion. Again, ‘Yesterday Once
More’, has both ‘Sad’ and ‘Happy’ tags, which are
totally opposite. Though the perceived emotion can
depend on the listener’s mood, we can also argue that
tags created by casual users cannot be fully trusted.
The tagging information needs to be further filtered
and denoised before being used in a model. As these
tags are uncertain and noisy by nature, in this paper we
denote songs with emotion-related social tags as noisy-
label data.

To address these issues, we present SMART, which
stands for Semi-Supervised Music Affective Emotion
Recognition with Social Tagging. It makes use of both
unlabeled and noisy-label data. First, to utilize the
knowledge of unlabeled data, we introduce a graph-
based semi-supervised algorithm (GSSL) to propagate
labels from labeled to unlabeled songs. The main idea
is to assign labels transductively according to content
similarities. Second, we propose a tag refinement
method in order to adjust song-tag relations by learning
a refinement matrix.

Our experimental results show that GSSL outper-
forms Support Vector Regression in Mean Square Error
(MSE) by 10% for valence and 2.5% for arousal. In ad-
dition, the proposed method with 10 labeled instances
can perform as well as Support Vector Regression with
750 labeled examples. Furthermore, after refining the
song-tag correlation, SMART improves slightly (0.2%
for valence and 0.5% for arousal). More importantly, in
a noisy environment, where many tags’ emotion values
do not agree with their related songs, the improvement
increases to 1.3% for valence and 1.2% for arousal, which
indicates the robustness of SMART.

3In this paper, we refer to “tags” as words used by casual users
online to describe music, while “labels” are words used by experts

to describe music from a professional point of view.
4“The All Music Guide”, Available:

http://www.allmusic.com.

Table 1: Notation

Notation Definition
l Number of labeled songs
u Number of unlabeled songs
n Number of songs n = l + u
YL Labeled songs’ emotion value vector
YU Unlabeled songs’ emotion value vector
m Number of social tags
T Vector of social tags
e Social tags’ emotion value vector
R Correlation matrix between songs and tags

rTik
Correlation between the i-th song and the
k-th tag

2 Problem Definition.

We formulate the problem in this section. The notation
list can be found in Table 1.

Briefly, MER works as follows. Given an input song,
the MER system outputs the corresponding emotion.
As shown in Figure 1, the valence (X) axis describes
how positive (high valence) or negative (low valence)
the emotion is, while the arousal (Y) axis describes how
excited (high arousal) or calm (low arousal) the emotion
is. Each word in the plane can be represented as a real
number tuple (v,a) where v is the degree of valence and
a is the degree of arousal. The range of the scalar is
usually 0-10 [14].

Let {(x1, y1), . . . , (xl, yl)}T be labeled songs, where
YL = {y1, . . . , yl}T ∈ Rl×2 is the label set indicating
the emotion values of the songs. The emotion value is a
tuple (v, a) denoting the emotion values of valence and
arousal respectively.

Let {(xl+1, yl+1), . . . , (xl+u, yl+u)}T be unlabeled
songs, where YU = {yl+1, . . . , yl+u}T denotes the un-
observed labels of the unlabeled data, and l � u. Let
Y = YL ∪ YU , denote the complete set of songs. Let
X = {x1, . . . , xl+u}T ∈ R(l+u)×d, which contains l + u
feature vectors extracted from the l + u songs.

In addition, for each song (xi, yi), we have
auxiliary knowledge from a set of tags T =
{(t1, e1), . . . , (tm, em)}T assigned by users on social me-
dia websites, where e = {e1, . . . , em}T ∈ Rm×2 is a
set of real numbers indicating the true emotion val-
ues of the tags {t1, . . . , tm}T . The correlation between
(X,Y ) and e can be represented as a correlation matrix
R ∈ Rm×(l+u), i = 1, . . . , l + u, where rki, 1 ≤ k ≤ m,
represents the correlation between the k-th tag and the
i-th song. Note that e and Y share the same value
space. The emotion values are projected to Thayer’s
model [3]. Then, our task is to predict YU based on X
and YL with additional knowledge in the form of T and
R.



Figure 2: Screenshot of the tag list for ‘Yesterday Once More’ from Last.fm, where ‘Happy’ and ‘Sad’ were both
tagged by users. This song is labeled as ‘Sad’ in AMG, but very few people selected this tag (only 1.6% according
to MSD, while it received nearly the same number for ‘Happy’).

3 Semi-supervised Regression with Tag
Refinement

Two challenges need to be addressed in the proposed
model: 1) How to exploit knowledge in the unlabeled
data? 2) How to refine song-tag relations in order to
reduce the effect of uncertainty and noise in the tags?

For the first challenge, each song has some emotion-
ally similar songs and tags (some tags could be noisy).
The similarities between songs can be obtained by the
similarities of their audio features. The weights of cor-
relation between songs and tags can be obtained by the
number of people who assign a certain tag to a certain
song. With the similarity relations, we can construct
a graph containing songs and tags, where those similar
ones tend to connect with each other and thereby be-
come neighbors. Intuitively, each song’s emotion is sim-
ilar to its neighbors’ and therefore although the number
of songs with labels is limited, we can still use the sim-
ilarity correlations to propagate supervision knowledge
from labeled to unlabeled songs. Formulating songs,
tags, and the song-tag correlations as a graph, we ex-
ploit a graph-based semi-supervised learning method to
predict the unlabeled songs’ labels YU using audio fea-
tures X and tags’ emotion values e.

For the second challenge, our basic idea is to
construct a better song-tag correlation matrix R′ based
on the original R. We can assume that there exists a
projection matrix W such that R′T = RTW, and our
objective is to learn the projection matrix W under
the supervision of the labeled songs YL in order to
strengthen similar tags and weaken opposites. Then
we can make another prediction of YU using the refined
song-tag correlation matrix R′.

After solving the two challenges, we combine the
two predictions with a tradeoff parameter. Formally,
we have:

(3.1) YU = λfse(xi, r
T
i.) + (1− λ)fsu(rTi.)

where 0 ≤ λ ≤ 1 is a tradeoff parameter, fse(xi, r
T
i.)

and fsu(rTi.) represent predictions from semi-supervised
learning and song-tag based supervised learning parts,
respectively, where ri. denotes the i-th row of R. Here
we use a linear combination of supervised and semi-
supervised learning. Although R′ refines the song-tag
relationship compared to the original matrix R, there

are still cases where R′ in fact deviates from the ground
truth. In such a case, if we build the semi-supervised
learning framework using the refined R′, the overall
prediction performance would degrade, which we found
in our experiments. Therefore, to improve robustness,
we use a linear combination so that it can not only
improve the performance of the model most of the time
but also reduce performance degradation.

We discuss these two parts in the following subsec-
tions in detail.

3.1 Graph-based Semi-supervised Learning In
Eq. (3.1), fse(xi, r

T
i.) generates predictions based on

labeled and unlabeled songs, and noisy-label data. It
predicts using labeled songs YL, the similarity matrix
between songs S, the song-tag correlation matrix R,
and the tags’ emotion value vector e. S is calculated
by audio features of each song, which will be defined
later. The formula for fse is:

(3.2) fse(xi, r
T
i.) = γSi.Y + (1− γ)rTi.e

where xi is the i-th song and rTi. is the i-th row vector
of RT . As stated previously, we model fse(xi, r

T
i.) as

a graph-based regression model [12]. In the graph, we
have two types of vertices, namely songs and tags, which
correspond to (X,Y ) and T . Some are labeled and
others are unlabeled, which correspond to YL and YU
respectively. There are also two types of edges, song-
song relations, and song-tag relations. The song-tag
relations are related to the correlation matrix R, which
will be discussed in detail in Section 4.1. We model the
song-song relations as a similarity matrix S, which is
defined as S = [sij ]n×n ∈ Rn×n, i, j = 1, . . . , n, i 6= j,
where sij = sim(xi,xj), sii = 0, i = 1, . . . , n. sim() is a
similarity function defined by the Mahalanobis distance
between two songs’ audio feature vectors [15]:

(3.3) sim(xi,xj) = exp{−(xi − xj)Σ
−1(xi − xj)

T }
where Σ is the covariance matrix of features across all
songs, approximated as a diagonal matrix where the
diagonal values are the variances of individual features.
Afterwards, each row of S is normalized to sum to 1.
Then, we can obtain the objective function:

(3.4) Ese =

n∑
i=l+1

‖ YUi − (γSi.Y + (1− γ)rTi.e) ‖2



where Ese is the prediction error of the semi-supervised
learning part. Here, we use gradient descent to optimize
this objective function [16]. Taking the partial deriva-
tive of Ese with respect to YUi, we have:

(3.5)
∂Ei

∂YUi
= YUi − (γSi.Y + (1− γ)rTi.e)

where Ei denotes the semi-supervised learning error
of YUi. Then, we have the update rule for YUi:

(3.6) 4Y (k)
Ui

= Y
(k)
Ui
− (γSi.Y

(k) + (1− γ)rTi.e)

(3.7) Y
(k+1)
Ui

← Y
(k)
Ui
− ρ4 Y

(k)
Ui

where ρ is the learning rate of gradient descent. The
proof of convergence of gradient descent can be found
in [16].

Initially, each vertex maintains a (v, a) tuple to
denote their labels. Labeled songs and tags are defined
according to YL and e respectively, while unlabeled
songs are initialized as a zero vector. Then, we can
iteratively update YU until convergence.

3.2 Closed Form Solution In this subsection, we
will give the closed form solution for GSSL. Since we
update YU once each iteration, we combine and reshape
Eqs. (3.7) and (3.6). Note that in calculating YU , we
only need to consider entries corresponding to {(xl+1,
yl+1), . . . , (xl+u, yl+u)}T , therefore we use SU ∈ Ru×n

instead of S:

Y
(k+1)
U =(1− ρ)Y

(k)
U

+ ρ(γSUY
(k) + (1− γ)RT

Ue)

=(1− ρ)Y
(k)
U

+ ρ(γ
[
SUL SUU

]
×
[
YL
YU

](k)

+ (1− γ)RT
Ue))

(3.8)

where SUL ∈ Ru×l and SUU ∈ Ru×u denote the
unlabeled-labeled songs and unlabeled-unlabeled songs’
similarity matrices respectively.

Then, Eq. (3.8) can be rewritten as:

Y
(k+1)
U =(1− ρ)Y

(k)
U

+ ργ(SUUY
(k)
U + SULY

(k)
L )

ρ(1− γ)RT
Ue)

=((1− ρ)Iu + ργSUU )Y
(k)
U

+ ρ(γSULYL + (1− γ)RT
Ue)

=AY
(k)
U + B

(3.9)

where A = ((1− ρ)Iu + ργSUU ), B = ρ(γSULYL +
(1− γ)RT

Ue), and Iu is the identity matrix. Solving the
recursion, we have:

Y
(k+1)
U =Ak+1Y

(0)
U

+ (Ak + Ak−1 + · · ·+ A + Iu)B

=Ak+1Y
(0)
U +

Ak+1 − Iu
A− Iu

B.

(3.10)

Limiting k to infinity, we have:

(3.11) lim
k→∞

Y
(k)
U = lim

k→∞
AkY

(0)
U +

Ak − Iu
A− Iu

B

which is only valid when Iu −A is invertible. Note
that A = (1 − ρ)Iu + ργSUU , ρ ≤ 1, γ < 1 and each
element in similarity matrix SUU is less than or equal
to 1. Furthermore, since each row of SUU is normalized,
the sum of the i-th row of A is:

(3.12)

u∑
j

Aij = 1−ρ+ργ

u∑
j

(SUU )ij ≤ 1−ρ+ργ < 1

Therefore ∃η < 1, such that
∑

j(A
k)ij ≤ ηk for any

row iin Ak [17] and each element (Ak)ij ≤
∑

j(A
k)ij ≤

ηk converges to zero, i.e., limk→∞Ak = 0. Thus, we
obtain the closed form solution:

(3.13) lim
k→∞

Y
(k)
U =

Iu
Iu −A

B

Since there exists uncertainty in R, we still need
one more step to improve the usage of the noisy social
tagging. In the next section, we address this problem
by proposing a novel Tag Refinement (TR) approach.

3.3 Tag Refinement In Eq.(3.1), fsu(rTi.) generates
predictions based on song-tag relations and emotion
values related to the tags. Since the social tagging data
may be uncertain and noisy, and the distribution and
preference of social tagging by casual users are different
from experts, we need to refine the song-tag correlation
matrix R. Our basic idea is to learn a better song-tag
correlation matrix R′ by refining the original correlation
matrix R. Therefore, we propose to learn a projection
matrix W in order to determine the correlation between
R and e, such that:

(3.14) R′T = RTW

(3.15) fsu(rTi.) = rTi.We

where W ∈ Rm×m. Therefore, we can obtain the objec-
tive function which minimizes the square loss between
the emotion labels YL and the refined predictions based
on R and e:



(3.16)

min
W

∑̀
i=1

1

2
(YLi − rTi.We)2 +

β

2
‖W‖2F

= min
W

∑̀
i=1

1

2
(YLi − FW)2 +

β

2
‖W‖2F

where W ∈ Rm×m is a projection matrix, RL ∈ Rm×` is
the song-tag correlation matrix of the labeled songs, β
is a regularization parameter, and F = e⊗RL ∈ Rm2×`.
Note that W can be obtained in closed form [18] :

(3.17) W′ = (βI + FFT )−1Fy

From the above equation, we obtain W as a matrix of
type Rm2×1, and we need to reshape W′ by dividing
the m2 elements into m groups and put each group into
a new column, which reshapes W′ into W ∈ Rm×m.
However, with this approach, F may have very large
dimensions even if the data set is not large, so we can
approximate W by the product of low-rank matrices
[19] UVT , where U ∈ Rm×p and V ∈ Rm×p,

(3.18)

min
U,V

l∑
i=1

1

2
(yi − rTi.UVTe)2 + αu‖U‖2F + αv‖V‖2F

=
1

2
‖YL −RTUVTe‖2F + αu‖U‖2F + αv‖V‖2F

where p can be a relatively small number and αu,
αv are regularization parameters. Similar to W, we can
obtain the update equations for U and V:

(3.19) FU = VTe⊗RL

(3.20) U = (αuI + FUFT
U)−1FUYL

(3.21) FV = e⊗UTRL

(3.22) V = (αvI + FVFT
V)−1FVYL

where FU ∈ Rmp×l and FV ∈ Rmp×l. Note that
both V and U should be reshaped like W after each
update. Once we learned U and V, we can make
prediction:

(3.23) fsu(rTi.) = rTi.We

4 Experiments

We empirically answer the following questions in this
section. 1) Does the proposed graph-based semi-
supervised approach GSSL achieve similar or even less
music emotion recognition error with fewer training
samples by utilizing the unlabeled and noisy-label data?
2) Does the tag refinement solution change the song-
tag relations? 3) How do the model parameters (e.g.,

number of neighbors in GSSL) influence the model per-
formance? To answer these questions, we first intro-
duce the datasets we used. We then describe what and
how audio features were extracted. We then compare
the performance of our method to some state-of-the-art
methods. We will use Mean Square Error (MSE) as the
evaluation metric for 1) and 2), which will be described
in details in Section 4.3. We also conducted a parameter
study was conducted to reflect the intrinsic properties
of our methods.

4.1 Datasets Since the data is currently sparse in
other genres, we cannot use them for evaluation. As
labeled Pop data is sufficient, if the proposed method
can train an accurate model with a small number of Pop
training examples, the model could also work in other
genres. Therefore, we make use of large amount of data
in Pop music for evaluation purposes. We construct the
evaluation dataset based on several real-world datasets.

Affective Norms for English Words (ANEW) is a
‘word-emotion value’ table which consists of over 1000
words scored by subjects on how they feel about the
words in terms of valence and arousal using real numbers
from 0 to 10. We use ANEW as the emotional word list.

The All Music Guide (AMG) lists thousands of Pop
songs labeled by experts with emotional words. We used
these songs and labels as the ground truth. There are
a total of 183 emotional labels and 5106 “label-song”
entries. Note that some songs have multiple labels.
In this paper, since the labels of one specific song are
relatively close to each other (0.28 and 0.42 in standard
deviation for valence and arousal respectively.), we
simply assign the average value as the label to the song.
After the aggregation, we have a total of 2914 songs.

The Last.fm Dataset5 has over 500,000 Pop songs
each with at least one social tag and over 500 thousand
unique tags. We use this dataset as the source for social
tags. Matching songs with the AMG and the Last.fm
Dataset according to artist name and song title, we were
left with 836 songs.

Specifically, the song-tag correlation matrix is con-
structed as follows. The Last.fm Dataset provides each
song’s social tag list and the tags’ corresponding degrees
of importance which is decided by how many people
tagged a tag to the song. The tag list and corresponding
degree of importance for ‘Yesterday once more’ is listed
in Figure 3. We first filter these tags using ANEW,
then normalize the weight of each tag such that the
sum of the remaining tags’ weights equals 1. After the
pre-processing step, we can get the song-tag correlation
matrix R.

5http://labrosa.ee.columbia.edu/millionsong/lastfm



Figure 3: The tag list and corresponding degree of importance for ‘Yesterday Once More’ extracted from the
Last.fm Dataset. The importances of ‘happy’ and ‘sad’ is 2 and 3 respectively (the two words wrapped with red
rectangles have similar degree of importance.)

Finally, the remaining emotional labels and tags
were in the following ranges: valence ∈ [1.25, 8.82],
arousal ∈ [2.39, 8.17]. We were left with 836 songs
and 376 emotional social tags from Last.fm with an
average of 4.1 tags for each song. We also connected the
836 songs with the Million Song Dataset (MSD) [20] by
matching track IDs to extract audio features.

4.2 Musical Features To describe the audio fea-
tures from a music emotion perpective, we consider sev-
eral types of audio features, including timbre, pitch,
rhythm, and loudness, which have been found to be ef-
fective features for describing music emotion [9].

MSD provides Mel-Frequency Cepstral Coefficient
(MFCC) like features with 12 bands, including timbre
and pitch. Also, we use the maximum loudness of each
segment to outline the overall loudness of the music. For
these three features, we take the mean and Standard
Deviation (STD) every 5 seconds (i.e. the texture
window), and take the mean and STD again for the
complete song [21]. For rhythm, we use the overall
tempo (beats per minute) and take the STD of beat
intervals to represent the tempo regularity [7].

Finally, aggregating all four types of features, we
have a 102 dimension feature vector in total.

4.3 Performance of GSSL The emotion predic-
tions of the baseline and the proposed methods were
evaluated by Mean Squared Error (MSE). We first
compared the Graph-based Semi-supervised Learning
(GSSL) model to the state-of-the-art approach, Support
Vector Regression (SVR) [6, 15].

The musical audio features of SVR are the same as
GSSL, and are denoted as ‘Audio’ in our results when we
train the model simply based on the audio features. We
exploit social tagging data in two representations. In the
first, we use a weighted sum of tags’ emotion values for
each song, namely rTi.e for the i-th song. We denote it as
‘TEV’ (tag emotion values). The second representation
is bag-of-words (BOW), with term frequency-inverse

document frequency weighting (tf*idf) [22] between tags
and songs, namely rTi. for the i-th song. We denote it as
‘BOW’. We provide another BOW tf*idf representation
by clustering tags into 11 classes according to the
division method of Thayer’s emotion plane [7]. We
denote it as ‘BOW-c’ (BOW-clustered).

To verify our hypothesis that we can make use of
a limited amount of labeled data to predict a large
amount of unlabeled data, we use a reverse ten-fold
crossvalidation evaluation framework in the training
process. We use one fold for training and the other
nine for testing. Table 2 lists the experimental results.
We also list ‘Audio’ and ‘TEV’ for comparison. In SVR,
we use libsvm [23] , ε-SVR and a Radial Basis Function
kernel.

The results in Table 2 show that for SVR, ‘TEV’
yields the best performance for valence while ‘Au-
dio+TEV+BOW’ achieves the best prediction for
arousal. For GSSL, ‘Audio+TEV+BOW’, which means
adapting tags as vertices and song-tag relations as
edges, yields the best performance. The results also
reflect the general observation that valence recognition
is much more challenging than arousal [9]. More impor-
tantly, GSSL outperforms SVR (with ‘TEV’) by 10%
(0.344 in MSE) in valence and 2.2% (0.04 in MSE) in
arousal.

We also examined the performance of both methods
with respect to different numbers of training instances.
In Figure 4, we compare GSSL and SVR performance
when trained with 1%, 10%, 50% and 90% of the
instances. From the valence result, the performance of
GSSL is surprisingly good. Trained with only 1% (about
10 instances), it already performs as well as SVR trained
with 90% (about 750 instances). The reason may be
that SVR cannot make use of the informative unlabeled
data. Furthermore, in SVR, tags are treated as part
of the features, while in GSSL they can be treated as
noisy-labels which can be propagated within the graph.
For arousal, although the performance of GSSL is not
as surprising as for valence, it still beats SVR with only



Table 2: Comparison between SVR and GSSL trained with 10% instances using MSE. Values in bold are the best
performance within valence/arousal. SVR(V/A): MSE of SVR for valence/arousal; GSSL(V/A): MSE of GSSL
for valence/arousal.

SVR (V) GSSL (V) SVR (A) GSSL (A)
Audio 4.71622 3.76743 1.82305 1.83613
TEV 3.78669 3.60061 1.86007 2.32252
BOW 5.35682 N/A 1.98210 N/A
BOW clustered 5.04255 N/A 1.87656 N/A
Audio+TEV+BOW 4.70258 3.44207 1.81411 1.77333
Audio+TEV+BOW-c 4.71522 N/A 1.82249 N/A

Figure 4: MSE of both methods with respect to different
number of training instances. The total number of
instances is 836.

50% training instances (about 420 instances) while SVR
used 90% of the labeled instances.

In summary, the above results reflects two facts:
1) Exploiting unlabeled data is valuable and effective,
2) social tagging helps improve the prediction because
it can reflect the emotion of the songs. Social tagging
information can be useful features in SVR and can be
treated as ‘noisy-labels’ in GSSL. However, can the
tags be used directly as labels? We’ll discuss this by
examining the effectiveness of our proposed SMART
approach in the next subsection.

4.4 Performance of SMART Since social tagging
may be noisy and uncertain, we investigated the perfor-
mance of SMART. We make use of R as the correla-
tion matrix and we denote this method as ‘Normal’. We
added noises in the correlation matrix to verify the per-
formance under increasingly noisy environments. We
manually constructed two noisy datasets, which are de-
noted as ‘Little Noise’ and ‘Much Noise’ respectively.
In ‘Little Noise’, we deleted the best 10% of tags for
each song. In ‘Much Noise’, we selected the worst tags
assigned by users and raised the weight (to around 0.4
after normalization). Table 3 shows the results.

From Table 3, we found that SMART works better
than GSSL. This is because SMART refines the song-
tag relations and improves the confidence. In ‘Normal’,
‘Little Noise’ and ‘Much Noise’, SMART reduces the
MSE by (0.009, 0.005), (0.011, 0.015), and (0.059, 0.025)
for valence and arousal respectively, which is shown

Figure 5: Reduction in MSE under different modes (left,
higher is better) and MSE with respect to iteration
times (right)

more clearly in Figure 5, where the Y-axis is the MSE
reduced by SMART. We can come to two conclusions:
1) There exists noise in social tagging. 2) Our method
is able to filter and denoise social tagging. We studied
the tag refinement effect of song ‘Pictures Of You’
using the song ‘The Cure’, which is labeled as ‘Sad’
in AMG, under ‘Normal’ conditions. In Last.fm, the
original weight for ‘Sad’ was 0.0612. After refinement,
it was raised to 0.0786. The reason might be this song
has neighbors which are tagged or labeled with similar
emotion words such as ‘Sad’, ‘Lost’, bringing it closer
to the ground truth.

4.5 Parameter Study Next, we studied the effec-
tiveness of the various parameters in our model. First,
we investigated the number of nearest-neighbors chosen
to pre-process the similarity matrix S in GSSL. We in-
cremented k from 1 to 20 and obtained the MSE results
shown in Figure 6. In valence, the error is minimized
when the number of nearest-neighbors decreases to 5,
while for arousal, it achieves best performance when the
number of nearest-neighbors is 10. We obtained the best
performance when the number of nearest-neighbors was
relatively small, which is a good sign for real-world ap-
plications since this will greatly decrease the number
of edges in the learning graph and hence improve the
efficiency of the algorithm.

Another important parameter in our approach is
the number of iterations. We’ve compared the MSE



Table 3: Comparison of SMART and GSSL. The low rank dimension p is set to 2.

GSSL(V) SMART(V) GSSL(A) SMART(A)
Normal 3.44207 3.43435 1.77333 1.76872
Little Noise 3.65741 3.64654 1.86382 1.84860
Much Noise 4.75760 4.69848 1.96304 1.93830

Figure 6: Mean Square Error with respect to the
number of nearest-neighbors for valence and arousal

for various iterations between SMART and GSSL
without Tag Refinement. As shown in Figure.5 we
can see that both GSSL and SMART converge within
about 25 iterations. The MSE of SMART rises after
convergence because it jumps out of the convergence
interval.

5 Related Work

Much works has been done on MER. Some supervised
classification and regression methods have been applied
to MER [1, 4, 6, 7]. [24] also investigated multi-label
classification in MER. However, as music emotion is
genre-specific, the data sparsity problem becomes se-
rious. As far as we know, state-of-the-art methods rely
on the amount of labeled data, which is a problem for
real-world applications due to the scarcity of labeled
data in most genres. Some researchers have also fo-
cused on extracting social tagging knowledge to help
MER [25, 26]. However, according to Laurier et al.’s
finding [27], inconsistencies exist between experts and
casual users when using emotional words to describe
music. Previous work has only considered tags as fea-
tures and have not discussed their uncertain and noisy
nature. Also, since the distribution of social tagging is
different with emotional labels, we cannot simply train
a model on social tagging data.

Graph-based Semi-supervised Learning has been
widely studied. Stikic et al. designed a Multi-graph
Based semi-supervised learning method for activity
recognition. Goldberg et al. [28] used graph-based semi-
supervised learning for sentiment categorization. Niu
et al. [29] proposed to solve word sense disambiguation
problem using Graph-based Semi-supervised Learning.
In Music Information Retrieval, Li et al. [30] proposed to
use semi-supervised learning to identify similar artists.
However, to the best of our knowledge, semi-supervised

learning has not yet been proposed to solve MER.
Tag refinement has also been studied on many

applications. Liu et al. [31] studied on providing better
tags for online images. Sang et al. [32] exploited user
information to correct tags for images. However, their
work sought to automatically assign better tags for
images while ours aims to improve MER by refining the
song-tag correlation and therefore different in purpose.
Their methods are not directly applicable to solve the
noisy-label problem in MER.

6 Conclusions and Future Works

Since MER is genre-specific, more research is required
to exploit auxiliary knowledge and design methods to
use such knowledge effectively. In this paper, we
have exploited unlabeled and noisy-label data (social
tagging) to help Music Emotion Recognition. Our work
has two major contributions:

1) We have proposed a graph-based semi-supervised
learning method to predict music emotion by making
use of both unlabeled audio and social tagging informa-
tion. Evaluation on Pop songs shows that the use of un-
labeled and noisy-label data gives good results in genre-
specific MER. Our method can make accurate predic-
tions even if the number of training instances is small,
i.e. 10, which beats the state-of-the-art method trained
with 750 instances [6, 7]. This result is encouraging for
MER tasks in other genres which lack labeled data (e.g.,
Classical and Jazz).

2) Since social tagging information plays a more im-
portant role when labeled data is scarce, we considered
social tagging as noisy-label data and found that denois-
ing and filtering rendered a better performance com-
pared to naively treating social tagging as trustworthy
knowledge. Moreover, the proposed method can with-
stand the onslaught of increasing level of noise well.

In the future, since semi-supervised learning may
propagate errors in the learning process, we will consider
to introduce active learning to help select instances that
are valuable for labeling and thereby reduce manual
labeling. Moreover, we may take user profiles and users’
social networks into consideration to model the tagging
abilities of users more accurately.
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