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Linear Discriminant Analysis

• Linear classification: projection to one-dimensional subspace

(direction parametrized by w) plus thresholding

(parametrized by bias b).

• Ideal Discrimination: Project data onto a line such that

patterns become “well separated”.

• For given w, each pattern will be represented by

π(x) = 〈w,x〉,

where π defines a projection onto the line defined by w, if

‖w‖ = 1.

September 30, 2003 CS195-5, c© Thomas Hofmann Page 1



Looking for Directions

Which direction is a good one to pick?
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Linear Discriminant Analysis

• What are the requirements for a “good” direction / line to

project onto? Focus on two-class case.

• We want the projections of the class means to be maximally

separated.

• Make sure the projection of the positive centroid is as far

away as possible from the projection of the negative centroid.

• Positive and negative centroid:

m+ ≡

∑
i:yi=1

xi∑
i:yi=1

1
, m− ≡

∑
i:yi=−1

xi∑
i:yi=−1

1
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Looking for Directions: The Centroids

Here are the centroids, m−, m+:
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Linear Discriminant Analysis

• Absolute difference of their projections under w:

|π(m+) − π(m−)| = |〈w,m+ − m−〉|

What matters is the projection of the difference vector

between the two centroids. [Which direction w achieves this?]

• This alone is clearly not sufficient [Think about it!]. The

variance of the one-dimensional projections within each class

should be as small as possible.

• Formally: scatter of the projected points in positive/negative

class is defined as

s2

+ ≡
∑

xi:yi=1

(π(xi)−π(m+))2, s2

−
≡

∑

xi:yi=−1

(π(xi)−π(m−))2
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Linear Discriminant Analysis: Fisher’s Criterion

• Fisher’s criterion:

J(w) =
|π(m+) − π(m−)|2

s2
+ + s2

−

The denominator s2
+ + s2

−
is called the total within class

scatter.

• This criterion is invariant w.r.t. scaling of w.

• Ronald Fisher (1890-1962): The ’father’ of statistics.

Natural selection is a mechanism for generating an exceedingly

high degree of improbability.
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Fisher’s Linear Discriminant Analysis

• How can we maximize J? Use matrix notation first!

• Define scatter matrices

S± ≡
∑

xi:yi=±1

(xi − m±)(xi − m±)′

SW = S+ + S−

SW is called the within class scatter matrix.

• Now one can write

s2

±
=

∑

xi:yi=±1

(〈w,xi〉 − 〈w,m±〉)
2

=
∑

x:yi=±1

w′(xi − m±)(xi − m±)′w = w′S±w
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Fisher’s Linear Discriminant Analysis

• Hence

s̃2

+ + s̃2

−
= w′SWw .

• Similarly

(π(m+) − π(m−))2 = w′SBw,

with the between class scatter matrix

SB ≡ (m+ − m−)(m+ − m−)′

• This results in an equivalent expression for Fishers

discriminant criterion as a ratio between two quadratic forms:

J(w) =
w′SBw

w′SWw
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Fisher’s Linear Discriminant Analysis

• How can we maximize J - now that we have converted the

criterion to matrix notation?!

• The above ratio is also known as the generalized Rayleigh

quotient in physics. [so what?]

• Let’s try and solve it...

∇
w
J(w) =

2SBw

w′SWw
−

w′SBw

w′SWw

2SWw

w′SWw
= 0

• Hence one gets for the optimal w

SBw = λSWw, λ =
w′SBw

w′SWw
.
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Fisher’s Linear Discriminant Analysis

• Rewriting one gets... An eigenequation!

S−1

W SBw = λw

• Since

SBw = 〈w,m+ − m−〉(m+ − m−)

it is not necessary to actually determine the eigenvalues.

• One simply gets

w ∝ S−1

W (m+ − m−)
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Matlab’s Linear Discriminant Analysis

% number of positive and negative examples

num_plus = size(Xplus,1);

num_minus = size(Xminus,1);

% class means and difference of class means

m_plus = sum(X_plus, 1) / num_plus;

m_minus = sum(X_minus,1) / num_minus

m_diff = m_plus - m_minus;

% subtract class mean from data

mX_plus = X_plus - repmat(m_plus, num_plus, 1);

mX_minus = X_minus - repmat(m_minus,num_minus,1);
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Matlab’s Linear Discriminant Analysis

% compute within class scatter

S_plus = mX_plus’ * mX_plus ;

S_minus = mX_minus’ * mX_minus ;

S = S_plus + S_minus ;

% optimal w

w_opt = inv(S) * m_diff’;

% normalize (arbitrary)

w_opt = w_opt / norm(w_opt);
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Matlab’s Linear Discriminant Analysis
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Fisher’s Linear Discriminant Analysis

• What have we achieved?

• General solution to project data onto a one-dimensional

subspace (a line) with optimal class separation.

• Computational: Inversion of within class scatter matrix.

• One needs to fix a threshold in order to define a classifier.
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