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Linear Discriminant Analysis

e [inear classification: projection to one-dimensional subspace
(direction parametrized by w) plus thresholding
(parametrized by bias b).

e [deal Discrimination: Project data onto a line such that

patterns become “well separated”.

e LFor given w, each pattern will be represented by
W(X) — <W7 X>7

where 7 defines a projection onto the line defined by w, if

lwl| = 1.
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Looking for Directions

Which direction is a good one to pick?
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Linear Discriminant Analysis

e What are the requirements for a “good” direction / line to

project onto? Focus on two-class case.

e We want the projections of the class means to be maximally

separated.

e Make sure the projection of the positive centroid is as far

away as possible from the projection of the negative centroid.

e Positive and negative centroid:

Ziiyizl X Zi:yi:—l Xi

m_ =

Z’Lyz:]_l 7 o Zi:yi:— 1

m.,
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Looking for Directions: The Centroids

Here are the centroids, m_, m.:

+
+
6 |
++ +
+
+++
4+ n + -
o T +
O ++H +
o oLy
2r Oooo + 4 ++++ 4
e +d +
% + +t ny +
o. A0 +
or o O + ++:H:+++ N |
O s +
© oo ++ oy
-2t O ++ -|-4+ _
@)
&g @ +
O@O () + +
_4_ %O a
O (g)
o +
O®
-6} O O e O -
o %
@)
@) o 0
sl o5 |
-10 | | | | |
-15 -10 -5 0 5 10 15

September 30, 2003 CS195-5, © Thomas Hofmann Page 4



Linear Discriminant Analysis

e Absolute difference of their projections under w:
m(my) —7(m_)| = |(w,m; —m_)|

What matters is the projection of the difference vector
between the two centroids. [Which direction w achieves this?]

e This alone is clearly not sufficient [Think about it!]. The
variance of the one-dimensional projections within each class

should be as small as possible.

e Formally: scatter of the projected points in positive/negative
class is defined as

) (mlx)—m(my))?, 2=y (n(x)-m(m-))’

X;yi=1 Xi:Yi=—1

9
Sy
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Linear Discriminant Analysis: Fisher’s Criterion

e [isher’s criterion:

7 (m,) —7(m_)[*

2 2
3 + sZ

J(w) =

The denominator s2 + s2 is called the total within class

scatter.

e This criterion is invariant w.r.t. scaling of w.

e Ronald Fisher (1890-1962): The ’father’ of statistics.

Natural selection 1s a mechanism for generating an exceedingly

high degree of improbability.
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Fisher’s Linear Discriminant Analysis

e How can we maximize J? Use matrix notation first!

e Define scatter matrices

S, = Z (x; —my)(x; — my)

X;:y; ==x1

SW — S_|_ + S_
Sy 1s called the within class scatter matrix.

e Now one can write
sto= Y (w,x) — (w,my))’
X;:y;==x1

= Z w(x; —my)(x; —my)w =wSiw
x:y;==x1
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Fisher’s Linear Discriminant Analysis

e Hence
574+ 5 =wSyw.
e Similarly
(r(my) — 7(m_))* = w'Spw,

with the between class scatter matrix

e This results in an equivalent expression for Fishers

discriminant criterion as a ratio between two quadratic forms:

w'Spw

J(w) =

W/ Sy w
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Fisher’s Linear Discriminant Analysis

e How can we maximize J - now that we have converted the

criterion to matrix notation?!

e The above ratio is also known as the generalized Rayleigh

quotient in physics. [so what?]
e Let’s try and solve it...

2S5 'S 2S5
VWJ(W): BW _W BW W W —0

W' Sww W SpywwSyyw

e Hence one gets for the optimal w

w'Spw

SBW — )\SV[/W7 A=

W' Syyw
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Fisher’s Linear Discriminant Analysis

e Rewriting one gets... An eigenequation!
S‘;/l SBW — \W
e Since
Spgw=(w,m, —m_)(m, —m_)
1t 1s not necessary to actually determine the eigenvalues.

e One simply gets

w o Sy (my —m_)

September 30, 2003 CS195-5, © Thomas Hofmann Page 10



Matlab’s Linear Discriminant Analysis

/» number of positive and negative examples
num_plus = size(Xplus,1);

num_minus = size(Xminus,1);

% class means and difference of class means

m_plus = sum(X_plus, 1) / num_plus;
m_minus = sum(X_minus,1) / num_minus
m_diff = m_plus - m_minus;

% subtract class mean from data
mX_plus = X_plus - repmat(m_plus, num_plus, 1);

mX_minus = X_minus - repmat(m_minus,num_minus,1);
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Matlab’s Linear Discriminant Analysis

% compute within class scatter

S_plus = mX_plus’ * mX_plus ;
S_minus = mX_minus’ * mX_minus ;
S = S_plus + S_minus ;

% optimal w
w_opt = inv(S) * m_diff’;

/» normalize (arbitrary)

w_opt = w_opt / norm(w_opt);
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Matlab’s Linear Discriminant Analysis

10
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Fisher’s Linear Discriminant Analysis

e What have we achieved?

e General solution to project data onto a one-dimensional

subspace (a line) with optimal class separation.
e Computational: Inversion of within class scatter matrix.

e One needs to fix a threshold in order to define a classifier.
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