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Abstract. Clustering in data mining is used to group similar objects
based on their distance, connectivity, relative density, or some specific
characteristics. The k-medoids-based algorithms have been shown to
be effective to spherical-shaped clusters with outliers. However, they
are not efficient for large database. In this paper, we propose a novel
Multi- Centroids with Multi- Runs Sampling Scheme MCM RS to improve
the performance of many k-medoids-based algorithms, including PAM
CLARA and CLARANS. MCMRS is also further improved by com-
bining with the CLASA algorithm presented in earlier work. Experi-
mental results demonstrate the efficiency of the proposed MCMRS and
MCMRS-CLASA algorithms.
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1 Introduction

Clustering is a form of classification imposed over a finite set of objects. The
goal of clustering is to group sets of objects into classes such that similar ob-
jects are placed in the same cluster while dissimilar objects are in separate
clusters. Clustering (or classification) is a common form of data mining [1,2]
and has been applied in many fields including data compression [3], texture seg-
mentation [4], vector quantization [5], computer vision [6] and various business
applications. Clustering algorithms can be classified into partitioning and hier-
archical algorithms. Partitioning algorithms create a partitioning of objects into



a set of clusters. Hierarchical algorithms construct a hierarchical decomposition
of objects. The hierarchical decomposition is represented by a tree strategy that
separates the objects into small subsets until each subset consists only of suf-
ficiently similar objects. There exist a large number of clustering algorithms in
the literature including k-means [7], k-medoids [8], CACTUS [9], CURE [10],
CHAMELEON [11] and DBSCAN [12]. No single algorithms is suitable for
all types of objects, nor are all algorithms appropriate for all problems, however,
the k-medoids algorithms have been shown to be robust to outliers [8] compared
with centroid-based clustering. Assume T objects z1,Z2,...z7r and k objects
chosen from these T' objects as the representative objects (medoids) 01, 02, .. .0
then the total distance for partitioning these (T' — k) objects based on the k
representative objects is
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where S, is the pth partitioned set (or cluster) such that d(zm,,0p) < d(Tm,0n),
n=1...k,and m =1...T. Partitioning Around Medoids (PAM) [8], Cluster-
ing LARge Applications (CLARA) [8] and Clustering Large Applications based
on RANdomized Search (CLARANS) [1] are three popular k-medoids-based
algorithms while the Clustering Large Applications based on Simulated Anneal-
ing (CLASA) algorithm applies simulated annealing to select better medoids
[13]. The drawback of the k-medoids algorithms is the time complexity of de-
termining the medoids. In this paper, a novel sampling scheme based on Multi-
Centroids with Multi-Runs Sampling scheme (M CMRS) is proposed to improve
k-medoids-based algorithms. Significantly, all existing k-medoids algorithms,
including CLASA, can be improved by combining with M CMRS. Both the
MCMRS and the combined MCM RS-CLASA are shown to be superior to
PAM, CLARA, CLARANS and CLASA. In the following section we review
the k-medoids algorithms including PAM, CLARA, CLARANS, CLASA and
genetic k-medoids algorithm. The proposed Multi-Centroids with Multi-Runs
Sampling scheme (M CM RS) and the combined version, MCM RS-CLASA al-
gorithm are described in Section 4. Section 5 will present some experimental
results using three artificial databases and a real image database. Section 6 con-
tains the conclusions and the future work.

2 Existing k-medoids algorithms

K-medoids clustering algorithms evaluate a set of k objects for those that can be
considered to be representative objects (medoids) for k clusters within T' objects
such that non-selected objects are clustered with the medoid to which it is the
most similar. The total distance between non-selected objects and their medoid
may be reduced by the swap of one of the medoids with one of the objects
iteratively.

The PAM (Partitioning Around Medoids) algorithm can be depicted as fol-
lows:



Step 1: Initializaion - choose k medoids from T objects randomly.

Step 2: Evaluation - calculate the cost D} — D, for each swap of one medoid
with one object, where Dy is the total distance before swap and Dj is the
total distance after swap.

Step 3: Selection - accept the swap with the best cost and if the cost is nega-
tive, go to step 2; otherwise record the medoids and terminate the program.

The computational complexity of the PAM algorithm is O((1+ 8)k(T —k)?)
where § is the number of successful swaps. Obviously, it is time consuming even
for a moderate number of objects and small number of medoids. CLARA (Clus-
tering LARge Applications) algorithm reduces the computational complexity by
drawing multiple samples of the objects and applying PAM algorithm on each
sample. The final medoids are obtained from the best result of these multiple
draws. The CLARA algorithm can be expressed as follows:

Step 1: Repeat the following steps ¢ times.

Step 2: Call PAM algorithm with a random sample, s objects from the
original set of T' objects.

Step 3: Partition the T objects based on the k medoids obtained from pre-
vious step. Update the better medoids based on the average distance of the
partition.

The clustering process in CLARANS [1] is formalized as searching through
a graph where each node is represented by a set of k£ medoids, and two nodes
are neighbours if they only differ by one medoid. Each node has k(T — k) neigh-
bours, where T is the total number of objects. The CLARANS algorithm starts
with a randomly selected node. It moves to the neighbour node if one test for
the mazneighbour number of neighbours is successful; otherwise it records the
current node as a local minimum. If the node is found to be a local minimum,
it restarts with a new randomly selected node and repeats the search for a new
local minimum. The procedure continues until the numlocal numbers of local
minima have been found, and return the best node. The CLARAN S algorithm
can be described as follows:

Step 1: Repeat the following steps for numlocal times.
Step 2: Select a current node randomly and calculate the average distance of
this current code, where node is the collection of & medoids.
Step 3: Repeat the following step for mazneighbour times.
— Select a neighbour node randomly and calculate the average distance for
this node. If the average distance is lower, set current node to be the
neighbour node.

Simulated annealing [14, 15] is a random search method that has been proved
to be efficient for optimization problems. In our previous work, the simulated
annealing was applied to generate medoids for the CLASA algorithm [13]. The
CLASA algorithm can be illustrated as follows:

Step 1 : Choose an initial state s of the medoids at random and set the initial
temperature Temp = Tp.



Step 2 : Randomly choose another state s’ (a perturbation of state s) by
swapping the medoids with the objects. Calculate the difference in total
distortion AD = D(s') — Dy(s). If AD < 0, replace the state s by s';

A

otherwise replace s by s’ with probability eTens and go to step 3.

Step 3 : If the times of distance drops dis_drop (ie. the number of times AD <
0) exceeds a prescribed parameter or the fixed number of perturbations per
is reached, go to step 4; otherwise go to step 2.

Step 4 : Terminate the program and return the selected medoids if the temper-
ature T'emp is below some prescribed freezing temperature Ty or the total
number of perturbation total_per is reached; otherwise lower the temperature
Temp and go to step 2.

There are several possible methods for the annealing schedule, it is convenient to
set Temp = Ton!, where t is the number of iterations, 7 is a constant coefficient,
0<n<1.

3 Genetic k-medoids algorithm

Genetic algorithm [16] has been applied to k-medoids algorithm [17]. In paper
[17], the genetic k-medoids algorithm is called GC'A (genetic clustering algo-
rithm). The basic idea of GCA is to generate P individuals initially and each
individual consists of k different parameters selected from T objects randomly.
The fitness function can be the inverse of the total distortion. The fitness is also
modified using linear scaling technique. The modified fitness of each individual
is evaluated and pair of individuals is selected based on the roulette selection.
These two selected individuals are used for crossover operation to generate tem-
porary individual with half parameters from each selected individuals. If the
temporary individual is a wrong one, i.e., two parameters are the same, then
simply replace by one of the selected individual. The mutation technique is ap-
plied to this temporary individual. After getting the same population size, the
evaluation, selection, crossover and mutation are applied again until the maxi-
mum number of generations is reached or the satisfied fitness is obtained. The
computational complexity of CG A based on the number of distance calculation
is O'(PGk(T — k)), where G is the number of generations.

4 MCMRS sampling scheme

K-means and k-medoids are both partitioning clustering algorithms. For k-
means, each cluster is represented by the mean value of the objects in the cluster
whereas each cluster is represented by one of the objects located near the cen-
tre of the cluster in the k-medoids algorithm. K-means can be sensitive while
k-medoids is generally more robust to outliers (or noise). One of the main fac-
tors to limit the use of the k-medoids algorithm is the inefficiency of k-medoids
algorithms comparing with k-means — k-means algorithm can be several orders
of magnitude faster than the k-medoids algorithm. In general, it is not efficient



for k-medoids algorithm even for moderate sized datasets. This drawback can
be overcome with the aid of an efficient sampling scheme. The idea for the
sampling scheme in this paper is motivated from the efficiency of the centroid-
based clustering algorithms [15, 18]. From our empirical observations, we noticed
that there is a higher probability of better medoids being selected within some
distance from the centroids of the clusters. Based on this observation and the
efficiency of the centroid-based clustering, we can generate k groups of medoid
candidates with each group containing NumCandidate nearest objects from the
centroid for each centroid-based cluster. K medoids can be collected from each
object in each group randomly. This process interates NumSample times. This
sampling scheme can be more robust by repeating the above procedure many
times. The proposed M CM RS can be depicted as follows:

Step 1 : Repeat the following steps for NumRun times.

Step 2 : Get representative centroids by calling the centroid-based clustering
algorithm (such as k-means or GLA algorithm[19]) with random initializa-
tion.

Step 3 : Get NumCandidate objects for each cluster by selecting the NumCandidate
nearest objects from the centroid in each cluster.

Step 4 : Repeat the following steps NumSample times.

Step 5 : Generate medoids by selecting one object from the NumCandidate
nearest objects in each cluster.

Step 6 : Calculate the average distance per object and update the best medoids.

MCM RS sampling scheme can be combined with PAM, CLARA, CLARANS
and CLASA to further improve the performance. The combined version of
MCMRS and CLASA for example, (referred here as MCM RS-CLASA) can
be described as follows:

Step 1 : Choose the best centroids whose average distance per object is a
minimum by running the centroid-based clustering NumRun times.

Step 2 : Get NumCandidate objects for each cluster by selecting the NumCandidate
nearest objects from the centroid in each cluster.

Step 3 : Call CLAS A by using the nearest object from the centroid in each
cluster as the initial medoids. The candidate medoid is swapped from the
NumCandidate nearest objects in the same group.

Step 4 : Terminate the program and return the medoids when the predefined
criterion is satisfied.

5 Experimental Results

Three artificial databases and one real image database were used for the exper-
iments are as follows:

1. 1,500 objects collected from four elliptic clusters shown in Fig. 1.
2. 12,000 objects collected from twelve elliptic clusters shown in Fig. 2.
3. 3,100 objects collected from five compact clusters shown in Fig. 3.



Fig. 1. Four elliptic clusters

Fig. 2. Twelve elliptic clusters

4. 16,384 objects with 16 dimensions are generated from the LEN A grey-level
image with size 512 by 512 .

Experiments were carried out to test the number of distance calculations
and the average distance per object for the CLARA, CLARANS, CLASA algo-
rithms and the proposed MCM RS and MCM RS-CLASA algorithms. Squared
Euclidean distance measure is used in this paper. The four elliptic clusters
were used for the first experiment and 12 medoids are selected from 1500 ob-
jects. For CLARA, the parameter ¢ was set to 5 and s was set to 160 +
2 x k. For CLARANS, the parameter numlocal was set to 5 and parameter



Fig. 3. Compact clusters with noise

maxneighbour was set to 270 (i.e. 1.5% of k * T'). For CLAS A, the parame-
ters for the final temperature T%, the initial temperature Ty, n, the times of
distance drops dis_drop, per and the total number of perturbations total_per
were set to 0.000025, 0.0001, 0.95, 10, 200, 50000, respectively. For MCMRS,
a k-means algorithm is used to generate 12 centroid-based clusters. The pa-
rameters NumRun, NumCandidate and NumSample in MCMRS were set
to 20, 10 and 200, respectively. For MCM RS-CLASA algorithm, k-means al-
gorithm is also used to generate 12 centroid-based clusters. The parameters
NumRun and NumCandidate in MCM RS-CLASA algorithm were set to 60
and 10, respectively. The other parameters in M C M RS-CLAS A were the same
as for CLAS A. The experimental results of CLARA, CLARANS, MCMRS
and MCMRS-CLASA are averaged for 10 seeds are shown in Table 1 and the
result of the first seed of CLAS A are shown in Fig. 4. As shown in Fig. 4, both
MCMRS-CLASA and MCM RS algorithms outperform CLASA, CLARANS
and CLARA algorithms.

Twelve elliptic clusters were used for the second experiment. 12 medoids
are selected from 12,000 objects. For CLARA, the parameter ¢ was set to 5
and s was set to 960 + 2 x k. For CLARANS, the parameters numlocal and
mazxneighbour are set to 5 and 1800, respectively. For MCM RS, a k-means algo-
rithm is used to generate 12 centroid-based clusters. The parameters NumRun,
NumCandidate and NumSample in MCM RS were set to 20, 10 and 200, re-
spectively. For MCM RS-CLASA, a k-means algorithm is also used to generate
12 centroid-based clusters. The parameters NumRun and NumCandidate in
MCMRS-CLASA were set to 60 and 10, respectively. The parameters for the
final temperature T, the initial temperature T, 1, the number of total distance
drop dis_drop, per and the total number of perturbations total_per were set to
0.000025, 0.001, 0.95, 5, 20, 500000, respectively. Experimental results for 10



Table 1. Results of Experiment for four elliptic clusters

CLARA CLARANS MCMRS MCMRS-CLASA
seed Average| Count of |Average| Count of |Average| Count of |Average| Count of
distance|distances(10%) |distance|distances(10%) |distance|distances(10%)|distance|distances(10°)
1 0.228 2004 0.228 1609 0.216 808 0.212 541
2 0.221 2302 0.232 1067 0.217 821 0.213 567
3 0.236 2388 0.236 1351 0.218 825 0.212 527
4 0.230 2686 0.233 1154 0.218 811 0.213 572
5 0.227 2430 0.232 1572 0.216 807 0.213 546
6 0.237 2260 0.227 1223 0.217 803 0.213 549
7 0.232 2646 0.234 895 0.217 821 0.213 591
8 0.236 2516 0.231 1429 0.217 803 0.213 580
9 0.233 2345 0.231 1148 0.216 803 0.213 524
10 0.238 2728 0.231 1167 0.216 805 0.212 581
Ave 0.232 2431 0.232 1140 0.218 811 0.213 558
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Fig.4. Performance comparison of CLARA, CLARANS, CLASA, MCMRS-
CLASA and MCMRS for four elliptic clusters

runs for CLARA, CLARANS, MCMRS and MCMRS-CLASA are shown in
Table 2 and Fig. 5.

The compact clusters with noise were used for the third experiment. 5 medoids
are selected from 3,100 objects. For CLARA, the parameter ¢ was set to 5
and s was set to 200 + 2 x k. For CLARANS, the parameters numlocal and
maxneighbour are set to 5 and 200, respectively. For MCMRS, a k-means al-
gorithm is used to generate 5 centroid-based clusters. The parameters NumRun,
NumCandidate and NumSample in MCM RS were set to 20, 10 and 200, re-
spectively. For MCM RS-CLASA, a k-means algorithm was again used to gen-
erate 5 centroid-based clusters. The parameters NumRun and NumCandidate
in MCMRS-CLASA were set to 60 and 10, respectively. The parameters for
the final temperature T, the initial temperature Ty, n, the times of distance



Table 2. Results of Experiment for twelve elliptic clusters

CLARA CLARANS MCMRS MCMRS-CLASA
seed Average| Count of |Average| Count of |Average| Count of |Average| Count of
distance|distances(10%) |distance|distances(10%) |distance|distances(10%)|distance|distances(10°)
1 0.940 115659 0.931 91792 0.922 6587 0.920 5217
2 0.942 92528 0.943 63512 0.920 6554 0.918 5479
3 0.956 122462 0.935 76873 0.930 6496 0.920 5312
4 0.951 103413 0.928 79582 0.928 6447 0.918 5373
5 0.946 111577 0.949 90014 0.921 6483 0.918 5374
6 0.960 108856 0.936 72069 0.922 6632 0.918 5407
7 0.972 77562 0.936 84914 0.920 6426 0.920 5509
8 0.944 93889 0.934 93092 0.920 6549 0.918 5413
9 0.954 84365 0.930 59242 0.923 6573 0.918 5426
10 0.942 84365 0.931 75053 0.923 6541 0.920 5171
Ave.|| 0.951 99467 0.935 78615 0.923 6529 0.919 5368
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Fig. 5. Performance comparison of CLARA, CLARANS, MCMRS and MCMRS-
CLASA for twelve elliptic clusters

drops dis_drop, per and the total number of perturbations total_per were set to
0.00025, 0.001, 0.85, 10, 200, 50000, respectively. Experimental results based on
10 runs for CLARA, CLARANS, MCMRS and MCMRS-CLASA are shown
in Fig. 6. If the database is not large and the medoid size is small, the perfor-
mance of CLARA is better than CLARAN S shown in Table 3 and Fig. 6. Both
MCMRS and MCMRS-CLASA are more efficient and effective than CLARA
and CLARANS.

The LEN A gray-level image data with size 512 by 512 is used for the fourth
experiment. 16,384 objects with 16 dimensions are extracted from this image.
8 medoids are selected from these 16,384 objects. For CLARA, the parameter
g was set to 5 and s was set to 1000 + 2 x k. For CLARAN S, the parameters
numlocal and mazneighbour are set to 5 and 1800, respectively. For MCM RS, a



Table 3. Results of Experiment for compact clusters

CLARA CLARANS MCMRS MCMRS-CLASA
seed Average| Count of |Average| Count of |Average| Count of |Average| Count of
distance|distances(10%) |distance|distances(10%) |distance|distances(10%)|distance|distances(10°)
1 2.436 253 2.432 584 2.398 646 2.397 243
2 2.425 274 2.457 600 2.397 647 2.397 232
3 2.430 264 2.429 604 2.398 655 2.397 239
4 2.440 295 2.442 504 2.397 649 2.397 251
5 2.445 232 2.431 583 2.398 651 2.397 232
6 2.411 253 2.419 606 2.398 655 2.397 244
7 2.435 243 2.457 530 2.397 642 2.397 256
8 2.422 285 2.470 519 2.397 654 2.397 241
9 2.444 253 2.417 620 2.397 647 2.397 267
10 2.440 274 2.424 581 2.398 645 2.397 283
Ave 2.429 263 2.438 573 2.398 649 2.397 249
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Fig. 6. Performance comparison of CLARA, CLARANS, MCMRS and MCMRS-
CLASA for compact clusters with noise

k-means algorithm is used to generate 8 centroid-based clusters. The parameters
NumRun, NumCandidate and NumSample in MCM RS were set to 20, 10 and
200, respectively. For MCM RS-CLASA, a k-means algorithm is used to gen-
erate 8 centroid-based clusters. The parameters NumRun and NumCandidate
in MCMRS-CLASA were set to 20 and 10, respectively. The parameters for
the final temperature T%, the initial temperature Ty, n, the times of distance
drops dis_drop, per and the total number of perturbations total_per were set to
0.000025, 0.0001, 0.85, 10, 200, 50000, respectively. Experimental results based
on 10 runs for CLARA, CLARANS, MCMRS and MCMRS-CLASA are
shown in Table 4. The proposed MCM RS-CLASA algorithm can reduce the
computation time by approximately a factor of 20 and obtain better average
distance comparing with CLARANS.



Table 4. Results of Experiment for LEN A image

CLARA CLARANS MCMRS MCMRS-CLASA
seed Average| Count of |Average| Count of |Average| Count of |Average| Count of
distance|distances(10%) |distance|distances(10%) |distance|distances(10%)|distance|distances(10°)

1 2829.56 30057 2816.43 79704 2800.15 6121 2795.64 3135
2 2833.36 31379 2831.77 56796 2802.49 5897 2795.64 3135
3 2839.22 32700 2806.48 76182 2801.81 6138 2795.64 3135
4 2821.52 36003 2814.16 59684 2801.98 6080 2795.76 3264
5 2827.43 28736 2821.41 44216 2802.71 6067 2795.64 3287
6 2842.22 28736 2822.10 54274 2801.52 6158 2793.44 3184
7 1]2838.23 30718 2817.13 55947 2800.16 6145 2795.76 3192
8 2843.91 28736 2819.38 56845 2803.82 6036 2795.76 3179
9 2820.76 24772 2823.58 64621 2802.98 6229 2796.01 3387
10 || 2819.52 28736 2826.95 59039 2801.34 6019 2793.54 3065
Ave.|| 2831.57 30057 2819.94 60731 2801.90 6089 2795.28 3196

6 Conclusions

In this paper, a novel sampling scheme using multi-centroids with multi-runs
(MCMRS) is presented. This sampling scheme can be applied to PAM, CLARA,
CLARANS and CLAS A algorithms. A MCM RS-CLAS A algorithm that com-
bines the benefits of MCMRS with the CLASA algorithm [13] is also pro-
posed and evaluated. Experimental results based on three artificial databases and
one real image database indicates that the proposed MCM RS and MCM RS-
CLASA algorithms can not only reduce the average distance but also improve
the clustering process. The computation load in MCM RS and MCMRS-CLASA
can be further released by applying a more efficient centroid-based clustering
method [15]. In future, we intend to apply the adaptive concept to further im-
prove this novel sampling scheme by adjusting the NumSample, NumRun and
NumCandidate automatically. We will also generalize the experimental results
to commercial databases.
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