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Abstract. Thek-means algorithm is well known for its efficiency in clustering large data sets. However, working
only on numeric values prohibits it from being used to cluster real world data containing categorical values. In
this paper we present two algorithms which extend thek-means algorithm to categorical domains and domains
with mixed numeric and categorical values. Thek-modes algorithm uses a simple matching dissimilarity measure
to deal with categorical objects, replaces the means of clusters with modes, and uses a frequency-based method to
update modes in the clustering process to minimise the clustering cost function. With these extensions thek-modes
algorithm enables the clustering of categorical data in a fashion similar tok-means. Thek-prototypes algorithm,
through the definition of a combined dissimilarity measure, further integrates thek-means andk-modes algorithms
to allow for clustering objects described by mixed numeric and categorical attributes. We use the well known
soybean diseaseandcredit approvaldata sets to demonstrate the clustering performance of the two algorithms.
Our experiments on two real world data sets with half a million objects each show that the two algorithms are
efficient when clustering large data sets, which is critical to data mining applications.
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1. Introduction

Partitioning a set of objects in databases intohomogeneous groupsor clusters(Klosgen and
Zytkow, 1996) is a fundamental operation in data mining. It is useful in a number of tasks,
such as classification (unsupervised) (Cormack, 1971), aggregation and segmentation (IBM,
1996) or dissection (Cormack, 1971). For example, by partitioning objects into clusters,
interesting object groups may be discovered, such as the groups of motor insurance policy
holders with a high average claim cost (Williams and Huang, 1996), or the groups of clients
in a banking database having a heavy investment in real estate.

Clustering (Anderberg, 1973; Jain and Dubes, 1988; Kaufman and Rousseeuw, 1990) is
a popular approach to implementing the partitioning operation. Clustering methods par-
tition a set of objects into clusters such that objects in the same cluster are more similar
to each other than objects in different clusters according to some defined criteria. Statisti-
cal clustering methods (Anderberg, 1973; Everitt, 1974; Kaufman and Rousseeuw, 1990)
partition objects according to some (dis)similarity measures, whereas conceptual clustering
methods cluster objects according to the concepts objects carry (Michalski and Stepp, 1983;
Fisher, 1987).
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The most distinct characteristic of data mining is that it deals with very large and complex
data sets (gigabytes or even terabytes). The data sets to be mined often contain millions
of objects described by tens, hundreds or even thousands of various types of attributes or
variables (interval, ratio, binary, ordinal, nominal, etc.). This requires the data mining oper-
ations and algorithms to be scalable and capable of dealing with different types of attributes.
However, most algorithms currently used in data mining do not scale well when applied to
very large data sets because they were initially developed for other applications than data
mining which involve small data sets. In terms of clustering, we are interested in algo-
rithms which can efficiently cluster large data sets containing both numeric and categorical
values because such data sets are frequently encountered in data mining applications. Most
existing clustering algorithms either can handle both data types but are not efficient when
clustering large data sets or can handle large data sets efficiently but are limited to numeric
attributes. Few algorithms can do both well.

Using Gower’s similarity coefficient (Gower, 1971) and other dissimilarity measures
(Gowda and Diday, 1991) the standard hierarchical clustering methods can handle data
with numeric and categorical values (Anderberg, 1973; Jain and Dubes, 1988). However,
the quadratic computational cost makes them unacceptable for clustering large data sets. On
the other hand, thek-means clustering method (MacQueen, 1967; Anderberg, 1973) is effi-
cient for processing large data sets. Therefore, it is best suited for data mining. However, the
k-means algorithm only works on numeric data, i.e., the variables are measured on a ratio
scale (Jain and Dubes, 1988), because it minimises a cost function by changing the means
of clusters. This prohibits it from being used in applications where categorical data are
involved. The traditional approach to converting categorical data into numeric values does
not necessarily produce meaningful results in the case where categorical domains are not
ordered.

Ralambondrainy (1995) presented an approach to using thek-means algorithm to cluster
categorical data. Ralambondrainy’s approach is to convert multiple category attributes into
binary attributes (using 0 and 1 to represent either a category absent or present) and to
treat the binary attributes as numeric in thek-means algorithm. If it is used in data mining,
this approach needs to handle a large number of binary attributes because data sets in data
mining often have categorical attributes with hundreds or thousands of categories. This will
inevitably increase both computational and space costs of thek-means algorithm. The other
drawback is that the cluster means, given by real values between 0 and 1, do not indicate
the characteristics of the clusters.

Conceptual clustering algorithms developed in machine learning cluster data with cate-
gorical values (Michalski and Stepp, 1983; Fisher, 1987; Lebowitz, 1987) and also produce
conceptual descriptions of clusters. The latter feature is important to data mining because
the conceptual descriptions provide assistance in interpreting clustering results. Unlike sta-
tistical clustering methods, these algorithms are based on a search for objects which carry the
same or similar concepts. Therefore, their efficiency relies on good search strategies. For
problems in data mining, which often involve many concepts and very large object spaces,
the concept-based search methods can become a potential handicap for these algorithms to
deal with extremely large data sets.

The data mining community has recently put a lot of efforts on developing fast algorithms
for clustering very large data sets. Some popular ones include CLARANS (Ng and Han,
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1994), DBSCAN (Ester et al., 1996) and BIRCH (Zhang et al., 1996). These algorithms
are often revisions of some existing clustering methods. By using some carefully designed
search methods (e.g., randomised search in CLARANS), organising structures (e.g., CF
Tree in BIRCH) and indices (e.g., R∗-tree in DBSCAN), these algorithms have shown
some significant performance improvements in clustering very large data sets. Again, these
algorithms still target on numeric data and cannot be used to solve massive categorical data
clustering problems.

In this paper we present two new algorithms that use thek-means paradigm to cluster data
having categorical values. Thek-modes algorithm (Huang, 1997b) extends thek-means
paradigm to cluster categorical data by using (1) a simple matching dissimilarity measure
for categorical objects (Kaufman and Rousseeuw, 1990), (2) modes instead of means for
clusters and (3) a frequency-based method to update modes in thek-means fashion clustering
process to minimise the clustering cost function. Thek-prototypes algorithm (Huang, 1997a)
integrates thek-means andk-modes processes to cluster data with mixed numeric and
categorical values. In thek-prototypes algorithm we define a dissimilarity measure that takes
into account both numeric and categorical attributes. Assumesr is the dissimilarity measure
on numeric attributes defined by the squared Euclidean distance andsc is the dissimilarity
measure on categorical attributes defined as the number of mismatches of categories between
two objects. We define the dissimilarity measure between two objects assr +γ sc, whereγ
is a weight to balance the two parts to avoid favouring either type of attribute. The clustering
process of thek-prototypes algorithm is similar to thek-means algorithm except that it uses
the k-modes approach to updating the categorical attribute values of cluster prototypes.
Because these algorithms use the same clustering process ask-means, they preserve the
efficiency of thek-means algorithm which is highly desirable for data mining.

A similar work which aims to cluster large data sets is the CLARA program (Kaufman and
Rousseeuw, 1990). CLARA is a combination of a sampling procedure and the clustering
program PAM. Given a set of objectsX and the number of clustersk, PAM clustersX
by findingk medoids (representative objects of clusters) which can minimise the average
dissimilarity of objects to their closest medoids. Since PAM can use any dissimilarity
measures, it can cluster objects with categorical attributes.

Ng and Han (1994) has analysed that the computational complexity of PAM in a single
iteration isO(k(n − k)2) wheren is the number of objects inX. Obviously, PAM is not
efficient when clustering large data sets. To compensate for this, CLARA takes a small
sample from a large data set, uses PAM to generatek medoids from the sample and uses the
k medoids to cluster the rest of objects by the rules{x ∈ Si if d(x,qi )≤ d(x,qj )∧ i 6= j },
where 1≤ i, j ≤ k, d is a dissimilarity measure,qj is the medoid of clusterj and Si

is clusteri . For each sample, CLARA only goes through the large data set once. Its
computational complexity basically depends on the computational complexity of PAM
which is decided by the size of the sample. That is, CLARA is efficient in clustering large
data sets only if the sample size used by PAM is small. However, for large and complex
data sets in data mining applications, small samples often cannot represent the genuine
distributions of the data. The CLARA solution to this problem is to take several samples
and cluster the whole data set several times. Then, the result with the minimal average
dissimilarity is selected.
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The major differences between CLARA and thek-prototypes algorithm are as follows:
(1) CLARA clusters a large data set based on samples, whereask-prototypes directly works
on the whole data set. (2) CLARA optimises its clustering result at the sample level. A good
clustering based on samples will not necessarily represent a good clustering of the whole
data set if the sample is biased. Thek-prototypes algorithm optimises the cost function on
the whole data set. It guarantees at least a locally optimal clustering. (3) The efficiency of
CLARA depends on the sample size. The larger and more complex the whole data set is,
the larger the sample is required. CLARA will no longer be efficient when the sample size
exceeds a certain range, say thousands of objects. Thek-prototypes algorithm has no such
limitations.

2. Notation

We assume that in a database objects from the same domain are represented by the same
set of attributes,A1, A2, . . . , Am. Each attributeAi describes a domain of values, denoted
by DOM(Ai ), associated with a defined semantic and data type. Different definitions of
data types are used in data representation in databases and in data analysis. Simple data
types commonly used in relational databases are integer, float, double, character and strings,
whereas data types (often called variable types) concerned in data analysis are interval, ratio,
binary, ordinal, nominal, etc. According to the semantics of the attributes in the database
one can always find a mapping between the related data types. In terms of the clustering
algorithms to be discussed below, we only consider two general data types,numericand
categoricaland assume other types can be mapped to one of these two types. The domains
of attributes associated with these two types are called numeric and categorical, respectively.

A numeric domain is represented by continuous values. A domainDOM(Aj ) is defined as
categorical if it is finite and unordered, e.g., for anya, b ∈ DOM(Aj ), eithera = bora 6= b.
A categorical domain contains only singletons. Combinational values like in (Gowda and
Diday, 1991) are not allowed. A special value, denoted byε, is defined on all categorical
domains and used to represent missing values. To simplify the dissimilarity measure we do
not consider the conceptual inclusion relationships among values in a categorical domain
like in (Kodratoff and Tecuci, 1988) such that car and vehicle are two categorical values in
a domain and conceptually a car is also a vehicle. However, such relationships may exist
in real world databases.

Like in (Gowda and Diday, 1991) an objectX is logically represented as a conjunction
of attribute-value pairs

[ A1 = x1] ∧ [ A2 = x2] ∧ · · · ∧ [ Am = xm]

wherexj ∈ DOM(Aj ) for 1 ≤ j ≤ m. An attribute-value pair [Aj = xj ] is called a
selectorin (Michalski and Stepp, 1983). Without ambiguity we representX as a vector[

xr
1, xr

2, . . . , x
r
p, xc

p+1, . . . , x
c
m

]
where the firstp elements are numeric values and the rest are categorical values. IfX has
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only one type of value, it is simplified as

[x1, x2, . . . , xm]

X is called a numeric object if it has only numeric values. It is called a categorical object
if it has only categorical values. It is called a mixed-type object if it contains both numeric
and categorical values.

We consider every object has exactlymattribute values and do not allow numeric attributes
to have missing values. If the value of a categorical attributeAc

j is missing for an objectX,
thenAc

j = ε.
Let X = {X1, X2, . . . , Xn} be a set ofn objects. ObjectXi is represented as [xi,1, xi,2,

. . . , xi,m]. We write Xi = Xk if xi, j = xk, j for 1≤ j ≤ m. The relationXi = Xk does not
mean thatXi andXk are the same object in the real world database. It means the two objects
have equal values for the attributesA1, A2, . . . , Am. For example, two patients in a data set
may have equal values for the attributes Age, Sex, Disease and Treatment. However, they
are distinguished in the hospital database by other attributes such as ID and Address which
were not selected for clustering.

3. Thek-means algorithm

The k-means algorithm (MacQueen, 1967; Anderberg, 1973), one of the mostly used
clustering algorithms, is classified as apartitional or nonhierarchicalclustering method
(Jain and Dubes, 1988). Given a set of numeric objectsX and an integer numberk (≤n),
thek-means algorithm searches for a partition ofX into k clusters that minimises the within
groups sum of squared errors (WGSS). This process is often formulated as the following
mathematical program problemP (Selim and Ismail, 1984; Bobrowski and Bezdek, 1991):

Minimise P(W,Q) =
k∑

l=1

n∑
i=1

wi,l d(Xi , Ql ) (1)

subject to
k∑

l=1

wi,l = 1, 1≤ i ≤ n

wi,l ∈ {0, 1}, 1≤ i ≤ n, 1≤ l ≤ k (2)

whereW is ann× k partition matrix,Q= {Q1, Q2, . . . , Qk} is a set of objects in the same
object domain, andd(·, ·) is the squared Euclidean distance between two objects.

ProblemP can be generalised to allow(wi,l )
α wherewi,l ∈ [0, 1], α ≥ 1 (Bobrowski

and Bezdek, 1991). The generalised form is referred to as fuzzy clustering (Ruspini, 1969,
1973), which is not considered in this paper.

ProblemP can be solved by iteratively solving the following two problems:

1. ProblemP1: Fix Q= Q̂ and solve the reduced problemP(W, Q̂).
2. ProblemP2: Fix W = Ŵ and solve the reduced problemP(Ŵ,Q).
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ProblemP1 is solved by

wi,l = 1 if d(Xi , Ql ) ≤ d(Xi , Qt ), for 1≤ t ≤ k

wi,t = 0 for t 6= l
(3)

and problemP2 is solved by

ql , j =
∑n

i=1 wi,l xi, j∑n
i=1 wi,l

(4)

for 1≤ l ≤ k, and 1≤ j ≤ m.
The basic algorithm to solve problemP is given as follows (Selim and Ismail, 1984;

Bobrowski and Bezdek, 1991):

1. Choose an initialQ0 and solveP(W,Q0) to obtainW0. Sett = 0.
2. Let Ŵ = Wt and solveP(Ŵ,Q) to obtainQt+1. If P(Ŵ,Qt ) = P(Ŵ,Qt+1), output

Ŵ,Qt and stop; otherwise, go to 3.
3. LetQ̂= Qt+1 and solveP(W, Q̂) to obtainWt+1. If P(Wt , Q̂) = P(Wt+1, Q̂), output

Wt , Q̂ and stop; otherwise, lett = t + 1 and go to 2.

BecauseP(· , ·) is non-convex and the sequenceP(· , ·) generated by the algorithm
is strictly decreasing, after a finite number of iterations the algorithm converges to a local
minimum point (Selim and Ismail, 1984). The computational cost of the algorithm isO(Tkn)
whereT is the number of iterations andn the number of objects in the input data set.

Thek-means algorithm has the following important properties:

1. It is efficient in processing large data sets.
2. It often terminates at a local optimum (MacQueen, 1967; Selim and Ismail, 1984).
3. It works only on numeric values.
4. The clusters have convex shapes (Anderberg, 1973).

There exist a few variants of thek-means algorithm which differ in selection of the initial
k means, dissimilarity calculations and strategies to calculate cluster means (Anderberg,
1973; Bobrowski and Bezdek, 1991). The sophisticated variants of thek-means algorithm
include the well-known ISODATA algorithm (Ball and Hall, 1967) and the fuzzyk-means
algorithms (Ruspini, 1969, 1973; Bezdek, 1981). One difficulty in using thek-means al-
gorithm is that the number of clusters has to be specified (Anderberg, 1973; Milligan and
Cooper, 1985). Some variants like ISODATA include a procedure to search for the bestk
at the cost of some performance.

4. Thek-modes algorithm

In principle the formulation of problemP in Section 3 is also valid for categorical and mixed-
type objects. The cause that thek-means algorithm cannot cluster categorical objects is
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its dissimilarity measure and the method used to solve problemP2. These barriers can be
removed by making the following modifications to thek-means algorithm:

1. using a simple matching dissimilarity measure for categorical objects,
2. replacing means of clusters by modes, and
3. using a frequency-based method to find the modes to solve problemP2.

This section discusses these modifications.

4.1. Dissimilarity measure

Let X, Y be two categorical objects described bym categorical attributes. The dissimilarity
measure betweenX andY can be defined by the total mismatches of the corresponding
attribute categories of the two objects. The smaller the number of mismatches is, the more
similar the two objects. This measure is often referred to as simple matching (Kaufman and
Rousseeuw, 1990). Formally,

d1(X,Y) =
m∑

j=1

δ(xj , yj ) (5)

where

δ(xj , yj ) =
{

0 (xj = yj )

1 (xj 6= yj )
(6)

4.2. Mode of a set

Let X be a set of categorical objects described by categorical attributes,A1, A2, . . . , Am.

Definition 1. A mode ofX = {X1, X2, . . . , Xn} is a vectorQ = [q1,q2, . . . ,qm] that
minimises

D(X, Q) =
n∑

i=1

d1(Xi , Q) (7)

Here,Q is not necessarily an element ofX.

4.3. Find a mode for a set

Let nck, j be the number of objects having thekth categoryck, j in attributeAj and fr (Aj =
ck, j |X) = nck, j

n the relative frequency of categoryck, j in X.

Theorem 1. The function D(X, Q) is minimised iff fr (Aj = qj |X) ≥ fr (Aj = ck, j |X)
for qj 6= ck, j for all j = 1, . . . ,m.
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The proof of Theorem 1 is given in Appendix.
Theorem 1 defines a way to findQ from a givenX, and therefore is important because it

allows thek-means paradigm to be used to cluster categorical data. The theorem implies
that the mode of a data setX is not unique. For example, the mode of set{[a, b], [a, c],
[c, b], [b, c]} can be either [a, b] or [a, c].

4.4. The k-modes algorithm

When (5) is used as the dissimilarity measure for categorical objects, the cost function (1)
becomes

P(W,Q) =
k∑

l=1

n∑
i=1

m∑
j=1

wi,l δ(xi, j ,ql , j ) (8)

wherewi,l ∈ W andQl = [ql ,1,ql ,2, . . . ,ql ,m] ∈ Q.
To minimise the cost function the basick-means algorithm can be modified by using

the simple matching dissimilarity measure to solveP1, using modes for clusters instead of
means and selecting modes according to Theorem 1 to solveP2.

In the basic algorithm we need to calculate the total costP against the whole data set
each time when a newQ or W is obtained. To make the computation more efficient we use
the following algorithm instead in practice.

1. Selectk initial modes, one for each cluster.
2. Allocate an object to the cluster whose mode is the nearest to it according to (5). Update

the mode of the cluster after each allocation according to Theorem 1.
3. After all objects have been allocated to clusters, retest the dissimilarity of objects against

the current modes. If an object is found such that its nearest mode belongs to another
cluster rather than its current one, reallocate the object to that cluster and update the
modes of both clusters.

4. Repeat 3 until no object has changed clusters after a full cycle test of the whole data set.

The proof of convergence for this algorithm is not yet available (Anderberg, 1973). How-
ever, its practical use has shown that it always converges.

Like thek-means algorithm thek-modes algorithm also produces locally optimal solu-
tions that are dependent on the initial modes and the order of objects in the data set. In
our current implementation of thek-modes algorithm we include two initial mode selection
methods. The first method selects the firstk distinct records from the data set as the initial
k modes. The second method is implemented with the following steps.

1. Calculate the frequencies of all categories for all attributes and store them in a category
array in descending order of frequency as shown in figure 1. Here,ci, j denotes category
i of attribute j and f (ci, j ) ≥ f (ci+1, j ) where f (ci, j ) is the frequency of categoryci, j .

2. Assign the most frequent categories equally to the initialk modes. For example in
figure 1, assumek= 3. We assignQ1= [q1,1= c1,1,q1,2= c2,2,q1,3= c3,3,q1,4= c1,4],
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Figure 1. The category array of a data set with four attributes having 4, 2, 5, 3 categories, respectively.

Q2= [q2,1= c2,1,q2,2= c1,2,q2,3= c4,3,q2,4= c2,4] and Q3= [q3,1= c3,1,q3,2= c2,2,

q3,3= c1,3,q3,4= c3,4].
3. Start withQ1. Select the record most similar toQ1 and replaceQ1 with the record as

the first initial mode. Then select the record most similar toQ2 and replaceQ2 with the
record as the second initial mode. Continue this process untilQk is replaced. In these
selectionsQl 6= Qt for l 6= t .

Step 3 is taken to avoid the occurrence of empty clusters. The purpose of this selection
method is to make the initial modes diverse, which can lead to better clustering results (see
Table 3 in Section 6.1.2).

5. Thek-prototypes algorithm

It is straightforward to integrate thek-means andk-modes algorithms into thek-prototypes
algorithm that is used to cluster the mixed-type objects. Thek-prototypes algorithm is
practically more useful because frequently encountered objects in real world databases are
mixed-type objects.

The dissimilarity between two mixed-type objectsX and Y, which are described by
attributesAr

1, Ar
2, . . . , Ar

p, Ac
p+1, . . . , Ac

m, can be measured by

d2(X,Y) =
p∑

j=1

(xj − yj )
2+ γ

m∑
j=p+1

δ(xj , yj ) (9)

where the first term is the squared Euclidean distance measure on the numeric attributes
and the second term is the simple matching dissimilarity measure on the categorical at-
tributes. The weightγ is used to avoid favouring either type of attribute. The influence of
γ in the clustering process is discussed in (Huang, 1997a)

Using (9) for mixed-type objects, we can modify the cost function of (1) as follows:

P(W,Q) =
k∑

l=1

(
n∑

i=1

wi,l

p∑
j=1

(xi, j − ql , j )
2+ γ

n∑
i=1

wi,l

m∑
j=p+1

δ(xi, j ,ql , j )

)
(10)

Let

Pr
l =

n∑
i=1

wi,l

p∑
j=1

(xi, j − ql , j )
2 (11)
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and

Pc
l = γ

n∑
i=1

wi,l

m∑
j=p+1

δ(xi, j ,ql , j ) (12)

We rewrite (10) as

P(W,Q) =
k∑

l=1

(
Pr

l + Pc
l

)
(13)

Since bothPr
l and Pc

l are nonnegative, minimisingP(W,Q) is equivalent to minimising
Pr

l andPc
l for 1≤ l ≤ k.

We can still use the same algorithm in Section 3 to find a locally optimalQ∗,W∗ because
nothing has changed except ford(· , ·). Given aQ̂, we use (9) to calculateW in the same
way as thek-means algorithm. Given âW, we find Q by minimising Pr

l and Pc
l for

1 ≤ l ≤ k. Pr
l is minimised ifql , j is calculated by (4). From Section 4 we know thatPc

l
can be minimised by selectingql , j for p+1≤ j ≤ m according to Theorem 1. A practical
implementation of thek-prototypes algorithm is given in (Huang, 1997a).

6. Experimental results

In this section we shall use experimental results to show the clustering performance and
scalability of thek-modes andk-prototypes algorithms.

6.1. Clustering performance

The primary use of clustering algorithms is to discover the grouping structures inherent in
data. For this purpose an assumption is first made that a certain structure may exist in a
given data set and then a clustering algorithm is used to verify the assumption and recover
the structure. Jain and Dubes (1988) discussed three types of criteria used to evaluate the
performance of clustering methods in discovering the inherent data structures. In evaluating
thek-modes andk-prototypes algorithms, we adopted anexternal criterionwhich measures
the degree of correspondence between the clusters obtained from our clustering algorithms
and the classes assigned a priori.

A number of researchers have advocated the use of constructed artificial data sets to
validate clustering algorithms (Milligan and Isaac, 1980). The advantage of this approach
is that the structures of constructed data sets can be controlled. We used this approach in our
previous work (Huang, 1997a). One problem is that the constructed data sets may not well
represent real world data. The other problem specific to us is that the previous reported data
generation methods were mainly used for generating numeric data (Everitt, 1974; Milligan,
1985) whereas our interests are categorical data and data with combined numeric and
categorical values. Such data sets are frequently encountered in data mining applications.
Therefore, instead of generating artificial data to validate the clustering algorithms we chose
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two real world data sets which are well known to the research community. Both data sets
have class labels assigned to instances.

6.1.1. Real world data sets.The first data set was the soybean disease data set, which has
frequently been used to test conceptual clustering algorithms (Michalski and Stepp, 1983;
Fisher, 1987). We chose this data set to test thek-modes algorithm because all its attributes
can be treated as categorical.

The soybean data set has 47 instances, each being described by 35 attributes. Each instance
is labelled as one of the four diseases: Diaporthe Stem Canker, Charcoal Rot, Rhizoctonia
Root Rot, and Phytophthora Rot. Except for Phytophthora Rot which has 17 instances, all
other diseases have 10 instances each. Of the 35 attributes we only selected 21 because the
other 14 have only one category.

The second data set was the credit approval data set (Quinlan, 1993). We chose this
data set to test thek-prototypes algorithm. The data set has 690 instances, each being
described by 6 numeric and 9 categorical attributes. The instances were classified into
two classes, approved labelled as “+” and rejected labelled as “−”. Thirty seven in-
stances have missing values in seven attributes. Since our current implementation of the
k-prototypes algorithm cannot handle missing values in numeric attributes, 24 instances
with missing values in numeric attributes were removed. Therefore, only 666 instances were
used.

To study the effect of record order, for each data set we created 100 test data sets by
randomly reordering the original records. By doing this we were also selecting different
initial modes or prototypes using the first selection method. Then we removed all class
labels from the test data sets.

6.1.2. k-Modes clustering results.We used thek-modes algorithm to cluster each test
data set of the soybean disease data into four clusters with the two initial mode selection
methods and produced 200 clustering results. For each clustering result we used a misclas-
sification matrix to analyse the correspondence between clusters and the disease classes of
the instances. Two misclassification matrices for the test data sets 1 and 9 are shown in
figure 2. The capital letters D, C, R, P in the first column of the matrices represent the
four disease classes. In figure 2(a) there is one to one correspondence between clusters and
disease classes, which means the instances in the same disease classes were clustered into
the same clusters. This represents a complete recovery of the four disease classes from the
test data set.

In figure 2(b) two instances of the disease class P were misclassified into cluster 1 which
was dominated by the instances of the disease type R. However, the instances in the other
two disease classes were correctly clustered into clusters 3 and 4. This clustering result can
also be considered good.

We have used the clustering accuracy as a measure of a clustering result. Clustering
accuracyr is defined as

r =
∑4

i=1 ai

n
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Figure 2. Two misclassification matrices: (a) correspondence between clusters of test data set 1 and disease
classes, and (b) correspondence between clusters of test data set 9 and disease classes.

whereai is the number of instances occurring in both clusteri and its corresponding class
andn is the number of instances in the data set. The clustering error is defined ase= 1− r .
For instance in figure 2(b),r = 10+ 15+ 10+ 10

47 = 0.9574 ande= 0.0426.
The 200 clustering results are summarised in Table 1. The first column in the table gives

the clustering accuracy. The second and third columns show the numbers of clustering
results, 100 in each column.

If we consider the accuracyr > 0.87 as a “good” clustering result, then 45 good re-
sults were produced with the first selection method and 64 good results with the second
selection method. Both selection methods produced more than 10 complete recovery results
(0 misclassification). These results indicate that if we randomly choose one test data set,
we have a 45% chance to obtain a good clustering result with the first selection method and
a 64% chance with the second selection method.

Table 2 shows the relationships between the clustering results and the clustering costs
(values of (8)). The numbers in brackets are the numbers of clustering results having the
corresponding clustering cost values. All cost values of “bad” clustering results are greater
that those of “good” clustering results. The minimal total cost in these tests is 194 which is
likely the global minimum. These relationships indicate that we can use the clustering cost
values from several runs to choose a good clustering result if the original classification of
data is unknown.
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Table 1. Summary of the 200 clustering results.

Accuracy Select method 1 Select method 2

1.0 13 14

0.98 7 8

0.96 12 26

0.94 4 9

0.92 7 6

0.89 2 1

≤0.87 55 36

Table 2. Relations between costs and clustering results.

Accuracy Cost for select method 1 Cost for select method 2

1.0 194(13) 194(14)

0.98 194(7) 194(7), 197(1)

0.96 194(12) 194(25), 195(1)

0.94 195(2), 197(1), 201(1) 195(6), 196(2), 197(1)

0.92 195(2), 196(3), 197(2) 195(4), 196(1), 197(1)

0.89 197(2) 197(1)

≤0.87 203-261(55) 209-254(36)

Table 3. Relationship between the number of classes in the initial modes and the clustering cost.

No. of classes No. of runs Mean cost Std dev

1 1 247 —

2 28 222.3 24.94

3 66 211.9 19.28

4 5 194.6 1.34

The effect of initial modes on clustering results is shown in Table 3. The first column is
the number of disease classes the initial modes have and the second is the corresponding
number of runs with the number of disease classes in the initial modes. This table indicates
that the more diverse the disease classes are in the initial modes, the better the clustering
results. The initial modes selected by the second method have three disease types, therefore
more good cluster results were produced than by the first method.

From the modes and category distributions of different attributes in different clusters
the algorithm can also produce discriminative characteristics of clusters similar to those in
(Michalski and Stepp, 1983).

6.1.3. k-Prototypes clustering results.We used thek-prototypes algorithm to cluster each
test data set of the credit approval data into two clusters with different initial prototype
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Table 4. Summary of 800 clustering results produced with the first initial prototype selection method.

Accuracy γ = 0.5 γ = 0.7 γ = 0.9 γ = 1.0 γ = 1.1 γ = 1.2 γ = 1.3 γ = 1.4

0.83 1

0.82 3 3 1

0.81 31 30 30 29

0.80 4 34 40 49 30 39 32

0.79 40 41 13 2 9

0.78 27 6

0.77 51 1 1

0.76 1 1

0.75 3 3

0.74 5 10

0.73 7 1

0.72 43

≤0.71 42 4 16 19 19 23 27 29

Figure 3. Correspondence between clusters and original classes.

selection methods and differentγ values. In clustering we rescaled all numeric attributes
to the range of [0, 1]. The average of standard deviations of all numeric attributes is 0.114.
The testedγ values ranged from 0 to 5. A smallγ value indicates that the clustering is
dominated by numeric attributes while a largeγ value implies that categorical attributes
dominate the clustering.

For eachγ and initial prototype selection method, 100 clustering results were produced.
For each clustering result a misclassification matrix (see figure 3) was also used to analyse
the correspondence between clusters and original classes. For example in figure 3, cluster 1
is corresponding to class “−” and cluster 2 corresponding to class “+”. r = 315+ 222

666 =
0.8063 ande= 0.1937 in this case.

Considering that a clustering is better than a random partitioning ifr > 0.5, we found
that all clustering results obtained by thek-prototypes algorithm were better than random
partitioning. In fact, whenγ ≥ 0.5 most clustering results hadr > 0.71. Table 4 shows
a summary of 800 clustering results produced using the first initial prototype selection
method. The first column gives the accuracy levels. The other columns show the numbers
of clustering results having the corresponding accuracy levels. Each column represents 100
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Table 5. Summary of 800 clustering results produced with the second initial prototype selection method.

Accuracy γ = 0.5 γ = 0.7 γ = 0.9 γ = 1.0 γ = 1.1 γ = 1.2 γ = 1.3 γ = 1.4

0.83 1 2 1

0.82 2 2 3

0.81 33 29 25 26

0.80 5 35 49 43 30 35 27

0.79 46 32 11 5 12

0.78 26 1 1

0.77 53 1 1

0.76 2 2

0.75 3 3

0.74 5 8

0.73 9

0.72 51

≤0.71 32 5 15 17 21 27 30 33

clustering results which were produced from the sameγ value. A similar summary for the
second initial prototype selection method is shown in Table 5.

The results in the two tables indicate that a randomly chosen data set is likely to lead
to a relatively accurate result. In most cases the accuracy will be more than 70%. The
highest accuracy levels of clustering results for smallγ values were lower than those for
largeγ values. Because a smallγ indicates the clustering favoured numeric attributes, this
implies that the two classes of instances could not be well separated using just the numeric
attributes. The highest accuracy levels increased asγ increased. However, whenγ > 1.3,
we found that the highest accuracy level no longer changed asγ increased. This indicates
that the categorical attributes dominated in clustering.

Unlike the clustering results of the soybean data, the two initial prototype selection
methods did not make much difference to the clustering results. This is because our cur-
rent implementation of the second selection method only takes into account of categorical
attributes. One obvious difference is that the second selection method resulted in more best
results (r = 0.83) than the first one and the best results occurred at three differentγ values.

6.2. Scalability tests

The purpose of this experiment was to test the scalability of thek-modes andk-prototypes
algorithms when clustering very large data sets. Two real world data sets were used in this
experiment, one from a health insurance database and one from a motor insurance database.
Both data sets had 500000 records each. The health insurance data set had 34 categorical
attributes of which four had more than 1000 categories. The motor insurance data set had
10 numeric and 12 categorical attributes.

We tested two types of scalability of the algorithms on large data sets. The first one is the
scalability against the number of clusters for a given number of objects and the second is
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Figure 4. Scalability ofk-modes to the number of clusters when clustering 500000 records of the health insurance
data set.

the scalability against the number of objects for a given number of clusters. The experiment
was performed on a Sun Enterprise 4000 computer using a single processor. Figures 4 and 5
show the results of using the two algorithms to cluster 500000 objects into different numbers
of clusters. Figures 6 and 7 show the results of using the two algorithms to cluster different
numbers of objects into 100 clusters. The plots represent the average time performance of
five independent runs.

One important observation from these figures was that the run time of the two algorithms
tends to increase linearly as both the number of clusters and the number of records are
increased. In some cases clustering the same number of objects into less clusters took
longer than clustering them into more clusters becausethe former took more iterations to
converge than the latter. Figure 8 shows two convergence curves of clustering 500000
objects into 60 and 70 clusters. The 60-clusters curve drops faster than the 70-clusters
curve in the first 20 iterations. After 20 iterations the 70-clusters curve drops quickly to
zero, while the 60-clusters curve oscillated many times before reaching zero. Figure 9
shows an enlargement of the two curves after 20 iterations. These two figures indicate that
if we do not pursue complete convergence, we can stop the clustering process when the
number of objects changed clusters has reduced to certain level. Doing this allows run time
to be significantly reduced.

Another important observation was that thek-modes algorithm was much faster than the
k-prototypes algorithm. The key reason is that thek-modes algorithm needs many less
iterations to converge than thek-prototypes algorithm because of its discrete nature.
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Figure 5. Scalability ofk-prototypes to the number of clusters when clustering 500000 records of the motor
insurance data set.

Figure 6. Scalability ofk-modes to the number of records when clustering the health insurance data set into
100 clusters.
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Figure 7. Scalability ofk-prototypes to the number of records when clustering the motor insurance data set into
100 clusters.

Figure 8. Two convergence curves of 60 and 70 clusters from thek-prototypes algorithm.
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Figure 9. Enlarged convergence curves of figure 8 after 20 iterations.

7. Conclusions

The most attractive property of thek-means algorithm in data mining is its efficiency in
clustering large data sets. However, that it only works on numeric data limits its use in many
data mining applications because of the involvement of categorical data. Thek-modes and
k-prototypes algorithms have removed this limitation and extended thek-means paradigm
into a generic data partitioning operation for data mining.

The clustering performance of the two algorithms has been evaluated using two real
world data sets. The satisfactory results have demonstrated the effectiveness of the two
algorithms in discovering structures in data. The scalability tests have shown that the two
algorithms are efficient when clustering very large complex data sets in terms of both the
number of records and the number of clusters. These properties are very important to data
mining. In general, thek-modes algorithm is faster than thek-means andk-prototypes
algorithm because it needs less iterations to converge.

This paper has focused on the technical issues of extending thek-means algorithm to
cluster data with categorical values. Although we have demonstrated that the two new
algorithms work well on two known data sets, we have to acknowledge that this mainly
resulted from our a priori knowledge to the data sets. In practical applications such a priori
knowledge is rarely available. Therefore, in using the two algorithms to solve practical data
mining problems, we still face the common problem: How many clusters are in the data?
There exist a number of techniques which tackle this problem (Milligan and Cooper, 1985;
Dubes, 1987). These techniques are directly applicable to the two algorithms presented.
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A related problem is the validation of clustering results. In practical applications external
criteria are not always applicable because of the lack of a priori knowledge to the data.
Internal criteria may need to be considered (Jain and Dubes, 1988). However, selection of
an effective internal index is not a trivial task (Dubes and Jian, 1979; Milligan and Isaac,
1980; Milligan, 1981). An alternative is to use visualisation techniques to verify clustering
results.

The weightγ adds an additional problem to the use of thek-prototypes algorithm. We
have suggested that the average standard deviation of numeric attributes may be used as
a guidance in specifyingγ (Huang, 1997a). However, it is too early to consider this as a
general rule. The user’s knowledge to the data is important in specifyingγ . If one thinks
the clustering should be favoured on numeric attributes, then one needs a smallγ . If one
believes categorical attributes are important, then one needs a largeγ .

Appendix

Theorem 1 can be proved as follows (Aj stands forDOM(Aj ) here):
Let fr (Aj = ck, j |X) = nck, j

n be the relative frequency of thekth categoryck, j in attribute
Aj , wheren is the total number of objects inX andnck, j the number of objects having
categoryck, j .

For the dissimilarity measure (5), we write

n∑
i=1

d1(Xi , Q) =
n∑

i=1

m∑
j=1

δ(xi, j ,qj )

=
m∑

j=1

(
n∑

i=1

δ(xi, j ,qj )

)

=
m∑

i=1

n

(
1− nqj

n

)

=
m∑

i=1

n(1− fr (Aj = qj |X))

Becausen(1− fr (Aj = qj |X)) ≥ 0 for 1≤ j ≤ m,
∑n

i=1 d1(Xi , Q) is minimised iff
everyn(1− fr (Aj = qj |X)) is minimal. Thus,fr (Aj = qj |X) must be maximal.
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