
Decision Trees with Minimal Costs

Abstract
We propose a simple, novel and yet effective
method for building and testing decision trees
that minimizes the sum of the misclassification
cost and the test cost. More specifically, we first
propose a novel and simple splitting criterion for
attribute selection in tree building. Our tree-
building algorithm has many desirable properties
for a cost-sensitive learning system that
considers both types of costs. Then, assuming
that the testing cases may have a large number of
missing values for certain attributes, we design
several intelligent testing strategies that can
suggest how to obtain the missing values with
new tests that come with a cost in order to
minimize the total cost. We experimentally
compare these strategies and C4.5, and
demonstrate that our new algorithms
significantly outperform C4.5 and its variations.
In addition, the complexity of our algorithm is
similar to C4.5, and is much lower than many
previous works. Our work will be useful for
many diagnostic tasks where one must consider
both the misclassification cost and the test cost
for obtaining missing information.

1. Introduction

Inductive learning techniques have met great success in
building models that assign testing cases to classes
(Quinlan 1993; Mitchell 1997). However, much previous
inductive learning research has focused on how to
minimize classification errors. The classification errors
are useful in deciding whether a learned model tends to
make correct decisions on assigning class labels for new
cases, and as such they are an important factor to consider
in practice. However, there are different types of
classification errors, and the costs of different types of
errors are often very different. For example, in a binary
classification task in the medical domain, the cost of false
positive (FP) and the cost of false negative (FN) are often
very different. In addition, misclassification costs are not
the only costs to consider when applying the model to
new cases; we also consider the “test cost” that is as
important as the misclassification cost when testing cases
themselves do not provide all the values for their
attributes that may be necessary for classification. That is,
the testing strategies may suggest, with additional costs,
obtaining information for the missing values on test cases.

Inductive learning methods that consider a variety of costs
are often referred to as cost-sensitive learning (Turney
2002), and tasks that incur both misclassification and test
costs abound in practice. As an example, consider again
the task of a medical practice that examines incoming
patients based on previous experiences. Suppose that
these experiences have been compiled into a model such
as a decision tree (Quinlan 1993). When dealing with a
case for a new patient, it is often the case that certain
information for this patent may yet be known; for
example, the blood tests or the X-ray test may not have
been done yet. One possible approach to solving this type
of problems is to use the strategy in C4.5 (Quinlan 1993)
in dealing with missing values. That is, when a testing
case is classified by the decision tree, and is stopped at an
attribute whose value is unknown, no test will be
performed to obtain its value; instead, the testing case is
distributed into branches of the attribute and the
classification results are weighted on all of the branches.
The problem with this approach is that it ignores the
possibility of obtaining the missing value with a cost, and
thus reducing the misclassification cost and the total cost.
One of our testing methods (the third method discussed in
Section 4) uses the C4.5’s strategy, and is shown to be
inferior to our new method proposed in this paper (see
Sections 4 and 5). Another possible approach is to
perform all tests for unknown values. This is clearly not
optimal either as some of such tests can be very expensive.
A third possible approach is to utilize the decision tree
built by C4.5 to guide which tests should be performed.
Again when a testing case is classified by the decision
tree, and is stopped at an attribute whose value is
unknown, the tree naturally suggests that this test should
be done with a cost, and the testing case can follow the
right branch, until it can be classified in a leaf. The
problem with this approach is that when building the
decision tree, the costs of obtaining these test results are
completely ignored. As a consequence, tests that incur
heavy costs may be placed on top of the tree, requiring all
future patients to complete these tests. This may greatly
increase the total test cost, and thus, the total cost. We
compare this approach with our new methods proposed in
this paper, and show that it is again inferior to the best
method we propose (Sections 4 and 5).

In this paper, we study a tree-building strategy that
minimizes the sum of the misclassification cost and the
test cost, and a set of testing strategies that may suggest
additional tests to be done with a cost to minimize the
total cost on testing cases. Our tree-building algorithm has
a number of very desirable properties for cost-sensitive
learning systems, including some important properties as

pointed out by (Turney, 2000; Turney 1995). For example,
if all test costs are larger than the misclassification cost,
then no test should be performed and a one-node decision
tree will be returned. As important as building a tree with
the minimal total cost, we formulate several strategies to
deal with the unknown values by taking into account both
the misclassification and the test costs. These strategies
are compared against each other and the best strategy is
selected.

The rest of the paper is organized as follows. We first
review the related work in Section 2. Then we present
our new tree-building algorithm, and show it has many
desirable properties (Section 3). After that, we consider
several testing strategies and analyze their relative merits
(Section 4). Finally, we present our experimental results
(Section 5) and conclude the work with a discussion of
future work (Section 6).

2. Review of Pervious Work

Much work has been done in machine learning on
minimizing the classification errors. This is equivalent to
assigning the same cost to each type of classification
errors (for example, FP and FN), and then minimizing the
total misclassification costs. In his survey article (Turney
2000), a whole variety of costs in machine learning is
analyzed, and the test cost is singled out as one of the
least considered areas in machine learning. In particular,
(Turney 2000) considered the following types of costs in
machine learning:

 Misclassification costs: these are the costs incurred
by misclassification errors. Works such as
(Domingos 1999, Elkan 2001) considered machine
learning with non-uniform misclassification costs

 Test costs: these are the costs incurred for obtaining
attribute values. Some previous work such as
(Nunez, 1991; Tan 1993) considered the test cost
alone without incorporating misclassification cost.
As pointed out by (Turney 2000) it is obviously an
oversight. As far as we know, the only work
considering both misclassification and test costs
includes (Turney 1995; Zubek and Dietterich 2002;
Greiner et al. 2002). We discuss these works in
detail below.

In (Zubek and Dieterrich 2002), the cost-sensitive
learning problem is cast as a Markov Decision Process
(MDP), and an optimal solution is given as a search in a
state space for optimal policies. For a given new case,
depending on the values obtained so far, the optimal
policy can suggest a best action to perform in order to
both minimize the misclassification and the test costs.
While related to our work, their research adopts an
optimal strategy, which may take very high computational
cost to conduct the search process. In contrast, we adopt
the local search algorithm of (Quinlan 1993) using a
polynomial time algorithm to build a model, which

returns a new decision tree. Then when performing the
testing, our testing strategy (see later) together with the
decision tree will suggest whether to do a test or not.
Thus, our algorithm follows the direction of
approximation rather than optimal algorithms.

Similar in the interest in constructing an optimal learner,
(Greiner et al. 2002) studied the theoretical aspects of
active learning with test costs using a PAC learning
framework. (Turney 1995) presented a system called
ICET, which uses a genetic algorithm to build a decision
tree to minimize the cost of tests and misclassification.
Our work also considers the decision tree model, where
we additionally consider both the minimization of
misclassification cost on training data and the formulation
of a testing strategy for minimizing the test costs on the
testing data. As mentioned above, because our algorithm
essentially adopts the same decision-tree building
framework as in (Quinlan 1993), our algorithm is
expected to be more efficient than Turney’s genetic
algorithm based approach.

3. Building Decision Tree With Minimal Costs

We assume that the training data may consist of some
missing values (whose values cannot be obtained). We
also assume a static cost structure where the cost is not a
function of time or cases. Further, we assume that the test
cost and the misclassification cost have been defined on
the same cost scale, such as the dollar cost incurred in a
medical diagnosis.

Our new decision-tree learning algorithm is quite simple.
For simplicity, we consider discrete attribute and binary
class labels; extensions to other cases can be made
likewise. We assume that FP is the cost of one false
positive example, and FN is the cost of one false negative
example. Our algorithm uses a new splitting criterion of
minimal total cost on training data, instead of minimal
entropy, to build decision trees. This cost measure is
equivalent to the expected total cost measure used in the
works of (Turney 1995; Zubek and Dietterich 2002;
Greiner et al. 2002). More specifically, at each step, rather
than choosing an attribute that minimizes the entropy (as
in C4.5), our algorithm chooses an attribute that reduces
and minimizes the total cost, which is the sum of the test
cost and the misclassification cost, for the split. Then,
similar to C4.5, our algorithm chooses a locally optimal
attribute without backtracking. Thus the resulting tree
may not be globally optimal. However, the efficiency of
the tree-building algorithm is generally high. A concrete
example is given later in this section.

A fine point of our new algorithm is the way it deals with
attributes with unknown values in the training set. In
many variations of decision tree algorithms, the unknown
value is treated as one of the ordinary values. However,
in our work, the strategy is that all unknown values (we
use “?” for the unknown value) are treated as a special

“value”: no leaf or sub-tree will be built for examples
with the “?” value. This is because it is unrealistic to
assume the unknown values would be as useful for
classification as the known values. In addition, when a
testing example is stopped at an attribute whose value is
unknown, if the attribute has a “?” branch, it is impossible
to decide whether the test should be performed by the tree.
Therefore, the examples with unknown attribute values
will not be grouped together as a leaf, or to build a sub-
tree; instead, they are “gathered” inside the node that
represents that attribute. We then calculate the ratio of
the positive and negative examples in that internal node.
See the concrete example given later for more details. Our
second testing algorithm (see Section 4) will use such
ratios in making prediction.

Another important point is how the leaves are labeled. In
traditional decision tree algorithms, the majority class is
used to label the leaf node. In our case, as the decision
tree is used to make predictions in order to minimize the
total cost, the leaves are labeled also to minimize the total
cost. That is, at each leaf, the algorithm labels the leaf as
either positive or negative (in a binary decision case) by
minimizing the misclassification cost. More specifically,
suppose that the leaf has P positive examples, and N
negative examples. If P×FN > N×FP (i.e., the cost of
predicting negative is greater than the cost of predicting
positive), then the leaf is labeled as positive; otherwise it
is labeled as negative. Therefore, the label of a leaf does
not just depend on the majority class of the leaf, but also
the cost of misclassification.

Let us look at a concrete example. Assume that during the
tree building process, there is a set of P and N positive
and negative examples respectively to be further
classified by possibly building a sub-tree. If we assume
that P×FN > N×FP, then if no sub-tree is built, the set
would be labeled as positive, and thus, the total
misclassification cost is T = N×FP. Suppose that an
attribute A with a test cost C is considered for a potential
splitting attribute. Assume that A has two values, and
there are P1 and N1 positive and negative examples with
the first value, P2 and N2 positive and negative examples
with the second value, and P0 and N0 positive and
negative examples with A’s value unknown. Then the
total test cost would be (P1+N1+P2+N2)×C (i.e., cases
with unknown attribute values do not incur test costs).
Assume that the first branch will be labeled as positive (as
P1×FN > N1×FP), and the second branch will be labeled
as negative, then the total misclassification cost of the two
branches would be N1×FP+P2×FN. As we have
discussed earlier in this section, examples with the
unknown value of A stay with the attribute A, and we
have assumed that the original set of examples is labeled
as positive. Thus, the misclassification cost of the
unknowns is N0×FP. The total cost of choosing A as a
splitting attribute would be:

TA = (P1+N1+P2+N2)×C + N1×FP + P2×FN + N0×FP

If TA < T, where T = N×FP, then splitting on A would
reduce the total cost of the original set, and we will
choose such an attribute with the minimal total cost as a
splitting attribute. We will then apply this process
recursively on examples falling into branches of this
attribute. If TA ≥ T for all remaining attributes, then no
further sub-tree will be built, and the set would become a
leaf, with a positive label.

Finally, as our tree attempts to minimize the total cost, it
may also overfit the training dataset. Traditional decision
tree algorithms such as C4.5 incorporate a post-tree
pruning procedure to simplify the tree. In the current
version of our algorithm, however, we do not yet perform
tree pruning. As all of our tree building algorithms (see
Section 3) build unpruned trees, our experiment
comparisons (Section 5) are still fair and valid. It remains
our future work to include pruning in our tree-building
algorithm with the minimal total cost.

Aimed at minimizing the total cost of test and
misclassification, our new decision-tree algorithm has
several desirable features. We will discuss these features
below, using the dataset “Ecoli” as an example (Blake &
Merz 1998). This dataset has 332 labelled examples,
which are described by 6 attributes. The numerical
attributes are first discretized using the minimal entropy
method (Fayyad & Irani 1993), as our tree building
algorithm can currently only accept discrete attributes
(but it is straightforward to extend our algorithm to accept
continuous attributes as C4.5 does). The attribute values
are renamed as 1, 2, 3, and so on. More details on this and
other datasets used in experiments can be found in
Section 5.

The first property, as discussed in the Introduction, is that
the relative difference between misclassification and test
costs can affect the tree dramatically. If the former is less
than the latter, then no test should be performed, and the
decision tree would be simply a one-node leaf. On the
other hand, if the former is much larger than the latter,
then all tests should be done, as long as they are relevant;
i.e., they can improve the predictive accuracy. This can be
seen clearly from the “Ecoli” dataset. Indeed, if the
misclassification cost is set to 200 for both FP and FN,
and all test cost is set to 300, then the algorithm returns a
one-leaf node as shown in Figure 1 (a). On the other hand,
when all test costs are set to 0, then the tree is the
“largest”; in this case, the tree has 13 nodes in total, and
can be seen in Figure 1 (c). As an “intermediate” case, if
all test costs are set to 20, then the decision tree with the
minimal cost has 6 nodes in total, and the tree can be seen
in Figure 1 (b).

The second important and desirable property is that for
attributes with different test costs, our new algorithm is
likely to choose an attribute with zero or small cost at the
top (or root) of the tree. This is because the attribute at the
root will be tested by all examples, and thus the total
attribute cost would be relatively high. Choosing an

The third property, related to the second one, is that when
the test cost of an attribute is increased, that test attribute
will be “pushed” down in the tree, until it “falls out” of
the tree (when the test cost becomes too large). Figures 3
(a) to (c) show the trees with the test cost of A1 set to 20,
50, and 80, respectively, while all other attribute costs are
fixed, and the misclassification cost is 800. We can see
clearly that with the increase of the test cost of A1, the
attribute moves down the tree, until it falls out of the tree
in the end.

attribute with zero or small cost helps reduce the total cost.
Of course attribute selection also depends on the
distributions of attribute values and class labels of the
training examples.

c. All test costs are 0

NN N P N P

A6 A6

A1

PP P P

b. All test costs are 20

A1

P P N P N P

a. All test costs are

300

P

 Figure 1. Three different decision trees built with

different test costs.

P P N

A6

A1

N N P P

P P

A6

A2

NPN

N

NN NPNP

P P

A1

A6A6 PP

(b) Tree #2 (a) Tree #1 (c) Tree #3Table 1 shows three cases in which attribute costs are
different. In the first case (the baseline), all attribute costs
are set to 20. In the second and third cases attribute costs
are set differently. The misclassification cost is set at 800
for both FP and FN. As we can see, in the second case,
the attribute A2 has the smallest test cost, and it is indeed
chosen as the root of the tree as shown in Figure 2(b). In
the third case, attribute A5 has the smallest test cost, and
it is chosen as the root (Figure 2(c)).

Figure 3. Three different decision trees built with A1 cost
as 20, 50, and 80.

4. Performing Tests on Testing Examples

After the minimal-cost decision tree is built, the next
interesting question is how this tree can be used to deal
with testing examples with many missing values, in order
to predict the class of the testing examples with the
minimal total cost for this case. Deciding which tests
should be performed is a part of the testing strategy.

Table 1. Three different sets of attribute costs.

COST A1 A2 A3 A4 A5 A6
Tree # 1 20 20 20 20 20 20
Tree # 2 200 20 100 100 200 200
Tree # 3 200 100 100 100 20 200

5 4 2 6

P

2:0

P

2:0
N

0:1

N

0:1

P

107:0

N

11:100

P

108:0

4
3 2

1

A1

4:2

A6

230:102

PP P N N P

A1

A5

P P

P P P N N P

A1

A2

N P

N N N P N P

A6A6

A1

P P P P

(c) Tree #3(b) Tree #2(a) Tree #1

 Figure 4. A decision tree built from the Ecoli dataset (costs are

set as in Table 2).

We will study four testing strategies. We use the decision
tree in Figure 4, built with the test cost in Table 2, and a
testing example in Table 3 to illustrate the four strategies
described below. Bear in mind that this is only for one

Figure 2. Three different decision trees built with three
different test costs as in Table 1.

particular testing case. The overall performance of these
strategies will be compared in the next section with a
large number of testing examples.

Table 2. Test and misclassification costs set for Ecoli
dataset.

A1 A2 A3 A4 A5 A6 FP/FN
50 50 50 50 50 20 800/800

Table 3. An example testing case with several unknown
values. The true values are in parenthesis and can be
obtained by performing the tests (with costs list in Table
2).

A1 A2 A3 A4 A5 A6 Class

? (6) 2 ? (1) 2 2 ? (3) P

The first strategy, called Optimal Sequential Test (OST),
is very simple and intuitive. It uses the tree built with the
minimal cost to decide what tests must be performed in
sequence. More specifically, each test example goes down
the tree until an attribute whose value is unknown is met
in the testing example. As the tree was built to minimize
the total cost, this tree would suggest that this test should
be performed with the cost, and its value would decide
which branch to go down. For example, when the testing
example in Table 3 goes down the tree in Figure 4, it will
stop at the node A6. Then the test is done with a cost 20,
and it reveals the value 3. Then the example goes down to
node A1, and a test on A1 is performed with a cost 50,
with the value 6. Thus, it falls into the rightmost leaf
under A1, which predicts the class P. The prediction is
the same as the true class of the testing case, so there is no
misclassification cost. Thus the total cost is 20 + 50 = 70.

This strategy, while optimal based on the minimal cost of
the training set, is sequential. That is, one must wait for
the result of the first test before a next test could be
determined. In some medical diagnosis, doctors cannot
afford to wait the result of the first test before other tests
can be done; they normally order a set of tests to be done
at once. This “Optimal Batch Test” can be modeled in our
decision tree easily. The basic idea is that when a testing
case is stopped at the first attribute whose value is
unknown, all unknown values under that attribute must be
obtained. Clearly this strategy will return the same
prediction as OST (i.e., same misclassification cost), but it
would incur a higher test cost.

The second strategy uses the same decision to make
prediction, but it stipulates that no further tests should be
done. More specifically, when a testing example is
stopped at an attribute whose value is unknown, it stops
right there, and uses the ratio of positive and negative
examples in that (internal) node to predict the testing
example (recall that these ratios are calculated based on
training cases which also have unknown values at this

node). Using the same example, when the testing example
stops at the node A6, it would predict that the testing
example is of class for the node A6 (which is positive by
P×FN > N×FP i.e. 230×800 > 102×800). As no test is
done, there is no test cost. The total cost is thus 0 here.

The third strategy is a variation of the second strategy.
Instead of stopping at the node whose attributes value is
unknown in the testing case, this strategy will “split” the
testing case into fractions according to the training
examples, and go down all branches simultaneously. The
final class is a weighted sum of the class in each branch.
Note that this is essentially C4.5’s strategy in dealing with
missing values. Notice that even though the testing case
goes down from the attribute with a cost, there is no
testing cost involved, as it merely “guesses” the values of
the attributes. Using the same example to illustrate this
strategy, the testing case will not stop at node A6 this time;
instead, it will distribute into four branches with a ratio
107/108/6/111. The first two branches make a correct
prediction with no misclassification cost. The last branch
makes a wrong prediction, with a misclassification cost of
800. The third branch encounters another unknown value,
so it is distributed further down in the tree, with a ratio of
1/1/2/2. The first two branches make a wrong prediction
(costing 800), while the next two branches make a correct
prediction. With the total number of 432 (230+102)
training examples in the tree building, the weighted cost
for this testing example is thus: 800×(1+1+111)/432 =
209.3.

The fourth and final strategy also stipulates that no further
tests should be done, but it utilizes the existing attribute
values to the full extent. More specifically, for each
testing example, a new (and different) decision tree is
built dynamically from all of the training examples with
only those attributes whose values are known in the
testing example. In this way, the new decision tree only
uses attributes with known values in the testing example,
and thus, no new test would be needed during the testing.
As an example, as A2, A4, and A5 are the only known
attributes, a new decision tree using the training examples
with A2, A4, and A5 as attributes will be built as in
Figure 5. From this tree, the testing examples can easily
be classified by the tree, as values of attributes used in the
tree are all known in the testing example. In this case, as
A5’s value is 2, it goes down to the second branch, and
predicts N. It thus incurs a misclassification cost of 800.

This final strategy in itself is interesting, and it is a kind
of lazy learning algorithms where the learning model is
built only during testing and can be affected by the testing
examples (see, for example, LazyDT by (Friedman et al
1996)). Here, as testing examples may have a different set
of known attributes, the trees from different testing
examples can be different too.

We expect that our first testing strategy, the Optimal
Sequential Test, would be best with overall lowest total
cost, as it is based on minimizing the total cost in the

training set. The fourth method, building different trees
for different testing cases, would be second, as it utilizes
fully the training data, and like lazy learning, it explores
the search space in the local region. The second and third
methods would probably perform the worst. In the next
section, we will perform extensive experiments to
compare and evaluate these methods with real-world
datasets.

For the experiments, each dataset is split into two parts:
the training set (60%) and the testing set (40%). A
decision tree is built from the training set using our new
algorithm that minimizes the total cost (Section 3). For
our fourth lazy-style testing method, a different tree is
built for each testing case. The decision tree is then used
to predict the testing examples, and to decide what tests, if
any, should be performed to minimize the total cost.

 As we discussed in the Introduction section, testing
examples would often have more unknown values, as it is
part of the testing process to decide what tests need to be
performed. Therefore, a certain percentage of attributes
are randomly selected and marked as unknown. If the
testing algorithm decides to perform a test on an unknown
attribute, then its real value is revealed and a cost is
accumulated.

3
2

1

N

21:52
P

15:2
P

194:48

A5

230:102

0

20

40

60

80

100

120

140

160

20 40 60 80

Percentage of unknown attributes

A
ve

ra
ge

 to
ta

l c
os

t

M1 (OST)

M2

M3

M4

C4.5

Figure 5. A decision tree built only from attributes A2,
A4 and A5.

5. Experiments
We ran experiments on five real-world datasets and
compared the four testing strategies against the baseline
C4.5. In C4.5, we use the information gain to build a
decision tree (without pruning). Missing values are
ignored in training examples as done in C4.5. Then the
tree is used to predict the testing examples. The testing
process is similar to our first testing strategy (Optimal
Sequential Test). That is, when the testing example is
classified by the tree, and if an attribute value is unknown,
a test is done with a cost. The testing example then goes
down further according to the value obtained, until it
reaches the leaf, where a prediction is made.

Figure 6. Total cost comparison under different
unknowns.

Figure 6 shows different algorithms in terms of the
different percentages of unknown attribute values in the
testing examples. This figure shows the graph for the
Ecoli dataset, whereas the other figures for other datasets
are similar and thus are omitted. The scales on the x-axis
(20%, 40%, and so on) represent the percentage of
unknown attributes in the testing sets. The curve
represents the average total cost of a testing case of 5
different testing strategies, averaged over 5 runs. In this
set of experiments, the misclassification cost is set as
400/400 (400 for FN and 400 for FP), and the test costs
are set randomly between 0 and 100.

We use five datasets in our experiments. These datasets
are chosen because they have at least some discrete
attributes, binary class, and a good number of examples.
The numerical attributes in datasets are discretized first
using minimal entropy method (Fayyad & Irani 1993) as
our algorithm can currently only deal with discrete
attributes. The datasets are listed in Table 4.

Table 4. Datasets used in the experiments.
From this experiment, we can draw several interesting
conclusions. First, our first method (M1), Optimal
Sequential Test (OST), is clearly the winner. The total
cost is always the lowest, and it does not increase much
when the percentage of unknown values increases. This is
mainly because the test costs are relatively cheap, and
with the suggestions of tests performed by OST, the final
prediction is quite accurate (so small misclassification
cost). Second, our fourth method (M4), a lazy-style
decision tree algorithm, is the second best when the
percentage of unknown attributes is less than 60%. It is
because it utilizes fully the known attributes by building a

 No. of
attributes

No. of
examples

Class distribution
(P/N)

Ecoli 6 332 230/102

Breast 9 683 444/239

Heart 8 161 98/163

Thyroid 24 2000 1762/238

Australia 15 653 296/357

new decision tree for each testing example. However,
when there are too many unknown attributes (such as
80%), the decision tree built from only 20% of the known
attributes is obviously inaccurate, thus the
misclassification cost increases dramatically, increasing
the total cost as well. Third, C4.5 is the third best overall,
and similar to OST, the total cost does not increase with
more missing values in testing cases. This shows that
doing tests (as in Optimal Sequential Test and C4.5) is
better than not doing tests (as in Methods 2, 3 and 4)
when the test cost is not too large. However, C4.5 is not
as good as OST as test costs are not taken into
consideration in the decision tree built. Fourth, the second
and third methods (M2 and M3) are worse, because they
use a single decision tree built from the training set, and it
does not perform tests to improve predictive accuracy.
Here we can see that their performance degrades as the
unknown values increase. Fifth, it is clear from the graphs
that the more unknown attribute values, the higher the
total cost for testing strategies without doing the test, and
the more adventurous our first method Optimal Sequential
Test and C4.5 would be compared to other methods.

Recall that M3 is essentially C4.5’s strategy in dealing
with unknown values. It is surprising to see that in this
and later experiments M3 (the C4.5 strategy) seems to be
worse than the naïve strategy M2. We think that the main
reason is that distribution into branches of the tree due to
unknown values accumulates a large misclassification
cost overall. It would be interesting to see if C4.5 would
be better off if it uses the naïve strategy as in M2 in
dealing with missing values.

Figure 7. Comparison under different test costs.

The next set of experiments compares different
algorithms in terms of magnitudes of the testing costs
while the classification cost is fixed at 400/400. In Figure
7, which plots the result on the Ecoli dataset, the costs of
the tests (attributes) range from 50 to 400. The percentage
of unknown attribute values is set to be 60%. Again we
can make many interesting conclusions, some of which
are similar to what we have drawn before, but some are
quite different. First, our first method (M1), Optimal
Sequential Test (OST), is still clearly the winner. But
other testing strategies we proposed (M2, M3, and M4)

become very similar to OST when the test cost increases.
This is expected as the test costs increase, our tree-
building algorithm will prefer not to build a tree (or only
to build a one-node tree) to save the total cost and this
may end up with lower total costs. When this happens, the
four testing strategies we proposed may become the same.
Second, C4.5 performs much worse when the test cost
increases. This is also expected as C4.5 builds the same
decision tree independent of the test cost, and thus the
total costs become much larger when the test costs
increase. Third, when the test cost is still relatively small
(from 50 to 100), our fourth method (M4), a lazy-style
decision tree algorithm, is still next in ranking. Because
again it utilizes fully the known attributes by building a
new decision tree for each testing example. Fourth, it is
clear from the graphs that the total test cost of all of our
testing strategies does not increase much when the test
cost increases. This is again because our tree-building
algorithm and testing strategies aim at minimizing the
total cost of misclassifications and tests.

Our last set of experiments is similar to the one above, but
with a dramatically unbalanced misclassification costs.
More specifically, the FP and FN costs are set to
200/1000. Test costs are set randomly, and the percentage
of unknown attributes values is 60%. In this case, we
confirmed our expectation that C4.5 would not perform
well as it does not distinguish the two types of
misclassification costs while our methods do. The result is
presented in Figure 8.

0

20

40

60

80

100
120

140

160

180

200

20 40 80 100

Range of test costs

A
ve

ra
ge

 to
ta

l c
os

ts

M1 (OST)

M2

M3

M4

C4.5

0

100

200

300

400

500

600

50 100 200 400

Test costs

A
ve

ra
ge

 to
ta

l c
os

t

M1 (OST)

M2

M3

M4

C4.5

Figure 8. Comparing unbalanced misclassification costs.

One of our significant results is that the best performance
as demonstrated by the method M1 on the Ecoli dataset is
repeatable throughout all datasets that we consider (see
Table 4). Figures 9 (a) and (b) show the performance of
M1 for different datasets. As can be seen, as the
percentage of unknowns and the test costs change, the
performance of M1 is consistent across different datasets.
We can conclude that the superiority of M1 over the other
methods is in fact a general phenomenon.

Blake, C.L., & Merz, C.J. (1998). UCI Repository of
machine learning databases
[http://www.ics.uci.edu/~mlearn/MLRepository.html].
Irvine, CA: University of California, Department of
Information and Computer Science.

0

20
40

60

80

100
120

140

160

20 40 60 80

A
ve

ra
ge

 to
ta

l c
os

t

Ecoli Breast Heart

Thyroid Australia

0

20
40

60

80

100
120

140

160

20 40 60 80
(a) Percentage of unknown attributes

A
ve

ra
ge

 to
ta

l c
os

t

Ecoli Breast Heart

Thyroid Australia

Domingos, P. (1999) MetaCost: A General Method for

Making Classifiers Cost-Sensitive. In Knowledge
Discovery and Data Mining, Pages 155-164.

Elkan. C. (2001) The Foundations of Cost-Sensitive

Learning. In Proceedings of the Seventeenth
International Joint Conference on Artificial Intelligence
(IJCAI'01), pp. 973-978.

(a) Percentage of unknown attributes

0

50

100

150

200

50 100 200 400
(b) Test costs

l
t

Fayyad, U. M., & Irani, K. B. (1993). Multi-interval
discretization of continuous-valued attributes for
classification learning. In Proceedings of the 13th
International Joint Conference on Artificial Intelligence,
pages 1022--1027. Morgan Kaufmann,

Friedman, J. Yun, Y. and Kohavi, R. Lazy decision trees,

in Proc. 13th Nat'l. Conf. Artificial Intelligence, 1996. c
os

To
ta Greiner, R, Grove A. and Roth D. (2002) Learning Cost-

Sensitive Active Classifiers, Artificial Intelligence
Journal 139:2, pp. 137-174.

 Margineantu, D. (2001). Methods for cost-sensitive
learning. Dissertation, Oregon State Univ.

Mitchell, T.M. (1997) Machine Learning McGraw Hill Figure 9 M1 for different datasets with varying unknowns
(a) and test costs (b) Nunez, M. (1991), The use of background knowledge in

decision tree induction, Machine Learning, 6, pp. 231-
250. 6. Conclusions and Future Work

Quinlan, J. R. (1993) C4.5: Programs for Machine
Learning. Morgan Kaufmann Publishers.

In this paper, we presented a simple and novel method for
effectively building decision trees that minimize the sum
of the misclassification cost and the test cost. Our method
utilizes a new cost-based splitting criterion for attribute
selection, and incorporates several intelligent testing
strategies that can suggest how to obtain missing values
with new tests. Our experiments show that our new
decision-tree-building algorithm, together with the best
testing strategy, Optimal Sequential Test, can
dramatically outperform a number of other competing
algorithms, including C4.5. In addition, compared to other
related works, our algorithm has a much lower
computational complexity, and is thus more practical.

Tan, M. (1993). Cost-sensitive learning of classification
knowledge and its applications in robotics. Machine.
Learning Journal, 13, 7--33.

Turney, P.D. (2000), Types of cost in inductive concept
learning, Workshop on Cost-Sensitive Learning at the
Seventeenth International Conference on Machine
Learning, Stanford University, California.

Turney, P.D. (1995) Cost-Sensitive Classification:
Empirical Evaluation of a Hybrid Genetic Decision Tree
Induction Algorithm, Journal of Artificial Intelligence
Research 2, pp. 369-409, 1995. In the future, we plan to consider several extensions of

this work. One important direction is to consider
minimize the total cost when new tests are done in one
shot, rather than in a sequential manner. In some
situations, such as medical diagnosis for human and
plants (Veeramachaneni and Avesani 2003), this scenario
is more practical since doctors and scientists often suggest
several medical tests to be done at once. We did extend
our Optimal Sequential Test to Optimal Batch Test in
Section 4, but it would be interesting to find more
effective methods. Also pruning can be introduced in our
tree-building algorithm to avoid overfitting of the data.

Veeramachaneni S. and Avesani P. (2003) Active
Sampling for Feature Selection. In Proceedings of the
Third IEEE International Conference on Data Mining.
Pp. 665-668. Florida, USA IEEE Computer Society.

Zubek, V. B., Dietterich, T. G. (2002). Pruning Improves
Heuristic Search for Cost-Sensitive Learning. In
Proceedings of the Nineteenth International Conference
on Machine Learning. Pp. 27-34, Sydney, Australia

