
Decision Trees with Minimal Costs 

Abstract 
We propose a simple, novel and yet effective 
method for building and testing decision trees 
that minimizes the sum of the misclassification 
cost and the test cost. More specifically, we first 
propose a novel and simple splitting criterion for 
attribute selection in tree building. Our tree-
building algorithm has many desirable properties 
for a cost-sensitive learning system that 
considers both types of costs. Then, assuming 
that the testing cases may have a large number of 
missing values for certain attributes, we design 
several intelligent testing strategies that can 
suggest how to obtain the missing values with 
new tests that come with a cost in order to 
minimize the total cost. We experimentally 
compare these strategies and C4.5, and 
demonstrate that our new algorithms 
significantly outperform C4.5 and its variations.  
In addition, the complexity of our algorithm is 
similar to C4.5, and is much lower than many 
previous works.  Our work will be useful for 
many diagnostic tasks where one must consider 
both the misclassification cost and the test cost 
for obtaining missing information.  

1.  Introduction  

Inductive learning techniques have met great success in 
building models that assign testing cases to classes 
(Quinlan 1993; Mitchell 1997).  However, much previous 
inductive learning research has focused on how to 
minimize classification errors. The classification errors 
are useful in deciding whether a learned model tends to 
make correct decisions on assigning class labels for new 
cases, and as such they are an important factor to consider 
in practice. However, there are different types of 
classification errors, and the costs of different types of 
errors are often very different. For example, in a binary 
classification task in the medical domain, the cost of false 
positive (FP) and the cost of false negative (FN) are often 
very different. In addition, misclassification costs are not 
the only costs to consider when applying the model to 
new cases; we also consider the “test cost” that is as 
important as the misclassification cost when testing cases 
themselves do not provide all the values for their 
attributes that may be necessary for classification. That is, 
the testing strategies may suggest, with additional costs, 
obtaining information for the missing values on test cases.   

Inductive learning methods that consider a variety of costs 
are often referred to as cost-sensitive learning (Turney 
2002), and tasks that incur both misclassification and test 
costs abound in practice. As an example, consider again 
the task of a medical practice that examines incoming 
patients based on previous experiences.  Suppose that 
these experiences have been compiled into a model such 
as a decision tree (Quinlan 1993). When dealing with a 
case for a new patient, it is often the case that certain 
information for this patent may yet be known; for 
example, the blood tests or the X-ray test may not have 
been done yet. One possible approach to solving this type 
of problems is to use the strategy in C4.5 (Quinlan 1993) 
in dealing with missing values. That is, when a testing 
case is classified by the decision tree, and is stopped at an 
attribute whose value is unknown, no test will be 
performed to obtain its value; instead, the testing case is 
distributed into branches of the attribute and the 
classification results are weighted on all of the branches. 
The problem with this approach is that it ignores the 
possibility of obtaining the missing value with a cost, and 
thus reducing the misclassification cost and the total cost. 
One of our testing methods (the third method discussed in 
Section 4) uses the C4.5’s strategy, and is shown to be 
inferior to our new method proposed in this paper (see 
Sections 4 and 5). Another possible approach is to 
perform all tests for unknown values. This is clearly not 
optimal either as some of such tests can be very expensive. 
A third possible approach is to utilize the decision tree 
built by C4.5 to guide which tests should be performed. 
Again when a testing case is classified by the decision 
tree, and is stopped at an attribute whose value is 
unknown, the tree naturally suggests that this test should 
be done with a cost, and the testing case can follow the 
right branch, until it can be classified in a leaf. The 
problem with this approach is that when building the 
decision tree, the costs of obtaining these test results are 
completely ignored.  As a consequence, tests that incur 
heavy costs may be placed on top of the tree, requiring all 
future patients to complete these tests.  This may greatly 
increase the total test cost, and thus, the total cost. We 
compare this approach with our new methods proposed in 
this paper, and show that it is again inferior to the best 
method we propose (Sections 4 and 5).  

In this paper, we study a tree-building strategy that 
minimizes the sum of the misclassification cost and the 
test cost, and a set of testing strategies that may suggest 
additional tests to be done with a cost to minimize the 
total cost on testing cases. Our tree-building algorithm has 
a number of very desirable properties for cost-sensitive 
learning systems, including some important properties as 



pointed out by (Turney, 2000; Turney 1995). For example, 
if all test costs are larger than the misclassification cost, 
then no test should be performed and a one-node decision 
tree will be returned. As important as building a tree with 
the minimal total cost, we formulate several strategies to 
deal with the unknown values by taking into account both 
the misclassification and the test costs.  These strategies 
are compared against each other and the best strategy is 
selected. 

The rest of the paper is organized as follows. We first 
review the related work in Section 2.  Then we present 
our new tree-building algorithm, and show it has many 
desirable properties (Section 3). After that, we consider 
several testing strategies and analyze their relative merits 
(Section 4).  Finally, we present our experimental results 
(Section 5) and conclude the work with a discussion of 
future work (Section 6).  

2.  Review of Pervious Work 

Much work has been done in machine learning on 
minimizing the classification errors.  This is equivalent to 
assigning the same cost to each type of classification 
errors (for example, FP and FN), and then minimizing the 
total misclassification costs.  In his survey article (Turney 
2000), a whole variety of costs in machine learning is 
analyzed, and the test cost is singled out as one of the 
least considered areas in machine learning.  In particular, 
(Turney 2000) considered the following types of costs in 
machine learning: 

 Misclassification costs: these are the costs incurred 
by misclassification errors.  Works such as 
(Domingos 1999, Elkan 2001) considered machine 
learning with non-uniform misclassification costs 

 Test costs: these are the costs incurred for obtaining 
attribute values. Some previous work such as 
(Nunez, 1991; Tan 1993) considered the test cost 
alone without incorporating misclassification cost. 
As pointed out by (Turney 2000) it is obviously an 
oversight. As far as we know, the only work 
considering both misclassification and test costs 
includes (Turney 1995; Zubek and Dietterich 2002; 
Greiner et al. 2002). We discuss these works in 
detail below. 

In (Zubek and Dieterrich 2002), the cost-sensitive 
learning problem is cast as a Markov Decision Process 
(MDP), and an optimal solution is given as a search in a 
state space for optimal policies.  For a given new case, 
depending on the values obtained so far, the optimal 
policy can suggest a best action to perform in order to 
both minimize the misclassification and the test costs.  
While related to our work, their research adopts an 
optimal strategy, which may take very high computational 
cost to conduct the search process.  In contrast, we adopt 
the local search algorithm of (Quinlan 1993) using a 
polynomial time algorithm to build a model, which 

returns a new decision tree.  Then when performing the 
testing, our testing strategy (see later) together with the 
decision tree will suggest whether to do a test or not.  
Thus, our algorithm follows the direction of 
approximation rather than optimal algorithms.    

Similar in the interest in constructing an optimal learner, 
(Greiner et al. 2002) studied the theoretical aspects of 
active learning with test costs using a PAC learning 
framework. (Turney 1995) presented a system called 
ICET, which uses a genetic algorithm to build a decision 
tree to minimize the cost of tests and misclassification.  
Our work also considers the decision tree model, where 
we additionally consider both the minimization of 
misclassification cost on training data and the formulation 
of a testing strategy for minimizing the test costs on the 
testing data.  As mentioned above, because our algorithm 
essentially adopts the same decision-tree building 
framework as in (Quinlan 1993), our algorithm is 
expected to be more efficient than Turney’s genetic 
algorithm based approach. 

3.  Building Decision Tree With Minimal Costs 

We assume that the training data may consist of some 
missing values (whose values cannot be obtained). We 
also assume a static cost structure where the cost is not a 
function of time or cases. Further, we assume that the test 
cost and the misclassification cost have been defined on 
the same cost scale, such as the dollar cost incurred in a 
medical diagnosis.  

Our new decision-tree learning algorithm is quite simple. 
For simplicity, we consider discrete attribute and binary 
class labels; extensions to other cases can be made 
likewise. We assume that FP is the cost of one false 
positive example, and FN is the cost of one false negative 
example. Our algorithm uses a new splitting criterion of 
minimal total cost on training data, instead of minimal 
entropy, to build decision trees. This cost measure is 
equivalent to the expected total cost measure used in the 
works of (Turney 1995; Zubek and Dietterich 2002; 
Greiner et al. 2002). More specifically, at each step, rather 
than choosing an attribute that minimizes the entropy (as 
in C4.5), our algorithm chooses an attribute that reduces 
and minimizes the total cost, which is the sum of the test 
cost and the misclassification cost, for the split. Then, 
similar to C4.5, our algorithm chooses a locally optimal 
attribute without backtracking.  Thus the resulting tree 
may not be globally optimal. However, the efficiency of 
the tree-building algorithm is generally high. A concrete 
example is given later in this section. 

A fine point of our new algorithm is the way it deals with 
attributes with unknown values in the training set. In 
many variations of decision tree algorithms, the unknown 
value is treated as one of the ordinary values.  However, 
in our work, the strategy is that all unknown values (we 
use “?” for the unknown value) are treated as a special 



“value”: no leaf or sub-tree will be built for examples 
with the “?” value. This is because it is unrealistic to 
assume the unknown values would be as useful for 
classification as the known values. In addition, when a 
testing example is stopped at an attribute whose value is 
unknown, if the attribute has a “?” branch, it is impossible 
to decide whether the test should be performed by the tree. 
Therefore, the examples with unknown attribute values 
will not be grouped together as a leaf, or to build a sub-
tree; instead, they are “gathered” inside the node that 
represents that attribute.  We then calculate the ratio of 
the positive and negative examples in that internal node. 
See the concrete example given later for more details. Our 
second testing algorithm (see Section 4) will use such 
ratios in making prediction.   

Another important point is how the leaves are labeled. In 
traditional decision tree algorithms, the majority class is 
used to label the leaf node.  In our case, as the decision 
tree is used to make predictions in order to minimize the 
total cost, the leaves are labeled also to minimize the total 
cost. That is, at each leaf, the algorithm labels the leaf as 
either positive or negative (in a binary decision case) by 
minimizing the misclassification cost. More specifically, 
suppose that the leaf has P positive examples, and N 
negative examples. If P×FN > N×FP (i.e., the cost of 
predicting negative is greater than the cost of predicting 
positive), then the leaf is labeled as positive; otherwise it 
is labeled as negative.  Therefore, the label of a leaf does 
not just depend on the majority class of the leaf, but also 
the cost of misclassification.  

Let us look at a concrete example. Assume that during the 
tree building process, there is a set of P and N positive 
and negative examples respectively to be further 
classified by possibly building a sub-tree. If we assume 
that P×FN > N×FP, then if no sub-tree is built, the set 
would be labeled as positive, and thus, the total 
misclassification cost is T = N×FP. Suppose that an 
attribute A with a test cost C is considered for a potential 
splitting attribute. Assume that A has two values, and 
there are P1 and N1 positive and negative examples with 
the first value, P2 and N2 positive and negative examples 
with the second value, and P0 and N0 positive and 
negative examples with A’s value unknown. Then the 
total test cost would be (P1+N1+P2+N2)×C  (i.e., cases 
with unknown attribute values do not incur test costs). 
Assume that the first branch will be labeled as positive (as 
P1×FN > N1×FP), and the second branch will be labeled 
as negative, then the total misclassification cost of the two 
branches would be N1×FP+P2×FN. As we have 
discussed earlier in this section, examples with the 
unknown value of A stay with the attribute A, and we 
have assumed that the original set of examples is labeled 
as positive. Thus, the misclassification cost of the 
unknowns is N0×FP.   The total cost of choosing A as a 
splitting attribute would be: 

TA = (P1+N1+P2+N2)×C + N1×FP + P2×FN + N0×FP 

If TA < T, where T = N×FP, then splitting on A would 
reduce the total cost of the original set, and we will 
choose such an attribute with the minimal total cost as a 
splitting attribute. We will then apply this process 
recursively on examples falling into branches of this 
attribute. If TA ≥ T for all remaining attributes, then no 
further sub-tree will be built, and the set would become a 
leaf, with a positive label.  

Finally, as our tree attempts to minimize the total cost, it 
may also overfit the training dataset.  Traditional decision 
tree algorithms such as C4.5 incorporate a post-tree 
pruning procedure to simplify the tree.  In the current 
version of our algorithm, however, we do not yet perform 
tree pruning.  As all of our tree building algorithms (see 
Section 3) build unpruned trees, our experiment 
comparisons (Section 5) are still fair and valid. It remains 
our future work to include pruning in our tree-building 
algorithm with the minimal total cost.  

Aimed at minimizing the total cost of test and 
misclassification, our new decision-tree algorithm has 
several desirable features. We will discuss these features 
below, using the dataset “Ecoli” as an example (Blake & 
Merz 1998). This dataset has 332 labelled examples, 
which are described by 6 attributes. The numerical 
attributes are first discretized using the minimal entropy 
method (Fayyad & Irani 1993), as our tree building 
algorithm can currently only accept discrete attributes 
(but it is straightforward to extend our algorithm to accept 
continuous attributes as C4.5 does). The attribute values 
are renamed as 1, 2, 3, and so on. More details on this and 
other datasets used in experiments can be found in 
Section 5.   

The first property, as discussed in the Introduction, is that 
the relative difference between misclassification and test 
costs can affect the tree dramatically. If the former is less 
than the latter, then no test should be performed, and the 
decision tree would be simply a one-node leaf. On the 
other hand, if the former is much larger than the latter, 
then all tests should be done, as long as they are relevant; 
i.e., they can improve the predictive accuracy. This can be 
seen clearly from the “Ecoli” dataset. Indeed, if the 
misclassification cost is set to 200 for both FP and FN, 
and all test cost is set to 300, then the algorithm returns a 
one-leaf node as shown in Figure 1 (a). On the other hand, 
when all test costs are set to 0, then the tree is the 
“largest”; in this case, the tree has 13 nodes in total, and 
can be seen in Figure 1 (c). As an “intermediate” case, if 
all test costs are set to 20, then the decision tree with the 
minimal cost has 6 nodes in total, and the tree can be seen 
in Figure 1 (b).  

The second important and desirable property is that for 
attributes with different test costs, our new algorithm is 
likely to choose an attribute with zero or small cost at the 
top (or root) of the tree. This is because the attribute at the 
root will be tested by all examples, and thus the total 
attribute cost would be relatively high. Choosing an 



The third property, related to the second one, is that when 
the test cost of an attribute is increased, that test attribute 
will be “pushed” down in the tree, until it “falls out” of 
the tree (when the test cost becomes too large). Figures 3 
(a) to (c) show the trees with the test cost of A1 set to 20, 
50, and 80, respectively, while all other attribute costs are 
fixed, and the misclassification cost is 800. We can see 
clearly that with the increase of the test cost of A1, the 
attribute moves down the tree, until it falls out of the tree 
in the end. 

attribute with zero or small cost helps reduce the total cost. 
Of course attribute selection also depends on the 
distributions of attribute values and class labels of the 
training examples.  
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(b) Tree #2 (a) Tree #1 (c) Tree #3Table 1 shows three cases in which attribute costs are 
different. In the first case (the baseline), all attribute costs 
are set to 20. In the second and third cases attribute costs 
are set differently. The misclassification cost is set at 800 
for both FP and FN. As we can see, in the second case, 
the attribute A2 has the smallest test cost, and it is indeed 
chosen as the root of the tree as shown in Figure 2(b). In 
the third case, attribute A5 has the smallest test cost, and 
it is chosen as the root (Figure 2(c)). 

 

Figure 3. Three different decision trees built with A1 cost 
as 20, 50, and 80. 

4.  Performing Tests on Testing Examples  

After the minimal-cost decision tree is built, the next 
interesting question is how this tree can be used to deal 
with testing examples with many missing values, in order 
to predict the class of the testing examples with the 
minimal total cost for this case.  Deciding which tests 
should be performed is a part of the testing strategy.  

Table 1. Three different sets of attribute costs. 

COST A1 A2 A3 A4 A5 A6 
Tree # 1 20 20 20 20 20 20 
Tree # 2 200 20 100 100 200 200
Tree # 3 200 100 100 100 20 200
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 Figure 4. A decision tree built from the Ecoli dataset (costs are 

set as in Table 2).  

We will study four testing strategies.  We use the decision 
tree in Figure 4, built with the test cost in Table 2, and a 
testing example in Table 3 to illustrate the four strategies 
described below. Bear in mind that this is only for one 

 

Figure 2. Three different decision trees built with three 
different test costs as in Table 1. 



particular testing case. The overall performance of these 
strategies will be compared in the next section with a 
large number of testing examples. 

Table 2. Test and misclassification costs set for Ecoli 
dataset. 

A1 A2 A3 A4 A5 A6 FP/FN 
50 50 50 50 50 20 800/800

 

Table 3. An example testing case with several unknown 
values. The true values are in parenthesis and can be 
obtained by performing the tests (with costs list in Table 
2).  

A1 A2 A3 A4 A5 A6 Class

? (6) 2 ? (1) 2 2 ? (3) P 
 

The first strategy, called Optimal Sequential Test (OST), 
is very simple and intuitive. It uses the tree built with the 
minimal cost to decide what tests must be performed in 
sequence. More specifically, each test example goes down 
the tree until an attribute whose value is unknown is met 
in the testing example. As the tree was built to minimize 
the total cost, this tree would suggest that this test should 
be performed with the cost, and its value would decide 
which branch to go down. For example, when the testing 
example in Table 3 goes down the tree in Figure 4, it will 
stop at the node A6. Then the test is done with a cost 20, 
and it reveals the value 3. Then the example goes down to 
node A1, and a test on A1 is performed with a cost 50, 
with the value 6. Thus, it falls into the rightmost leaf 
under A1, which predicts the class P.  The prediction is 
the same as the true class of the testing case, so there is no 
misclassification cost. Thus the total cost is 20 + 50 = 70.  

This strategy, while optimal based on the minimal cost of 
the training set, is sequential. That is, one must wait for 
the result of the first test before a next test could be 
determined. In some medical diagnosis, doctors cannot 
afford to wait the result of the first test before other tests 
can be done; they normally order a set of tests to be done 
at once. This “Optimal Batch Test” can be modeled in our 
decision tree easily. The basic idea is that when a testing 
case is stopped at the first attribute whose value is 
unknown, all unknown values under that attribute must be 
obtained. Clearly this strategy will return the same 
prediction as OST (i.e., same misclassification cost), but it 
would incur a higher test cost.  

The second strategy uses the same decision to make 
prediction, but it stipulates that no further tests should be 
done. More specifically, when a testing example is 
stopped at an attribute whose value is unknown, it stops 
right there, and uses the ratio of positive and negative 
examples in that (internal) node to predict the testing 
example (recall that these ratios are calculated based on 
training cases which also have unknown values at this 

node). Using the same example, when the testing example 
stops at the node A6, it would predict that the testing 
example is of class for the node A6 (which is positive by 
P×FN > N×FP i.e. 230×800 > 102×800). As no test is 
done, there is no test cost. The total cost is thus 0 here.  

The third strategy is a variation of the second strategy. 
Instead of stopping at the node whose attributes value is 
unknown in the testing case, this strategy will “split” the 
testing case into fractions according to the training 
examples, and go down all branches simultaneously. The 
final class is a weighted sum of the class in each branch. 
Note that this is essentially C4.5’s strategy in dealing with 
missing values. Notice that even though the testing case 
goes down from the attribute with a cost, there is no 
testing cost involved, as it merely “guesses” the values of 
the attributes. Using the same example to illustrate this 
strategy, the testing case will not stop at node A6 this time; 
instead, it will distribute into four branches with a ratio 
107/108/6/111. The first two branches make a correct 
prediction with no misclassification cost. The last branch 
makes a wrong prediction, with a misclassification cost of 
800. The third branch encounters another unknown value, 
so it is distributed further down in the tree, with a ratio of 
1/1/2/2. The first two branches make a wrong prediction 
(costing 800), while the next two branches make a correct 
prediction. With the total number of 432 (230+102) 
training examples in the tree building, the weighted cost 
for this testing example is thus: 800×(1+1+111)/432 = 
209.3.  

The fourth and final strategy also stipulates that no further 
tests should be done, but it utilizes the existing attribute 
values to the full extent. More specifically, for each 
testing example, a new (and different) decision tree is 
built dynamically from all of the training examples with 
only those attributes whose values are known in the 
testing example. In this way, the new decision tree only 
uses attributes with known values in the testing example, 
and thus, no new test would be needed during the testing. 
As an example, as A2, A4, and A5 are the only known 
attributes, a new decision tree using the training examples 
with A2, A4, and A5 as attributes will be built as in 
Figure 5. From this tree, the testing examples can easily 
be classified by the tree, as values of attributes used in the 
tree are all known in the testing example. In this case, as 
A5’s value is 2, it goes down to the second branch, and 
predicts N. It thus incurs a misclassification cost of 800. 

This final strategy in itself is interesting, and it is a kind 
of lazy learning algorithms where the learning model is 
built only during testing and can be affected by the testing 
examples (see, for example, LazyDT by (Friedman et al 
1996)). Here, as testing examples may have a different set 
of known attributes, the trees from different testing 
examples can be different too. 

We expect that our first testing strategy, the Optimal 
Sequential Test, would be best with overall lowest total 
cost, as it is based on minimizing the total cost in the 



training set. The fourth method, building different trees 
for different testing cases, would be second, as it utilizes 
fully the training data, and like lazy learning, it explores 
the search space in the local region. The second and third 
methods would probably perform the worst. In the next 
section, we will perform extensive experiments to 
compare and evaluate these methods with real-world 
datasets.  

For the experiments, each dataset is split into two parts: 
the training set (60%) and the testing set (40%). A 
decision tree is built from the training set using our new 
algorithm that minimizes the total cost (Section 3).  For 
our fourth lazy-style testing method, a different tree is 
built for each testing case. The decision tree is then used 
to predict the testing examples, and to decide what tests, if 
any, should be performed to minimize the total cost.  

 As we discussed in the Introduction section, testing 
examples would often have more unknown values, as it is 
part of the testing process to decide what tests need to be 
performed. Therefore, a certain percentage of attributes 
are randomly selected and marked as unknown. If the 
testing algorithm decides to perform a test on an unknown 
attribute, then its real value is revealed and a cost is 
accumulated.  
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Figure 5. A decision tree built only from attributes A2, 
A4 and A5.  

 
5.  Experiments  
We ran experiments on five real-world datasets and 
compared the four testing strategies against the baseline 
C4.5. In C4.5, we use the information gain to build a 
decision tree (without pruning). Missing values are 
ignored in training examples as done in C4.5.  Then the 
tree is used to predict the testing examples. The testing 
process is similar to our first testing strategy (Optimal 
Sequential Test). That is, when the testing example is 
classified by the tree, and if an attribute value is unknown, 
a test is done with a cost. The testing example then goes 
down further according to the value obtained, until it 
reaches the leaf, where a prediction is made.  

 

 

 

 

Figure 6. Total cost comparison under different 
unknowns. 

Figure 6 shows different algorithms in terms of the 
different percentages of unknown attribute values in the 
testing examples. This figure shows the graph for the 
Ecoli dataset, whereas the other figures for other datasets 
are similar and thus are omitted. The scales on the x-axis 
(20%, 40%, and so on) represent the percentage of 
unknown attributes in the testing sets. The curve 
represents the average total cost of a testing case of 5 
different testing strategies, averaged over 5 runs. In this 
set of experiments, the misclassification cost is set as 
400/400 (400 for FN and 400 for FP), and the test costs 
are set randomly between 0 and 100.   

We use five datasets in our experiments. These datasets 
are chosen because they have at least some discrete 
attributes, binary class, and a good number of examples. 
The numerical attributes in datasets are discretized first 
using minimal entropy method (Fayyad & Irani 1993) as 
our algorithm can currently only deal with discrete 
attributes. The datasets are listed in Table 4.  

Table 4. Datasets used in the experiments. 
From this experiment, we can draw several interesting 
conclusions. First, our first method (M1), Optimal 
Sequential Test (OST), is clearly the winner. The total 
cost is always the lowest, and it does not increase much 
when the percentage of unknown values increases. This is 
mainly because the test costs are relatively cheap, and 
with the suggestions of tests performed by OST, the final 
prediction is quite accurate (so small misclassification 
cost).  Second, our fourth method (M4), a lazy-style 
decision tree algorithm, is the second best when the 
percentage of unknown attributes is less than 60%. It is 
because it utilizes fully the known attributes by building a 

 No. of 
attributes 

No. of 
examples 

Class distribution 
(P/N) 

Ecoli 6 332 230/102 

Breast 9 683 444/239 

Heart 8 161 98/163 

Thyroid 24 2000 1762/238 

Australia 15 653 296/357 

 



new decision tree for each testing example. However, 
when there are too many unknown attributes (such as 
80%), the decision tree built from only 20% of the known 
attributes is obviously inaccurate, thus the 
misclassification cost increases dramatically, increasing 
the total cost as well. Third, C4.5 is the third best overall, 
and similar to OST, the total cost does not increase with 
more missing values in testing cases. This shows that 
doing tests (as in Optimal Sequential Test and C4.5) is 
better than not doing tests (as in Methods 2, 3 and 4) 
when the test cost is not too large. However, C4.5 is not 
as good as OST as test costs are not taken into 
consideration in the decision tree built. Fourth, the second 
and third methods (M2 and M3) are worse, because they 
use a single decision tree built from the training set, and it 
does not perform tests to improve predictive accuracy. 
Here we can see that their performance degrades as the 
unknown values increase. Fifth, it is clear from the graphs 
that the more unknown attribute values, the higher the 
total cost for testing strategies without doing the test, and 
the more adventurous our first method Optimal Sequential 
Test and C4.5 would be compared to other methods.   

Recall that M3 is essentially C4.5’s strategy in dealing 
with unknown values. It is surprising to see that in this 
and later experiments M3 (the C4.5 strategy) seems to be 
worse than the naïve strategy M2. We think that the main 
reason is that distribution into branches of the tree due to 
unknown values accumulates a large misclassification 
cost overall. It would be interesting to see if C4.5 would 
be better off if it uses the naïve strategy as in M2 in 
dealing with missing values. 

 

 

 

 

 

 

 

 

 

Figure 7. Comparison under different test costs. 

The next set of experiments compares different 
algorithms in terms of magnitudes of the testing costs 
while the classification cost is fixed at 400/400. In Figure 
7, which plots the result on the Ecoli dataset, the costs of 
the tests (attributes) range from 50 to 400. The percentage 
of unknown attribute values is set to be 60%.  Again we 
can make many interesting conclusions, some of which 
are similar to what we have drawn before, but some are 
quite different. First, our first method (M1), Optimal 
Sequential Test (OST), is still clearly the winner. But 
other testing strategies we proposed (M2, M3, and M4) 

become very similar to OST when the test cost increases. 
This is expected as the test costs increase, our tree-
building algorithm will prefer not to build a tree (or only 
to build a one-node tree) to save the total cost and this 
may end up with lower total costs. When this happens, the 
four testing strategies we proposed may become the same. 
Second, C4.5 performs much worse when the test cost 
increases. This is also expected as C4.5 builds the same 
decision tree independent of the test cost, and thus the 
total costs become much larger when the test costs 
increase. Third, when the test cost is still relatively small 
(from 50 to 100), our fourth method (M4), a lazy-style 
decision tree algorithm, is still next in ranking. Because 
again it utilizes fully the known attributes by building a 
new decision tree for each testing example. Fourth, it is 
clear from the graphs that the total test cost of all of our 
testing strategies does not increase much when the test 
cost increases. This is again because our tree-building 
algorithm and testing strategies aim at minimizing the 
total cost of misclassifications and tests.  

Our last set of experiments is similar to the one above, but 
with a dramatically unbalanced misclassification costs.  
More specifically, the FP and FN costs are set to 
200/1000. Test costs are set randomly, and the percentage 
of unknown attributes values is 60%. In this case, we 
confirmed our expectation that C4.5 would not perform 
well as it does not distinguish the two types of 
misclassification costs while our methods do. The result is 
presented in Figure 8.   
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Figure 8. Comparing unbalanced misclassification costs. 

 

One of our significant results is that the best performance 
as demonstrated by the method M1 on the Ecoli dataset is 
repeatable throughout all datasets that we consider (see 
Table 4).  Figures 9 (a) and (b) show the performance of 
M1 for different datasets.  As can be seen, as the 
percentage of unknowns and the test costs change, the 
performance of M1 is consistent across different datasets. 
We can conclude that the superiority of M1 over the other 
methods is in fact a general phenomenon.  
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