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ABSTRACT 
Query clustering and disambiguation have been extensively 
explored in the past to capture web-users’ information needs and 
improve the performance of search.  However, these techniques 
are also plaque by sparse and noisy data.  In this paper, we 
propose a novel algorithm to solving this problem, by 
simultaneously clustering and disambiguating queries into 
different concepts using both Web pages and query logs. To 
address the sparseness of the log data, we propose an iterative 
algorithm to alternate between refining Web page clustering and 
refining queries’ feature representation using query logs as bridge. 
The resultant Web page clusters provide better concept candidates 
for queries to be associated with each other. A by-product of the 
process is that queries are naturally clustered around similar 
concepts. Our extensive experiments lend evidence to our solving 
the data sparseness and achieving a higher accuracy in query 
association and disambiguation. We achieve a 29% improvement 
in the F-measure on a semi-synthetic dataset and 11% in search 
precision on the real data. 
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1. INTRODUCTION 
One of the most fundamental and challenging issues for Web 
search is to identify users’ information needs. What makes this 
issue challenging is that most Web queries are short. Recent 
analysis of search engine logs revealed that the average length of 
a query is about 2.3 words long . Shorter queries lead to 
higher word ambiguity where the same query term may represent 
totally different information needs for different users. Query 
clustering [4 and disambiguation [1  are two essential 
approaches to tackling these issues. In particular, query clustering 
aims to group similar queries together, by covering the common 
interests of users . Query disambiguation tries to partition 
queries into different senses or concepts. However, due to the 
noisy and sparseness nature of the Web, much remains to be 
desired in successfully solving either issues. 
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Among the different methods that have been developed, a 
main focus is placed on query clustering. Due to the short 

length of query terms, researchers have started to exploit 
query logs to enhance performance . These query logs is 
a gold-mine of information.  For example,  shows a 
portion of a query log data, where the query terms and their 
intended pages are connected by edges.  The number of times 
a query refers to its intended pages can also be useful in 
identifying user needs; for example, from the connections 
shown in Figure 1, we see that q2 and q3 are similar Web 
pages. 
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Figure . A portion of log data. The number above each 
directed edge denotes the number of times that qi refers to pj 
in the log.  We assume that p2, p3, and p4 are similar Web 
pages. 

 
While utilizing Web logs promises to provide the much needed 
information to uncovering similar pages and queries that 
correspond to the same concepts, our experience in working with 
very large Web logs have revealed several challenging issues. 
First, a query only refers to very few Web pages as compared to 
the whole Web space.  If we adopt a vector representation using 
the log data, the corresponding matrix will be very sparse. 
Furthermore, due to the diversity and duplicity of Web pages, 
many similar pages exist in the Web space. Users may visit 
similar Web pages that are not necessarily the identical ones for 
similar queries; for example we can see this in Figure 1 where q2 
and q3 are similar even though they do not point to the same page. 
These problems cause data sparseness, which in turn causes major 
difficulty in clustering. 
Another challenge for query clustering algorithms is caused by the 
ambiguity of short queries. A well-known example of such a 
problem is the meaning of “Java” as a query: it could mean 
coffee, an island in Indonesia or a programming language. 
Existing clustering algorithms often ignore the ambiguity issue 
and assign only one cluster for such a query.  This solution is 
clearly very naïve, because it precludes a user from user the same 
term to mean different things.  Query disambiguation, often dealt 
with by linguistic methods lso a challenging problem. 
However, in the Web environment, a linguistic is not feasible due 
to the magnitude of Web space.  Furthermore, the linguistic 
method often fail to reflect the different intentions of users. 
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In this paper, we propose a novel clustering algorithm for solving 
the query-data sparseness and the query-term disambiguation 
problems. To address the sparseness issue, we propose an iterative 

 



procedure in which Web pages are clustered first, and then the 
initial Web-page clusters are used to compute a feature 
representation for queries that is less sparse.  This result is then 
used to reinforce Web page clustering. As the procedure goes on, 
query and Web clusters corresponding to similar user intentions 
are discovered. 
A by product of the clustering procedure is that it solves the query 
ambiguity issue as well. When clustering terminates, each 
Web-page cluster expresses a meaningful concept.  Such 
concepts are shared by queries, allowingseemingly different 
queries to be clustered around similar concepts. 
The rest of this paper is organized as follows. Section 2 reviews 
the related work. Section 3 describes our iterative procedure to 
refine the query feature representation and Web page clustering. 
Section 4 gives our clustering and disambiguation method in the 
query-feature space. Section 5 presents extensive experiments to 
evaluate our methods. Finally, Section 6 concludes the paper. 

2. RELATED WORK 
The characteristics of the short Web query and the noisy search 
results have led researchers to investigate the query clustering 
problem [4]. However, using query keywords directly is not 
reliable due to their short length and word ambiguity. In , the 
top documents retrieved by a search engine for each query are 
considered as the data source of the query and a hierarchical 
clustering algorithm is applied. Based on the click-through data, 
in , a bipartite graph of queries and documents is constructed 
and then a graph based agglomerative iterative clustering method 
is applied to merge vertices of graph continually until a 
termination condition reaches. Going beyond the clicked URLs in 
the search engine query and browsing logs,  developed one 
algorithm to use query keywords and the clicked documents to 
estimate the similarity between queries.  
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The above methods to utilize query logs are similar to 
collaborative filtering  Based on the user-item rating 
matrix, traditional CF calculates the k-nearest neighbors for the 
active user and then recommends items that the active user’s 
neighbors like. Therefore, a similarity measure between users 
should be defined. As for query logs, it is natural to defined a 
similarity measure from the logs as  has done. However, such 
a method faces data sparseness problem as discussed in Section . 

Several methods have been proposed to overcome the data 
sparseness. In , a unified framework has been proposed to 
cluster multi-type interrelated objects (such as Web pages and 
queries). One type of objects’ clustering will be updated by the 
clustering results of other types of objects and then reinforce 
others. In our paper, we reinforce the Web page clustering by the 
refined feature representation of queries instead of query 
clustering result. Also didn’t consider query disambiguation. 

Query disambiguation is explored in the Cross-Language 
Information Retrieval (CLIR) area r queries in 
mixed languages . In both areas, a major problem is how to 
translate the query from a primary language to a secondary 
language. There may be more than one candidate in the secondary 
language for a query term. How to choose the correct meaning 
appropriately is called query disambiguation. 

In , a query is assumed ambiguous based on the underlying 
document collection. ced a query disambiguation 
method by considering part-of-speech patterns of the query’s 
context terms. For each query, lyzed its context in the data 
collection and classify each occurrence of the query to a question 

which reflects its context type. Ambiguity is resolved by choosing 
a question from the generated question list. Such a method suffers 
from scalability issues and is not applicable to the Web 
environment.  proposed a way to classify user’s query to the 
Open Directory Project (ODP) categories to solve query 
ambiguity. However, it relies on the user’s profile. 

3. THE ITERATIVE REFINEMENT 
CLUSTERING PROCEDURE 
A simple assumption to use query logs is that queries are similar if 
they refer to the same Web pages results in data sparseness 
because similar queries tend to refer to similar but not necessary 
the same Web pages. One possible way to overcome the problem 
of the sparseness of log data is to cluster the similar Web pages 
together first. If we treat each cluster as one dimension and 
queries have one nonzero value in a dimension if they refer to the 
corresponding cluster, the query feature is not as sparse as original. 
Furthermore, the more accurate the Web page clustering is the 
better and more meaningful the query feature representation could 
be. Our motivation is to enhance the Web page clustering result 
by the refined query feature. To achieve this goal, we project each 
Web page to the query feature space through the query logs. Thus, 
besides the content feature, each Web page has an additional 
feature in the query feature space. By doing so, the refined query 
features can reinforce the Web page clustering because they refine 
the Web page features. The enhanced Web page clustering in turn 
can refine the query features further. Therefore, such an iterative 
procedure is a mutual reinforcement process. 

In this section, we present our iterative procedure in detail. We 
will later show that this procedure not only refines the feature 
representation of queries but also yields a more meaningful Web 
page clustering result which provides good concept candidates for 
queries to be associated. In the next section, we will describe how 
to associate the queries to these concept candidates. 

3.1 Query and Web Page Vectors 
Suppose that query logs refer to m Web pages and n queries in 

 From the logs, we can construct a query by page matrix 
Xn×m with each entry (i,j) denoting the times that ith query refers to 
jth Web page. Therefore, each row of X represents a feature vector 
for the corresponding query q and each column represents a 
feature vector for the corresponding Web page w: 

V(q) = [w1, w2, ^, wm]T 

U(w) = [q1, q2, ^, qn]T 

Because these two feature vectors are constructed from the query 
logs, we call them log feature vectors. 

Besides the log feature vector, each Web page has its own content 
feature. When measuring the similarity between two Web pages, 
we need to consider both types of information. Two similarities 
are used for any pair of Web pages: Scontent is the similarity for 
content features and Slogs for features defined from query logs. 
Cosine similarity measure can be used to implement each 
component function. Then, a combined similarity S is induced by 
a liner combination of the two similarities: 

 where  (1) ⋅−+⋅= )1( αα 10 ≤≤ α

A straightforward application of clustering on the query and Web 
page vectors will result in very poor performance, because in 
general the vectors are very sparse. Only a small fraction of Web 
pages are visited by each query and each Web page is only 



relevant to a small fraction of queries. Thus, we must find a way 
to resolve the sparseness of the query logs. We discuss how to do 
this next. 

3.2 Iterative Refinement Clustering (IRC) 
We first give some notations used in the following: 

 Xn×m is a query by page matrix of query logs as defined 
in Section . 3.1
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 Vn×m is a query by page matrix of query logs, with each 
row equal to V(q) and each column equal to U(w)in 
Section . 

 Pm×m is the page to page similarity matrix. 

 Qn×k is the query feature matrix based on Web page 
clusters with each row denoting one query. 

 Sn×n is the query to query similarity matrix. 
Q is the matrix that we want to refine. It is equal to refine S 
because S = Q×QT. To see the convergence of the iterative 
algorithm, we select S to define the termination condition. 

 Pm×m is the page to page similarity matrix. 

 Qn×k is the query feature matrix based on Web page 
clusters with each row denoting one query. 

Iterative Refinement Clustering (IRC)  Sn×n is the query to query similarity matrix. 
To give a close form of the iterative procedure, we ignore Web 
page content in the following description. For simplicity, we 
assume that all matrices below take only 1 or 0 values. A value 1 
means that the two entities are related. 0 means otherwise. 

Q is the matrix that we want to refine. It is equal to refine S 
because S = Q × QT. To see the convergence of the iterative 
algorithm, we select S to define the termination condition. 
Therefore, in the following description, we aim to refine S. 

Let P(l) be the page-to-page similarity, where P(0)=XT×X because 
we ignore their contents. Then, for each P(l), the k-means 
clustering result is Cl(t) = (P(l))t×C(0) 

A naïve way to obtain this matrix is to simply consider the web 
log alone. This naïve way is like CF and corresponds to the 
following computation: S = X × XT, where XT is the transpose of X. 
However, such a way faces the logs sparseness. For convenience, we refine the page similarity by query similarity 

in the below description. In fact, it is equal to refine page feature 
by query feature because By applying an iterative refinement algorithm, we can do much 

better.  This algorithm is based on iteration on two steps.  First, 
we perform a clustering operation on pages based on page 
similarity.  Then, we refine the query feature and compute the 
query similarity using the newly computed page clustering.  
Each iteration l gives a new matrix for S and P.  The iteration 
continues until the matrix S(l) converges to a fixed point. 

 

XT×Q(l) is the refined page feature by query feature. 
The clustering phase is used as a subroutine in our overall 
procedure.  Thus, we describe it here first. 

The whole process can be described as: 

Before detailing the algorithm, we present our motivation in 
matrix formulation. The matrix can give us an intuition of the 
reinforcement process. 
For simplicity, we ignore the content feature of pages and queries 
and assume that all matrices below take only 1 or 0 values. A 
value 1 means that the two entities are related. 0 means otherwise. 
We choose k-means clustering for Web pages, so we first present 
the matrix formulation of it. 
Soft k-means algorithm 
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Iterative Refinement Algorithm IRC: 

Step 1. Initialize matrices and parameters: 

l=1; 

S(0) = I, where I is the identity matrix; 

Step 2. The page-to-page similarity matrix: 

XlSXlP T ×−×= )1()(  

Step 3. Apply the k-means algorithm on P(l) to obtain page-to-cluster 
matrix: 

 

Step 4. Obtain refined query feature matrix: 

)  

Step 5. Obtain a new query-to-query similarity matrix 

 

Step 6. If S(l) = = S(l-1) then exit. Otherwise, l=l+1, normalize the matrix 
S and P, and go to Step 2. 

Assume Am×w is the document by word matrix, C(0)m×k is a const 
matrix with 1 at locations {[(m / k) × j+1], j): j = 1,…,k} and 0 
otherwise. C(0) m×k is used to select the initial centroid vector. 

 

Algorithm: Soft k-means 

Step 1.  Initialize the centroids by AT×C(0). (In fact the jth centroid vector 
is the [(m / k) × j+1]th document vector.) 

Step 2.  Iterate Step 3 to 4 t times. 

Step 3.  For the lth iteration, calculate the similarity between documents 
and centorids: C(l) = A×(AT×C(l-1)) = (A×AT)×C(l-1), each entry 
(i,j) denote the similarity between the ith document and the jth 
centroid. 

Step 4.  Refine the centroids by AT×C(l). 

Step 5.  Return C(t). 

The closed form of the iteration can then be expressed as (where 
we omit the normalization function): 
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We now discuss how to normalize the matrix. For each row of the 
matrix S and P, if an element is greater than zero, then we set it to 
be one. Otherwise, we set it to be zero. 
We now show that this iteration converges to a fixed point for a 
constant t value and for the case where all elements of matrices 
are either 1 or zero. 
Lemma 1. In each iteration, if an element of the similarity matrix 
S is greater than zero, it will never become zero for future 
iterations. 
Lemma 2. In each iteration, if an element of the similarity matrix 
P is greater than zero, it will never become zero for future 
iterations. 
Theorem 1. Iterative Algorithm IRC will converge in a finite 
number of iterations. 
Proof.  Since each step of the iteration never removes a value 
one from the matrices S and P, also since S and P have finite 
dimensions, in O(m2+n2) steps the algorithm must terminate. □ 

However, in reality the algorithm will converge much faster than 
the theoretical bound mentioned above. We show this in our 
experiments below. 
In the experiments, we use hard k-means algorithm and also 
consider Web page content using formula (1). Furthermore, we 
refine Web pages’ features based on refined query feature to avoid 
the quadratic calculation complexity to calculate the similarity 
matrix. 

4. CLUSTER AND DISAMBIGUATE 
QUERIES 
Assume that we obtained k clusters of the Web pages {C1, C2, ^, 
Ck} and there are li Web pages {Pi1, Pi2, ^, Pili} in each cluster Ci,. 
Recall that each Web page Pij has a log vector Uij’ in the query 
feature space obtained by XT×Q(l). In order to project a Web page 
cluster to the query feature space to form a concept, we extract the 
centroid of the cluster. In particular, each Web page cluster 
corresponds to a vector in the query feature space and we call it 
concept vector: 

∑
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where CV(i) is the concept vector of the cluster Ci.  

Here, we implicitly assume that each Web page cluster 
corresponds to a meaningful concept, a fact that we will verify in 
the experimental section. In addition, we assume that the concepts 
are shared by the queries. This is reasonable because when a user 
issues a query and finally visits a Web page, he/she, in most cases, 
considers the browsed Web page has the meaning or concept of 
the query in his/her mind. Ambiguous queries can be used by 
different users to visit Web pages associated with different 
concepts. Thus the concepts of all clusters of Web pages are 
shared among the queries. Therefore, it is natural to project the 
Web page clusters onto the query feature space to form a concept 
set. 

In the query feature space, we obtain refined representations of 
the queries and also more meaningful concept vectors from the 
Web page clustering result. For each query q, we can calculate a 
similarity between q’s refined representation and a concept vector 
CV using consine similarity measure. Disambiguating a query 
corresponds to assigning the query to the concept CV if the 

similarity between q and CV is larger than a pre-defined threshold 
β. An ambiguous query has high similarities with several different 
concept vectors and thus can be given different meanings. 
Apparently, the result can be influenced by the pre-defined 
threshold β. The lower the threshold is, the coarser each cluster 
would be. 

5. EVALUATION 
In this section, we present the performance evaluation of the 
proposed method to cluster and disambiguate queries. 
Experimental results conducted on both the semi-synthetic data 
and the real data are studied. The semi-synthetic data are 
generated to simulate real search engine logs and the real data are 
extracted and sampled from MSN search logs. In both 
experiments, we use the k-means algorithm to cluster Web pages 
and set k = 150 for the semi-synthetic data and k = 200 for the real 
data. 

5.1 Baseline (CF) 
To illustrate the impact of the sparseness of log data, we employ 
the baseline algorithm which uses a similarity measure similar to 
CF to find nearest neighbors. CF defines a similarity measure 
between “users” based on the user-item rating matrix. Recall in 

 we can also define a measure between queries based on 
their “ratings” of Web pages. Here the “rating” is the times that a 
query refers to one Web page. 
Based on the defined similarity measure, we apply k-means 
algorithm to cluster queries. Here we modify standard k-means 
algorithm to fit the disambiguation problem. In the experiment, 
first, we use standard k-means to find the local optimal cluster 
models, i.e. cluster centroids. Then we assign each query to a 
cluster if the similarity between the query vector and the 
corresponding centorid is larger than a pre-defined threshold γ. 
Similar to the threshold β, the performance relies on γ. However, 
for the sparseness problem of baseline algorithm, β is larger than γ 
to achieve the best result generally. 

5.2 Naïve Way 
In the experiment, we also present a naïve way to compare with 
our IRC. The naïve way is to just cluster the Web pages one time 
based on content, change the query feature based on the clustering 
result and then cluster and disambiguate the queries like our 
algorithm. This way is equal to the first iteration of IRC. 

5.3 Semi-Synthetic Data 
The semi-synthetic data is a simulated search-engine query log 
consisting of two types of objects, the Web pages and the queries. 
In the synthetic data, the Web pages are collected from real 
sources, while the queries and their referred Web pages are 
automatically generated from a probabilistic model whose 
parameters are specified in advance. The real categories of the 
Web pages and queries are hidden from the proposed algorithm 
and are taken as a ground-truth for the performance evaluation. In 
the following, after a brief introduction of the data generation 
process and the performance evaluation metrics, we present our 
comparative experiments. 

5.3.1 Data Generation 
The data generation process is composed of 3 steps. 

First, all Web pages used in the experiment are collected from the 
Open Directory Project . All the categories are selected from 
the second-level categories of the directory. In all, we selected 
126 categories and each size is above 100. The number of 



where pj is the proportion of jth category Cj’s data in the cluster 
A. That is: 

associated Web pages is more than 40,000 and the biggest 
category has about 1,000 Web pages. In the experiments, we only 
extract the pure text from each Web page. 

||
||

A
CA

p j
j

∩
=  Second, we generate the queries automatically and the categories 

of each query are set the same as its preferred Web page 
categories. The queries are generated in two types: unambiguous 
queries and ambiguous queries. Each unambiguous query has only 
one preferred category of Web pages. We generate one set of 
unambiguous queries for each category of web pages and the size 
of the query set ranges from 30 to 100, uniformly distributed 
among the Web page categories. In all, we generate about 8,000 
unambiguous queries. To generate ambiguous queries, we first 
assign to each query a number ranging from 2 to 6 which 
corresponds to the number of its different concept meanings. 
Then, for each query, we randomly select 2-6 Web page 
categories equal to its meaning number as its preferences. In the 
experiments we generated 10,000 ambiguous queries totally. For 
each ambiguous query, we assign one importance level for each of 
its preferences. The importance level ranges from 3 to 6 and is 
proportional to the frequency that the users associate a meaning 
(preference) to a query. 

The clustering entropy is the weighted sum of all the clusters. 
Assume D is the whole data collection, then: 
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5.3.2.2 F measure 
The precision, recall and F measure are commonly used metrics in 
information retrieval area to evaluate the retrieval results [20 . To 
evaluate query clustering and disambiguation result, we use F 
measure [ . Assume we know correct categories of the queries. 
For each cluster, we calculate the precision and recall of it for 
each given category. The F measure is defined by combining the 
precision and recall together. More specifically, for cluster j and 
category i 

i

ij

n
n

  )i, j( Recall =  
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),(

ji
ji

Finally, page hits are generated based on existing queries, existing 
Web pages, and query preferences and their importance levels. A 
page hit is generated in the following process: (1) select a query 
randomly, (2) get the preferences of the query, (3) if the query is 
ambiguous, randomly select a preference according to the 
probability which is determined by its preference importance 
levels, (4) randomly select a Web page from the corresponding 
Web page category according to Web pages’ importance values 
which are equal to their values of PageRanks . In the 
experiments, we generate the unambiguous and ambiguous page 
hits separately. The differences between unambiguous and 
ambiguous queries’ hits are: in step (3), there is only one 
preference for an unambiguous query. The average number of hits 
an ambiguous query takes is proportional to the number of its 
preferences. And the hit numbers of unambiguous ones are 
uniformly distributed. At last, we generate 100,000 unambiguous 
hits and 300,000 ambiguous hits. Therefore, on average, there are 
11 page hits per unambiguous query and 30 page hits per 
ambiguous query. Because each ambiguous query has 4 
preferences on average, the number of page hits per preference is 
about 7-8. 
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where nij is the number of members of category i in cluster j, ni is 
the number of members in category i, nj is the number of members 
in cluster j and F(i, j) is the F measure of cluster j and category i. 

The whole F measure of the query clustering and disambiguation 
result is defined as a weighted sum over all categories as follow: 

To simulate the reality, we generated some noise page hits as 
well. In the noise generation model, we generate totally random 
page hits which are uniformly distributed on all possible pairs of 
queries and Web pages. In the experiments, we will study the 
performance under different ratio of noise page hits. 

5.3.2 Evaluation Methods 
We adopt entropy to evaluate the Web page clustering result and 
F measure to evaluate the query clustering and disambiguation 
result. 

5.3.2.1 Entropy 
Entropy is defined in information theory  which measures the 
uniformity or purity of a cluster. Specially, given a cluster A and 
category labels of data objects inside it, the entropy of cluster A is 
defined: 
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where the max is taken over all clusters and n is the total number 
of queries. 

The query clustering and disambiguation result is sensitive to the 
similarity threshold β. When β increases, the precision becomes 
higher and the recall becomes lower. The F measure is influenced 
too. To give an objective evaluation, we change the similarity 
threshold β from 0.1 to 0.9 with step 0.1 and select the largest F 
measure as the evaluation of the clustering and disambiguation 
result. For the baseline CF, we set γ = 0.05 because at this value it 
yields the best result. 

5.3.3 Experimental Results 
The following experiments illustrate the refinement of our 
iterative procedure on the semi-synthetic data. To cluster the Web 
pages, we adopt the similarity defined in formula (1). We rewrite 
it here: 

, where  ⋅−+⋅= )1( αα 10 ≤≤ α

Here α adjusts the weight between content and log features, which 
has significant impact on Web page clustering accuracy and also 
the query clustering and disambiguation accuracy. We will 
illustrate its impact in the following. Since our proposed algorithm 
is an iterative process, in our experiment we let the algorithm run 



10 iterations, i.e. reinforcing the Web page clustering by the 
refined query feature representation 10 times. In the following, we 
use all the generated 8000 unambiguous queries and select the 
correct number of ambiguous queries according to the ratio. 
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Figure 2. Results with α=0.2, ambiguous ratio=70%, noise 
ratio=70% 

 FiFigure 2 is the query clustering and disambiguation results which 
are evaluated by F measure. Here we set α=0.2, the ratio of 
ambiguous to unambiguous queries at 70%, the ratio of the noise 
logs to the correct ones at 70% to simulate the real search engine 
logs. In the figure, we give three results: CF, the naïve way, and 
our algorithm IRC. From the results, IRC is far better than CF 
(29% relative improvement) and naïve way (108% relative 
improvement). As we have discussed above, the baseline CF is 
influenced by the sparse problem of the logs and the naïve way 
does not perform well because the cluster result of Web pages 
based on content is highly noisy. IRC combines the content and 
log feature to yield a better result. This confirms that our 
algorithm is very effective to reinforce the Web page clustering 
and refine query feature by overcoming the log data sparseness. 

Then we study the impact of α and the convergence property of 
IRC with the ambiguous ratio and noise ratio set as above. 
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Figure 3 The impact of α and the convergence of IRC 
In Figure 3, we show the results against the iteration number. To 
see the influence of our iterative procedure (IRC), we present the 
Web page clustering result as entropy values in Figure 3 (a). 
Lower entropy denotes a result which has a higher accuracy. The 
best clustering result is achieved when alpha is 0.2 or 0. When 
alpha is set to 1, which means only the content feature is 
considered, the clustering results could not benefit from the 
iteration process. Hence the entropy keeps constantly at a high 
value. This illustrates that the content feature is highly noisy and 
problematic. At other levels of α, IRC reduces the entropy 
significantly. For example, when α = 0.2, we achieve 48% 
entropy reduction. Furthermore, the results also confirm that the 
IRC can converge to a fix point after 5-6 iterations. The result in 
Figure 3 (b) is similar and the best result is attained when α = 0, 
which means the log feature is more reliable than content feature 
in this data set. 

 Figure 4

 Figure 4

5.3.4 Parameter Impacts 
On the semi-synthetic data, we did extensive experiments to study 
the performance of our algorithm. In this section, the results on 
different parameter settings are studied. These parameters include: 
the sparseness of the logs, the ratio of ambiguous queries, and the 
ratio of the noise logs. 

5.3.4.1 Impact of Sparseness 
In this experiment, we also set α = 0.2 and ambiguous queries 
ratio as 70%. To illustrate the impact of sparseness of the log data, 
we adjust the degree of density and randomly select 20%(very 
slightly), 40%(slightly), 60%(moderately), 80%(strongly) and 
100%(very strongly) of the correct logs. For each degree, we add 
noise logs with ratio as 70%. Figure 4 is the result. From this plot, 
we can see that the sparseness has a huge impact for all the 
algorithms. With few logs, the effect of our algorithm is much 
degraded. However, when the log data increase, our algorithm has 
a huge improvement compared to CF and naïve way. With 
moderate ratio of logs, our algorithm can perform fairly well. 
Besides, we also additionally generate more logs dense enough 
(densely). In the figure, when the logs are not sparse, CF performs 
fairly well and IRC benefits little. This means when the logs are 
dense enough it is not necessary to refine the query feature as IRC 
because of the noise introduced by the Web page clustering. 
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Figure 4. Accuracy when dataset evolves form slightly related 
to densely related 

5.3.4.2 Impact of Ambiguous Queries 
Next, we illustrate the impact of number of the ambiguous 
queries. Here we set α = 0.2 for Web page clustering, noise ratio 



as 70%, and adjust the ambiguous ratio from 10% to 90% with 
step 20%.  
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Figure 5. Impact of ambiguous queries where the ratio ranges 
from 10% to 90% with step 20% 

Figure 5 shows that the number of ambiguous queries has no large 
impact on the results. When the number of ambiguous queries 
increases, all the performances drop. Compared to CF, IRC is 
insensitive and always performs better. 

5.3.4.3 Impact of Noise Logs 
This experiment is to test the robustness of our algorithm. In the 
above experiments, we set the noise ratio at 70%. Here we set 
alpha = 0.2 and the ratio of ambiguous queries at 70%, then adjust 
the ratio of the noise query logs to the correct ones from 10% to 
90 with step 20%. Also we run the CF and naive algorithms on 
such data to compare. Apparently, in Figure 6, more noise will 
decrease the performance. Compared with CF, at all level of noise 
logs in the figure, IRC is better. The more noise is, the more 
relative improvement of IRC is. Therefore, IRC is more robust 
than CF. 
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Figure . Accuracy along with noise ratio 

5.4 Real Data 
In this section, we study the performance of our algorithm on real 
data. The query logs are obtained from the MSN search engine. 
Our data is sampled from the query logs of one week in August 
2003.  
To obtain an easily manageable scale, we select the queries used 
most frequently, the URLs most frequently visited after those 
queries, and the corresponding logs from the raw data. After 
preprocessing, we get about 10,000 queries, 100,000 URLs and 
about 200,000 different logs. For each URL, we downloaded its 
content from Internet. In the experiment, we ignore the query 
keywords for convenience. In addition, we set α = 0.2 in this 
clustering algorithm. 
It is difficult to evaluate the performance of our algorithm due to 
the lack of correct category labels for Web pages and queries. To 

address this problem, we propose an intuitive method similar to 
, i.e. precision. For convenience, we only evaluate the query 

cluster results. We ask human users to judge each cluster C
[12]

i, 
which allows us to capture the major concept meaning contained 
in the cluster. From Ci., we select all the queries expressing the 
major concept of Ci as the set Mi. Finally we calculate the 
precision of each cluster by the following formula: 

||C
||MP

i

i
i =  

where |Ci| is the number of queries in the cluster Ci, and |Mi| is the 
set of queries contained in the cluster that are relevant to the major 
concept. To get an overall evaluation of the cluster result, we 
adopt the Micro- and Macro- metrics commonly used in IR: 

∑
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where k is the number of clusters to be evaluated and N is the sum 
of the numbers of queries in those clusters. 
Because we evaluate the performance based on human judgments, 
we wish to avoid being over-burdened by the labeling work. 
Therefore, we only selected the biggest ten clusters for evaluation 
in the experiment. Given a query cluster Ci, we ask 5 volunteers to 
judge the major concept of it and then find the corresponding 
query set Mi. Each query is judged by the volunteers themselves 
or by submitting it to Google Directory search box to get its 
possible concepts or categories.  

5.4.1 Results 
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Figure 7. The average precision of the biggest ten query 
clusters 

To get an objective comparison, we set similarity threshold β = 
0.5 for naïve way and our IRC. Because the dimension of the 
query feature for the CF is far lager than the naïve and IRC, we 
set γ = 0.05 for CF to keep its cluster sizes comparable with the 
former two. In Figure 7, we present both micro-precision and 
macro-precision. In both metrics, we achieve significant 
improvements. For example, when using macro-precision to 
evaluate, CF is about 70% and IRC is about 78%. We improve the 
performance by 11% relatively. Compared with naïve method, we 
also achieve 9% relative improvement. 

5.4.2 Case Study 
The results on real data show IRC can produce more meaningful 
clusters. For example, there is a cluster about “university” in the 
result of IRC but there is not for CF. Another example is the 
cluster about “cars”. This is because such queries always refer to 
similar Web pages instead of the same ones. For example, two 



queries “kia” and “jeep” seldom click the same Web pages. 
Therefore, due to the sparseness of query logs, CF fails to find 
such clusters. 
Here we give some examples to illustrate the effect of query 
disambiguation. The query “windows” has two meanings: 
Microsoft windows operating system or the windows in a house. 
In the clusters we get, “windows” is assigned to two different 
clusters. The first cluster is about computer and includes queries 
such as “Microsoft”, “windows xp”, and “computer software” etc. 
The second cluster is about house and includes queries such as 
“doors”, “shower curtains”, and “mini blinds” etc. We also 
investigated the query logs about “windows” and found that the 
Web pages it referred to indeed belong to the two categories. 
Another example is “Webster”, which may mean a kind of 
dictionary or a university name. 

5.5 Discussion 
The extensive experiments prove that our algorithm can achieve 
better clustering and disambiguation results of search queries by 
reinforcing the Web page clustering using query logs. In addition, 
our algorithm is robust to the number of ambiguous queries and 
the ratio of noise. The time complexity of our algorithm is not 
high because we always get a high improvement after second 
iteration and the iteration always converges after five to six 
iterations. Thus, the time complexity is acceptable compared to its 
significant performance improvement. 
In the semi-synthetic data, the log information we generated is 
more accurate than the content, therefore, the baseline method 
outperform the naïve way. While in the real data, the content 
feature seems to be more reliable than the log feature, so the result 
is different. In both data, our algorithm combines both features 
and overcomes the sparseness of the log data to achieve the best 
results. 

However, there is a question that how to select the parameters α, 
β, and the number of Web page clusters. We believe the optimal 
values depend on the data collections and applications. It is 
difficult to determine them in advance. But it can be adjusted over 
time and in light of the system’s use. 

6. CONLUSIONS 
Query clustering has received more and more attention in recent 
years, but most existing clustering algorithms seldom consider 
query disambiguation. In this paper, we proposed a unified 
framework to simultaneously cluster and disambiguate queries by 
mining query logs. The proposed iterative procedure not only 
resolves the data sparseness of query logs, but also gives more 
meaningful Web page clusters. The concept set which 
corresponds to the Web page cluster result is used to assign the 
queries. In this way, ambiguous queries could be assigned to 
concepts with different meanings. The experimental results 
proved that our algorithm is very effective to cluster and 
disambiguate queries. We get 29% and 11% performance 
improvement on semi-synthetic and real data respectively 
compared to the baseline. The case study of our algorithm also 
illustrates our algorithm’s effectiveness to disambiguate queries 
and find meaningful clusters. In the future, we wish to continue to 
explore iterative methods to utilize log data more effectively.  
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