
Deep Mining of Web Logs for Search-Query Clustering and
Disambiguation

ABSTRACT
Query clustering and disambiguation have been extensively
explored in the past to capture web-users’ information needs and
improve the performance of search. However, these techniques
are also plaque by sparse and noisy data. In this paper, we
propose a novel algorithm to solving this problem, by
simultaneously clustering and disambiguating queries into
different concepts using both Web pages and query logs. To
address the sparseness of the log data, we propose an iterative
algorithm to alternate between refining Web page clustering and
refining queries’ feature representation using query logs as bridge.
The resultant Web page clusters provide better concept candidates
for queries to be associated with each other. A by-product of the
process is that queries are naturally clustered around similar
concepts. Our extensive experiments lend evidence to our solving
the data sparseness and achieving a higher accuracy in query
association and disambiguation. We achieve a 29% improvement
in the F-measure on a semi-synthetic dataset and 11% in search
precision on the real data.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – Clustering;

General Terms
Algorithms, Performance

Keywords
Query Clustering, Query Disambiguation, Query Log, Web Page
Clustering, Iterative

1. INTRODUCTION
One of the most fundamental and challenging issues for Web
search is to identify users’ information needs. What makes this
issue challenging is that most Web queries are short. Recent
analysis of search engine logs revealed that the average length of
a query is about 2.3 words long . Shorter queries lead to
higher word ambiguity where the same query term may represent
totally different information needs for different users. Query
clustering [4 and disambiguation [1 are two essential
approaches to tackling these issues. In particular, query clustering
aims to group similar queries together, by covering the common
interests of users . Query disambiguation tries to partition
queries into different senses or concepts. However, due to the
noisy and sparseness nature of the Web, much remains to be
desired in successfully solving either issues.

[8][18]

][22][3]][11]

[22]

[3][22]
Figure 1

Among the different methods that have been developed, a
main focus is placed on query clustering. Due to the short

length of query terms, researchers have started to exploit
query logs to enhance performance . These query logs is
a gold-mine of information. For example, shows a
portion of a query log data, where the query terms and their
intended pages are connected by edges. The number of times
a query refers to its intended pages can also be useful in
identifying user needs; for example, from the connections
shown in Figure 1, we see that q2 and q3 are similar Web
pages.

2

...

32
488
65

83

104

q1

q2

q3

p1

p2

1

[1], is a

...

p3

p4
Figure . A portion of log data. The number above each
directed edge denotes the number of times that qi refers to pj
in the log. We assume that p2, p3, and p4 are similar Web
pages.

While utilizing Web logs promises to provide the much needed
information to uncovering similar pages and queries that
correspond to the same concepts, our experience in working with
very large Web logs have revealed several challenging issues.
First, a query only refers to very few Web pages as compared to
the whole Web space. If we adopt a vector representation using
the log data, the corresponding matrix will be very sparse.
Furthermore, due to the diversity and duplicity of Web pages,
many similar pages exist in the Web space. Users may visit
similar Web pages that are not necessarily the identical ones for
similar queries; for example we can see this in Figure 1 where q2
and q3 are similar even though they do not point to the same page.
These problems cause data sparseness, which in turn causes major
difficulty in clustering.
Another challenge for query clustering algorithms is caused by the
ambiguity of short queries. A well-known example of such a
problem is the meaning of “Java” as a query: it could mean
coffee, an island in Indonesia or a programming language.
Existing clustering algorithms often ignore the ambiguity issue
and assign only one cluster for such a query. This solution is
clearly very naïve, because it precludes a user from user the same
term to mean different things. Query disambiguation, often dealt
with by linguistic methods lso a challenging problem.
However, in the Web environment, a linguistic is not feasible due
to the magnitude of Web space. Furthermore, the linguistic
method often fail to reflect the different intentions of users.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGIR’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

In this paper, we propose a novel clustering algorithm for solving
the query-data sparseness and the query-term disambiguation
problems. To address the sparseness issue, we propose an iterative

procedure in which Web pages are clustered first, and then the
initial Web-page clusters are used to compute a feature
representation for queries that is less sparse. This result is then
used to reinforce Web page clustering. As the procedure goes on,
query and Web clusters corresponding to similar user intentions
are discovered.
A by product of the clustering procedure is that it solves the query
ambiguity issue as well. When clustering terminates, each
Web-page cluster expresses a meaningful concept. Such
concepts are shared by queries, allowingseemingly different
queries to be clustered around similar concepts.
The rest of this paper is organized as follows. Section 2 reviews
the related work. Section 3 describes our iterative procedure to
refine the query feature representation and Web page clustering.
Section 4 gives our clustering and disambiguation method in the
query-feature space. Section 5 presents extensive experiments to
evaluate our methods. Finally, Section 6 concludes the paper.

2. RELATED WORK
The characteristics of the short Web query and the noisy search
results have led researchers to investigate the query clustering
problem [4]. However, using query keywords directly is not
reliable due to their short length and word ambiguity. In , the
top documents retrieved by a search engine for each query are
considered as the data source of the query and a hierarchical
clustering algorithm is applied. Based on the click-through data,
in , a bipartite graph of queries and documents is constructed
and then a graph based agglomerative iterative clustering method
is applied to merge vertices of graph continually until a
termination condition reaches. Going beyond the clicked URLs in
the search engine query and browsing logs, developed one
algorithm to use query keywords and the clicked documents to
estimate the similarity between queries.

[4]

[3]

[22]

[14][18][8].

[22]
1

[21]

[21]

[2][13] and fo
[7]

[1][6]
[1] introdu

[1] ana

[11]

Figure 1.

logscontent SSS

The above methods to utilize query logs are similar to
collaborative filtering Based on the user-item rating
matrix, traditional CF calculates the k-nearest neighbors for the
active user and then recommends items that the active user’s
neighbors like. Therefore, a similarity measure between users
should be defined. As for query logs, it is natural to defined a
similarity measure from the logs as has done. However, such
a method faces data sparseness problem as discussed in Section .

Several methods have been proposed to overcome the data
sparseness. In , a unified framework has been proposed to
cluster multi-type interrelated objects (such as Web pages and
queries). One type of objects’ clustering will be updated by the
clustering results of other types of objects and then reinforce
others. In our paper, we reinforce the Web page clustering by the
refined feature representation of queries instead of query
clustering result. Also didn’t consider query disambiguation.

Query disambiguation is explored in the Cross-Language
Information Retrieval (CLIR) area r queries in
mixed languages . In both areas, a major problem is how to
translate the query from a primary language to a secondary
language. There may be more than one candidate in the secondary
language for a query term. How to choose the correct meaning
appropriately is called query disambiguation.

In , a query is assumed ambiguous based on the underlying
document collection. ced a query disambiguation
method by considering part-of-speech patterns of the query’s
context terms. For each query, lyzed its context in the data
collection and classify each occurrence of the query to a question

which reflects its context type. Ambiguity is resolved by choosing
a question from the generated question list. Such a method suffers
from scalability issues and is not applicable to the Web
environment. proposed a way to classify user’s query to the
Open Directory Project (ODP) categories to solve query
ambiguity. However, it relies on the user’s profile.

3. THE ITERATIVE REFINEMENT
CLUSTERING PROCEDURE
A simple assumption to use query logs is that queries are similar if
they refer to the same Web pages results in data sparseness
because similar queries tend to refer to similar but not necessary
the same Web pages. One possible way to overcome the problem
of the sparseness of log data is to cluster the similar Web pages
together first. If we treat each cluster as one dimension and
queries have one nonzero value in a dimension if they refer to the
corresponding cluster, the query feature is not as sparse as original.
Furthermore, the more accurate the Web page clustering is the
better and more meaningful the query feature representation could
be. Our motivation is to enhance the Web page clustering result
by the refined query feature. To achieve this goal, we project each
Web page to the query feature space through the query logs. Thus,
besides the content feature, each Web page has an additional
feature in the query feature space. By doing so, the refined query
features can reinforce the Web page clustering because they refine
the Web page features. The enhanced Web page clustering in turn
can refine the query features further. Therefore, such an iterative
procedure is a mutual reinforcement process.

In this section, we present our iterative procedure in detail. We
will later show that this procedure not only refines the feature
representation of queries but also yields a more meaningful Web
page clustering result which provides good concept candidates for
queries to be associated. In the next section, we will describe how
to associate the queries to these concept candidates.

3.1 Query and Web Page Vectors
Suppose that query logs refer to m Web pages and n queries in

 From the logs, we can construct a query by page matrix
Xn×m with each entry (i,j) denoting the times that ith query refers to
jth Web page. Therefore, each row of X represents a feature vector
for the corresponding query q and each column represents a
feature vector for the corresponding Web page w:

V(q) = [w1, w2, ^, wm]T

U(w) = [q1, q2, ^, qn]T

Because these two feature vectors are constructed from the query
logs, we call them log feature vectors.

Besides the log feature vector, each Web page has its own content
feature. When measuring the similarity between two Web pages,
we need to consider both types of information. Two similarities
are used for any pair of Web pages: Scontent is the similarity for
content features and Slogs for features defined from query logs.
Cosine similarity measure can be used to implement each
component function. Then, a combined similarity S is induced by
a liner combination of the two similarities:

 where (1) ⋅−+⋅=)1(αα 10 ≤≤ α

A straightforward application of clustering on the query and Web
page vectors will result in very poor performance, because in
general the vectors are very sparse. Only a small fraction of Web
pages are visited by each query and each Web page is only

relevant to a small fraction of queries. Thus, we must find a way
to resolve the sparseness of the query logs. We discuss how to do
this next.

3.2 Iterative Refinement Clustering (IRC)
We first give some notations used in the following:

 Xn×m is a query by page matrix of query logs as defined
in Section . 3.1

3.1

TTT

TT

T

lQXlQX

XlQlQX
XlSXlP

))(())((

)()(
)1()(

×××=

×××=

×−×=

t

T

XlS

C

CX

lQlQ

lS

××

×

××

×=

 Vn×m is a query by page matrix of query logs, with each
row equal to V(q) and each column equal to U(w)in
Section .

 Pm×m is the page to page similarity matrix.

 Qn×k is the query feature matrix based on Web page
clusters with each row denoting one query.

 Sn×n is the query to query similarity matrix.
Q is the matrix that we want to refine. It is equal to refine S
because S = Q×QT. To see the convergence of the iterative
algorithm, we select S to define the termination condition.

 Pm×m is the page to page similarity matrix.

 Qn×k is the query feature matrix based on Web page
clusters with each row denoting one query.

Iterative Refinement Clustering (IRC) Sn×n is the query to query similarity matrix.
To give a close form of the iterative procedure, we ignore Web
page content in the following description. For simplicity, we
assume that all matrices below take only 1 or 0 values. A value 1
means that the two entities are related. 0 means otherwise.

Q is the matrix that we want to refine. It is equal to refine S
because S = Q × QT. To see the convergence of the iterative
algorithm, we select S to define the termination condition.
Therefore, in the following description, we aim to refine S.

Let P(l) be the page-to-page similarity, where P(0)=XT×X because
we ignore their contents. Then, for each P(l), the k-means
clustering result is Cl(t) = (P(l))t×C(0)

A naïve way to obtain this matrix is to simply consider the web
log alone. This naïve way is like CF and corresponds to the
following computation: S = X × XT, where XT is the transpose of X.
However, such a way faces the logs sparseness. For convenience, we refine the page similarity by query similarity

in the below description. In fact, it is equal to refine page feature
by query feature because By applying an iterative refinement algorithm, we can do much

better. This algorithm is based on iteration on two steps. First,
we perform a clustering operation on pages based on page
similarity. Then, we refine the query feature and compute the
query similarity using the newly computed page clustering.
Each iteration l gives a new matrix for S and P. The iteration
continues until the matrix S(l) converges to a fixed point.

XT×Q(l) is the refined page feature by query feature.
The clustering phase is used as a subroutine in our overall
procedure. Thus, we describe it here first.

The whole process can be described as:

Before detailing the algorithm, we present our motivation in
matrix formulation. The matrix can give us an intuition of the
reinforcement process.
For simplicity, we ignore the content feature of pages and queries
and assume that all matrices below take only 1 or 0 values. A
value 1 means that the two entities are related. 0 means otherwise.
We choose k-means clustering for Web pages, so we first present
the matrix formulation of it.
Soft k-means algorithm

TTtTt

TTt

T
l

XCXlSXC

XClP

t

××××××

×××

+

))0())((()0()

))0()(((

))(

)0())(()(ClPtC t
l ×=

()(tCXlQ l×=

TlQlQlS)()()(×=

Iterative Refinement Algorithm IRC:

Step 1. Initialize matrices and parameters:

l=1;

S(0) = I, where I is the identity matrix;

Step 2. The page-to-page similarity matrix:

XlSXlP T ×−×=)1()(

Step 3. Apply the k-means algorithm on P(l) to obtain page-to-cluster
matrix:

Step 4. Obtain refined query feature matrix:

)

Step 5. Obtain a new query-to-query similarity matrix

Step 6. If S(l) = = S(l-1) then exit. Otherwise, l=l+1, normalize the matrix
S and P, and go to Step 2.

Assume Am×w is the document by word matrix, C(0)m×k is a const
matrix with 1 at locations {[(m / k) × j+1], j): j = 1,…,k} and 0
otherwise. C(0) m×k is used to select the initial centroid vector.

Algorithm: Soft k-means

Step 1. Initialize the centroids by AT×C(0). (In fact the jth centroid vector
is the [(m / k) × j+1]th document vector.)

Step 2. Iterate Step 3 to 4 t times.

Step 3. For the lth iteration, calculate the similarity between documents
and centorids: C(l) = A×(AT×C(l-1)) = (A×AT)×C(l-1), each entry
(i,j) denote the similarity between the ith document and the jth
centroid.

Step 4. Refine the centroids by AT×C(l).

Step 5. Return C(t).

The closed form of the iteration can then be expressed as (where
we omit the normalization function):

)(

)0())

()

)()(

)1(

From
A×A
docu
clus
Not
T

l

XX

lPX

tCX

×=

×=

×=

(

((

(above, the whole function can be set C(t) = (A×AT)t×C(0).
T is the similarity matrix between documents and C(t) is the
ment by cluster (centroid) matrix which can be used to

ter documents.
ation

We now discuss how to normalize the matrix. For each row of the
matrix S and P, if an element is greater than zero, then we set it to
be one. Otherwise, we set it to be zero.
We now show that this iteration converges to a fixed point for a
constant t value and for the case where all elements of matrices
are either 1 or zero.
Lemma 1. In each iteration, if an element of the similarity matrix
S is greater than zero, it will never become zero for future
iterations.
Lemma 2. In each iteration, if an element of the similarity matrix
P is greater than zero, it will never become zero for future
iterations.
Theorem 1. Iterative Algorithm IRC will converge in a finite
number of iterations.
Proof. Since each step of the iteration never removes a value
one from the matrices S and P, also since S and P have finite
dimensions, in O(m2+n2) steps the algorithm must terminate. □

However, in reality the algorithm will converge much faster than
the theoretical bound mentioned above. We show this in our
experiments below.
In the experiments, we use hard k-means algorithm and also
consider Web page content using formula (1). Furthermore, we
refine Web pages’ features based on refined query feature to avoid
the quadratic calculation complexity to calculate the similarity
matrix.

4. CLUSTER AND DISAMBIGUATE
QUERIES
Assume that we obtained k clusters of the Web pages {C1, C2, ^,
Ck} and there are li Web pages {Pi1, Pi2, ^, Pili} in each cluster Ci,.
Recall that each Web page Pij has a log vector Uij’ in the query
feature space obtained by XT×Q(l). In order to project a Web page
cluster to the query feature space to form a concept, we extract the
centroid of the cluster. In particular, each Web page cluster
corresponds to a vector in the query feature space and we call it
concept vector:

∑
=

=
il

j
ij

i

U
l

iCV
1

'1)(

Figure 1,

[15]

where CV(i) is the concept vector of the cluster Ci.

Here, we implicitly assume that each Web page cluster
corresponds to a meaningful concept, a fact that we will verify in
the experimental section. In addition, we assume that the concepts
are shared by the queries. This is reasonable because when a user
issues a query and finally visits a Web page, he/she, in most cases,
considers the browsed Web page has the meaning or concept of
the query in his/her mind. Ambiguous queries can be used by
different users to visit Web pages associated with different
concepts. Thus the concepts of all clusters of Web pages are
shared among the queries. Therefore, it is natural to project the
Web page clusters onto the query feature space to form a concept
set.

In the query feature space, we obtain refined representations of
the queries and also more meaningful concept vectors from the
Web page clustering result. For each query q, we can calculate a
similarity between q’s refined representation and a concept vector
CV using consine similarity measure. Disambiguating a query
corresponds to assigning the query to the concept CV if the

similarity between q and CV is larger than a pre-defined threshold
β. An ambiguous query has high similarities with several different
concept vectors and thus can be given different meanings.
Apparently, the result can be influenced by the pre-defined
threshold β. The lower the threshold is, the coarser each cluster
would be.

5. EVALUATION
In this section, we present the performance evaluation of the
proposed method to cluster and disambiguate queries.
Experimental results conducted on both the semi-synthetic data
and the real data are studied. The semi-synthetic data are
generated to simulate real search engine logs and the real data are
extracted and sampled from MSN search logs. In both
experiments, we use the k-means algorithm to cluster Web pages
and set k = 150 for the semi-synthetic data and k = 200 for the real
data.

5.1 Baseline (CF)
To illustrate the impact of the sparseness of log data, we employ
the baseline algorithm which uses a similarity measure similar to
CF to find nearest neighbors. CF defines a similarity measure
between “users” based on the user-item rating matrix. Recall in

 we can also define a measure between queries based on
their “ratings” of Web pages. Here the “rating” is the times that a
query refers to one Web page.
Based on the defined similarity measure, we apply k-means
algorithm to cluster queries. Here we modify standard k-means
algorithm to fit the disambiguation problem. In the experiment,
first, we use standard k-means to find the local optimal cluster
models, i.e. cluster centroids. Then we assign each query to a
cluster if the similarity between the query vector and the
corresponding centorid is larger than a pre-defined threshold γ.
Similar to the threshold β, the performance relies on γ. However,
for the sparseness problem of baseline algorithm, β is larger than γ
to achieve the best result generally.

5.2 Naïve Way
In the experiment, we also present a naïve way to compare with
our IRC. The naïve way is to just cluster the Web pages one time
based on content, change the query feature based on the clustering
result and then cluster and disambiguate the queries like our
algorithm. This way is equal to the first iteration of IRC.

5.3 Semi-Synthetic Data
The semi-synthetic data is a simulated search-engine query log
consisting of two types of objects, the Web pages and the queries.
In the synthetic data, the Web pages are collected from real
sources, while the queries and their referred Web pages are
automatically generated from a probabilistic model whose
parameters are specified in advance. The real categories of the
Web pages and queries are hidden from the proposed algorithm
and are taken as a ground-truth for the performance evaluation. In
the following, after a brief introduction of the data generation
process and the performance evaluation metrics, we present our
comparative experiments.

5.3.1 Data Generation
The data generation process is composed of 3 steps.

First, all Web pages used in the experiment are collected from the
Open Directory Project . All the categories are selected from
the second-level categories of the directory. In all, we selected
126 categories and each size is above 100. The number of

where pj is the proportion of jth category Cj’s data in the cluster
A. That is:

associated Web pages is more than 40,000 and the biggest
category has about 1,000 Web pages. In the experiments, we only
extract the pure text from each Web page.

||
||

A
CA

p j
j

∩
= Second, we generate the queries automatically and the categories

of each query are set the same as its preferred Web page
categories. The queries are generated in two types: unambiguous
queries and ambiguous queries. Each unambiguous query has only
one preferred category of Web pages. We generate one set of
unambiguous queries for each category of web pages and the size
of the query set ranges from 30 to 100, uniformly distributed
among the Web page categories. In all, we generate about 8,000
unambiguous queries. To generate ambiguous queries, we first
assign to each query a number ranging from 2 to 6 which
corresponds to the number of its different concept meanings.
Then, for each query, we randomly select 2-6 Web page
categories equal to its meaning number as its preferences. In the
experiments we generated 10,000 ambiguous queries totally. For
each ambiguous query, we assign one importance level for each of
its preferences. The importance level ranges from 3 to 6 and is
proportional to the frequency that the users associate a meaning
(preference) to a query.

The clustering entropy is the weighted sum of all the clusters.
Assume D is the whole data collection, then:

)(k
A Clusters All

k AH
|D|

||AH
k

∑=

10]

]

5.3.2.2 F measure
The precision, recall and F measure are commonly used metrics in
information retrieval area to evaluate the retrieval results [20 . To
evaluate query clustering and disambiguation result, we use F
measure [. Assume we know correct categories of the queries.
For each cluster, we calculate the precision and recall of it for
each given category. The F measure is defined by combining the
precision and recall together. More specifically, for cluster j and
category i

i

ij

n
n

)i, j(Recall =

),(
),(

ji
ji

Finally, page hits are generated based on existing queries, existing
Web pages, and query preferences and their importance levels. A
page hit is generated in the following process: (1) select a query
randomly, (2) get the preferences of the query, (3) if the query is
ambiguous, randomly select a preference according to the
probability which is determined by its preference importance
levels, (4) randomly select a Web page from the corresponding
Web page category according to Web pages’ importance values
which are equal to their values of PageRanks . In the
experiments, we generate the unambiguous and ambiguous page
hits separately. The differences between unambiguous and
ambiguous queries’ hits are: in step (3), there is only one
preference for an unambiguous query. The average number of hits
an ambiguous query takes is proportional to the number of its
preferences. And the hit numbers of unambiguous ones are
uniformly distributed. At last, we generate 100,000 unambiguous
hits and 300,000 ambiguous hits. Therefore, on average, there are
11 page hits per unambiguous query and 30 page hits per
ambiguous query. Because each ambiguous query has 4
preferences on average, the number of page hits per preference is
about 7-8.

j

ij

n
n

)i, j(Precision =

),(
),(2

RecalljiPrecision
RecalljiPrecision)i, j(F

+
××

=

)),((jiF

[16]

[5],

∑ ⋅−=
j

jj ppAH)(log)(2

where nij is the number of members of category i in cluster j, ni is
the number of members in category i, nj is the number of members
in cluster j and F(i, j) is the F measure of cluster j and category i.

The whole F measure of the query clustering and disambiguation
result is defined as a weighted sum over all categories as follow:

To simulate the reality, we generated some noise page hits as
well. In the noise generation model, we generate totally random
page hits which are uniformly distributed on all possible pairs of
queries and Web pages. In the experiments, we will study the
performance under different ratio of noise page hits.

5.3.2 Evaluation Methods
We adopt entropy to evaluate the Web page clustering result and
F measure to evaluate the query clustering and disambiguation
result.

5.3.2.1 Entropy
Entropy is defined in information theory which measures the
uniformity or purity of a cluster. Specially, given a cluster A and
category labels of data objects inside it, the entropy of cluster A is
defined:

max
n
nF

ji

i∑=

logscontent SSS

where the max is taken over all clusters and n is the total number
of queries.

The query clustering and disambiguation result is sensitive to the
similarity threshold β. When β increases, the precision becomes
higher and the recall becomes lower. The F measure is influenced
too. To give an objective evaluation, we change the similarity
threshold β from 0.1 to 0.9 with step 0.1 and select the largest F
measure as the evaluation of the clustering and disambiguation
result. For the baseline CF, we set γ = 0.05 because at this value it
yields the best result.

5.3.3 Experimental Results
The following experiments illustrate the refinement of our
iterative procedure on the semi-synthetic data. To cluster the Web
pages, we adopt the similarity defined in formula (1). We rewrite
it here:

, where ⋅−+⋅=)1(αα 10 ≤≤ α

Here α adjusts the weight between content and log features, which
has significant impact on Web page clustering accuracy and also
the query clustering and disambiguation accuracy. We will
illustrate its impact in the following. Since our proposed algorithm
is an iterative process, in our experiment we let the algorithm run

10 iterations, i.e. reinforcing the Web page clustering by the
refined query feature representation 10 times. In the following, we
use all the generated 8000 unambiguous queries and select the
correct number of ambiguous queries according to the ratio.

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F

m
e
a
s
u
r
e

CF Naïve IRC

Figure 2. Results with α=0.2, ambiguous ratio=70%, noise
ratio=70%

 FiFigure 2 is the query clustering and disambiguation results which
are evaluated by F measure. Here we set α=0.2, the ratio of
ambiguous to unambiguous queries at 70%, the ratio of the noise
logs to the correct ones at 70% to simulate the real search engine
logs. In the figure, we give three results: CF, the naïve way, and
our algorithm IRC. From the results, IRC is far better than CF
(29% relative improvement) and naïve way (108% relative
improvement). As we have discussed above, the baseline CF is
influenced by the sparse problem of the logs and the naïve way
does not perform well because the cluster result of Web pages
based on content is highly noisy. IRC combines the content and
log feature to yield a better result. This confirms that our
algorithm is very effective to reinforce the Web page clustering
and refine query feature by overcoming the log data sparseness.

Then we study the impact of α and the convergence property of
IRC with the ambiguous ratio and noise ratio set as above.

1 2 3 4 5 6 7 8 9 10

Iteration

0 0.2 0.4 0.6 0.8 1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10

Iteration

2

2.5

3

3.5

4

4.5

5

E
n
t
r
o
p
y

(a)

F

m
e
a
s
u
r
e

0 0.2 0.4 0.6 0.8 1

Figure 3 The impact of α and the convergence of IRC
In Figure 3, we show the results against the iteration number. To
see the influence of our iterative procedure (IRC), we present the
Web page clustering result as entropy values in Figure 3 (a).
Lower entropy denotes a result which has a higher accuracy. The
best clustering result is achieved when alpha is 0.2 or 0. When
alpha is set to 1, which means only the content feature is
considered, the clustering results could not benefit from the
iteration process. Hence the entropy keeps constantly at a high
value. This illustrates that the content feature is highly noisy and
problematic. At other levels of α, IRC reduces the entropy
significantly. For example, when α = 0.2, we achieve 48%
entropy reduction. Furthermore, the results also confirm that the
IRC can converge to a fix point after 5-6 iterations. The result in
Figure 3 (b) is similar and the best result is attained when α = 0,
which means the log feature is more reliable than content feature
in this data set.

 Figure 4

 Figure 4

5.3.4 Parameter Impacts
On the semi-synthetic data, we did extensive experiments to study
the performance of our algorithm. In this section, the results on
different parameter settings are studied. These parameters include:
the sparseness of the logs, the ratio of ambiguous queries, and the
ratio of the noise logs.

5.3.4.1 Impact of Sparseness
In this experiment, we also set α = 0.2 and ambiguous queries
ratio as 70%. To illustrate the impact of sparseness of the log data,
we adjust the degree of density and randomly select 20%(very
slightly), 40%(slightly), 60%(moderately), 80%(strongly) and
100%(very strongly) of the correct logs. For each degree, we add
noise logs with ratio as 70%. Figure 4 is the result. From this plot,
we can see that the sparseness has a huge impact for all the
algorithms. With few logs, the effect of our algorithm is much
degraded. However, when the log data increase, our algorithm has
a huge improvement compared to CF and naïve way. With
moderate ratio of logs, our algorithm can perform fairly well.
Besides, we also additionally generate more logs dense enough
(densely). In the figure, when the logs are not sparse, CF performs
fairly well and IRC benefits little. This means when the logs are
dense enough it is not necessary to refine the query feature as IRC
because of the noise introduced by the Web page clustering.

Deleted: 4

Deleted: Figure 4

Deleted:

Deleted:

Deleted: 3

Deleted: gure 3

Deleted: Figure 5

ve
ry

Deleted: 5

CF Naïve IRC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ve
ry
 s
li
gh
tl
y

sl
ig
ht
ly

mo
de
ra
te
ly

st
ro
ng
ly

st
ro
ng
ly

de
ns
el
y

F

m
e
a
s
u
r
e

Figure 4. Accuracy when dataset evolves form slightly related
to densely related

5.3.4.2 Impact of Ambiguous Queries
Next, we illustrate the impact of number of the ambiguous
queries. Here we set α = 0.2 for Web page clustering, noise ratio

as 70%, and adjust the ambiguous ratio from 10% to 90% with
step 20%.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10% 30% 50% 70% 90%

Ambiguous Ratio

F

m
e
a
s
u
r
e

CF Naïve IRC

Figure 5. Impact of ambiguous queries where the ratio ranges
from 10% to 90% with step 20%

Figure 5 shows that the number of ambiguous queries has no large
impact on the results. When the number of ambiguous queries
increases, all the performances drop. Compared to CF, IRC is
insensitive and always performs better.

5.3.4.3 Impact of Noise Logs
This experiment is to test the robustness of our algorithm. In the
above experiments, we set the noise ratio at 70%. Here we set
alpha = 0.2 and the ratio of ambiguous queries at 70%, then adjust
the ratio of the noise query logs to the correct ones from 10% to
90 with step 20%. Also we run the CF and naive algorithms on
such data to compare. Apparently, in Figure 6, more noise will
decrease the performance. Compared with CF, at all level of noise
logs in the figure, IRC is better. The more noise is, the more
relative improvement of IRC is. Therefore, IRC is more robust
than CF.

0.2

0.3

10% 30% 50% 70% 90%

Noise Ratio

6

0.4

0.5

0.6

0.7

0.8

0.9

F

m
e
a
s
u
r
e

CF Naïve IRC

Figure . Accuracy along with noise ratio

5.4 Real Data
In this section, we study the performance of our algorithm on real
data. The query logs are obtained from the MSN search engine.
Our data is sampled from the query logs of one week in August
2003.
To obtain an easily manageable scale, we select the queries used
most frequently, the URLs most frequently visited after those
queries, and the corresponding logs from the raw data. After
preprocessing, we get about 10,000 queries, 100,000 URLs and
about 200,000 different logs. For each URL, we downloaded its
content from Internet. In the experiment, we ignore the query
keywords for convenience. In addition, we set α = 0.2 in this
clustering algorithm.
It is difficult to evaluate the performance of our algorithm due to
the lack of correct category labels for Web pages and queries. To

address this problem, we propose an intuitive method similar to
, i.e. precision. For convenience, we only evaluate the query

cluster results. We ask human users to judge each cluster C
[12]

i,
which allows us to capture the major concept meaning contained
in the cluster. From Ci., we select all the queries expressing the
major concept of Ci as the set Mi. Finally we calculate the
precision of each cluster by the following formula:

||C
||MP

i

i
i =

where |Ci| is the number of queries in the cluster Ci, and |Mi| is the
set of queries contained in the cluster that are relevant to the major
concept. To get an overall evaluation of the cluster result, we
adopt the Micro- and Macro- metrics commonly used in IR:

∑
=

=
k

i
i

i P
N
C

PMicro
1

||
_

∑
=

=
k

i
iP

k
PMacro

1

1_

where k is the number of clusters to be evaluated and N is the sum
of the numbers of queries in those clusters.
Because we evaluate the performance based on human judgments,
we wish to avoid being over-burdened by the labeling work.
Therefore, we only selected the biggest ten clusters for evaluation
in the experiment. Given a query cluster Ci, we ask 5 volunteers to
judge the major concept of it and then find the corresponding
query set Mi. Each query is judged by the volunteers themselves
or by submitting it to Google Directory search box to get its
possible concepts or categories.

5.4.1 Results

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Macro

A
v
e
r
a
g
e

P
r
e
c
i
s
i
o
n

Micro

Deleted: 6

Deleted: Figure 6

Deleted: Figure 7

 8

Deleted: 8

Deleted: 7

Deleted: Figure

CF Naïve IRC

Figure 7. The average precision of the biggest ten query
clusters

To get an objective comparison, we set similarity threshold β =
0.5 for naïve way and our IRC. Because the dimension of the
query feature for the CF is far lager than the naïve and IRC, we
set γ = 0.05 for CF to keep its cluster sizes comparable with the
former two. In Figure 7, we present both micro-precision and
macro-precision. In both metrics, we achieve significant
improvements. For example, when using macro-precision to
evaluate, CF is about 70% and IRC is about 78%. We improve the
performance by 11% relatively. Compared with naïve method, we
also achieve 9% relative improvement.

5.4.2 Case Study
The results on real data show IRC can produce more meaningful
clusters. For example, there is a cluster about “university” in the
result of IRC but there is not for CF. Another example is the
cluster about “cars”. This is because such queries always refer to
similar Web pages instead of the same ones. For example, two

queries “kia” and “jeep” seldom click the same Web pages.
Therefore, due to the sparseness of query logs, CF fails to find
such clusters.
Here we give some examples to illustrate the effect of query
disambiguation. The query “windows” has two meanings:
Microsoft windows operating system or the windows in a house.
In the clusters we get, “windows” is assigned to two different
clusters. The first cluster is about computer and includes queries
such as “Microsoft”, “windows xp”, and “computer software” etc.
The second cluster is about house and includes queries such as
“doors”, “shower curtains”, and “mini blinds” etc. We also
investigated the query logs about “windows” and found that the
Web pages it referred to indeed belong to the two categories.
Another example is “Webster”, which may mean a kind of
dictionary or a university name.

5.5 Discussion
The extensive experiments prove that our algorithm can achieve
better clustering and disambiguation results of search queries by
reinforcing the Web page clustering using query logs. In addition,
our algorithm is robust to the number of ambiguous queries and
the ratio of noise. The time complexity of our algorithm is not
high because we always get a high improvement after second
iteration and the iteration always converges after five to six
iterations. Thus, the time complexity is acceptable compared to its
significant performance improvement.
In the semi-synthetic data, the log information we generated is
more accurate than the content, therefore, the baseline method
outperform the naïve way. While in the real data, the content
feature seems to be more reliable than the log feature, so the result
is different. In both data, our algorithm combines both features
and overcomes the sparseness of the log data to achieve the best
results.

However, there is a question that how to select the parameters α,
β, and the number of Web page clusters. We believe the optimal
values depend on the data collections and applications. It is
difficult to determine them in advance. But it can be adjusted over
time and in light of the system’s use.

6. CONLUSIONS
Query clustering has received more and more attention in recent
years, but most existing clustering algorithms seldom consider
query disambiguation. In this paper, we proposed a unified
framework to simultaneously cluster and disambiguate queries by
mining query logs. The proposed iterative procedure not only
resolves the data sparseness of query logs, but also gives more
meaningful Web page clusters. The concept set which
corresponds to the Web page cluster result is used to assign the
queries. In this way, ambiguous queries could be assigned to
concepts with different meanings. The experimental results
proved that our algorithm is very effective to cluster and
disambiguate queries. We get 29% and 11% performance
improvement on semi-synthetic and real data respectively
compared to the baseline. The case study of our algorithm also
illustrates our algorithm’s effectiveness to disambiguate queries
and find meaningful clusters. In the future, we wish to continue to
explore iterative methods to utilize log data more effectively.

7. REFERENCES
[1] Allan J. and Raghavan H. Using part of speech patterns to

reduce query ambiguity, In Proceedings of the 25th annual
international ACM SIGIR, pages 307--314, 2002.

[2] Ballesteros L. and Croft W. B. Resolving ambiguity for
cross-language retrieval, In Proceedings of the 21st annual
international ACM SIGIR, pages: 64 - 71, 1998.

[3] Beeferman D. and Berger A. Agglomerative clustering of
a search engine query log, In Proceedings of the sixth
ACM SIGKDD, pages 407--415, 2000.

[4] Chuang S.-L. and Chien L.-F., Towards automatic
generation of query taxonomy: a hierarchical term
clustering approach, In Proceedings of 2002 IEEE
International Conference on Data Mining, (ICDM), 2002.

[5] Cover T. M. and Thomas J. A. Elements of Information
Theory, Wiley, 1991.

[6] Cronen-Townsend S. and Croft W. B. Quantifying query
ambiguity. In Proc. of HLT, pages 94--98, 2002.

[7] Fung P., Liu, X., and Cheung, C. S. Mixed-language
Query Disambiguation, In Proceedings of ACL ‘99,
Maryland, June 1999.

[8] Herlocker J. L., Konstan J. A., Borchers A., and Riedl J..
An algorithmic framework for performing collaborative
filtering. In Proceedings of the 22nd annual international
ACM SIGIR, pages 230-237, 1999.

[9] Jansen B.J., Spink A., Bateman J. and Saracevic T., Real
Life Information Retrieval: A Study of User Queries on
the Web, In SIGIR Forum, Vol. 31, pp. 5-17, 1998

[10] Larsen B. and Aone C. Fast and Effective Text Mining
Using Linear-time Document Clustering, KDD-99, San
Diego, California, 1999.

[11] Liu, F., Yu, C., and Meng, W., Personalized Web search
by mapping user queries to categories. In Proceedings of
the Eleventh International Conference on Information and
Knowledge Management (CIKM '02). USA, 558--565.

[12] Liu T., Liu S., Chen Z., Ma W.-Y. An Evaluation on
Feature Selection for Text Clustering, ICML-2003,
Washington DC, 2003.

[13] Maeda A., Sadat F., Yoshikawa M., and Uemura S. Query
term disambiguation for Web cross-language information
retrieval using a search engine, In Proceedings of the fifth
international workshop on Information retrieval with
Asian languages, 2000.

[14] McNee, S., Albert, I., Cosley, D., Gopalkrishnan, P., Lam,
S.K., Rashid, A.M., Konstan, J.A., and Riedl, J., On the
Recommending of Citations for Research Papers. In
Proceedings of ACM 2002 Conference on Computer
Supported Cooperative Work (CSCW2002), New Orleans,
LA, pp. 116-125

[15] Open Directory Project. http://dmoz.org/.

[16] Page L., Brin S., Motwani R., and Winograd T. The
PageRank citation ranking: Bringing order to the web,
Technical Report, Computer Science Department,
Stanford University, 1998.

[17] Sanderson M. Word sense disambiguation and information
retrieval, In Proceedings of the 17th annual international
ACM SIGIR, pages 142--150, 1994.

[18] Sarwar B.M., Karypis G., Konstan J.A., and Riedl J.,
Item-based Collaborative Filtering Recommendation

Algorithms. In: Proceedings of the 10 International WWW
Conference, Hong Kong (2001)

[19] Silverstein C., Henzinger M., Marais H., and Moricz M.,
Analysis of a very large altavista query log. Technical
Report SRC 1998-014, Digital Systems Research Center,
1998.

[20] Steinbach M., Karypis G., and Kumar V. A comparison of
document clustering techniques, In KDD Workshop on
Text Mining, 2000.

[21] Wang J., Zeng H.-J., Chen Z., Lu H., Li T., and Ma W.-Y.
ReCoM: reinforcement clustering of multi-type

interrelated data objects, In Proceedings of the 26th annual
international ACM SIGIR, pages: 274 - 281, 2003.

[22] Wen J.-R., Nie J.-Y., and Zhang H.-J. Query Clustering
Using User Logs, In ACM TIOS, vol. 20, no. 1, pages
59-81, 2002.

[23] Xu J. and Croft W. B. Improving the effectiveness of
information retrieval with local context analysis, In ACM
TOIS, vol. 18, no. 1, pages 79--112, January 2000.

	INTRODUCTION
	RELATED WORK
	THE ITERATIVE REFINEMENT CLUSTERING PROCEDURE
	Query and Web Page Vectors
	Iterative Refinement Clustering (IRC)

	CLUSTER AND DISAMBIGUATE QUERIES
	EVALUATION
	Baseline (CF)
	Na?ve Way
	Semi-Synthetic Data
	Data Generation
	Evaluation Methods
	Entropy
	F measure

	Experimental Results
	Parameter Impacts
	Impact of Sparseness
	Impact of Ambiguous Queries
	Impact of Noise Logs

	Real Data
	Results
	Case Study

	Discussion

	CONLUSIONS
	REFERENCES

