Vol. 17 no. 9 2001
Pages 763-774

k |
F‘ gd expression data
‘

WA 98195, USA

Principal component analysis for clustering gene

K. Y. Yeung* and W. L. Ruzzo

Computer Science and Engineering, Box 352350, University of Washington, Seattle,

Received on January 1, 2001; revised on May 3, 2001; accepted on May 23, 2001

ABSTRACT

Motivation: There is a great need to develop analytical
methodology to analyze and to exploit the information
contained in gene expression data. Because of the
large number of genes and the complexity of biological
networks, clustering is a useful exploratory technique
for analysis of gene expression data. Other classical
techniques, such as principal component analysis (PCA),
have also been applied to analyze gene expression data.
Using different data analysis techniques and different
clustering algorithms to analyze the same data set can
lead to very different conclusions. Our goal is to study the
effectiveness of principal components (PCs) in capturing
cluster structure. Specifically, using both real and synthetic
gene expression data sets, we compared the quality of
clusters obtained from the original data to the quality
of clusters obtained after projecting onto subsets of the
principal component axes.

Results: Our empirical study showed that clustering
with the PCs instead of the original variables does not
necessarily improve, and often degrades, cluster quality.
In particular, the first few PCs (which contain most of
the variation in the data) do not necessarily capture most
of the cluster structure. We also showed that clustering
with PCs has different impact on different algorithms
and different similarity metrics. Overall, we would not
recommend PCA before clustering except in special
circumstances.

Contact: kayee @cs.washington.edu

Supplementary information: http://www.cs.washington.
edu/homes/kayee/pca

1 INTRODUCTION AND MOTIVATION

DNA microarrays offer the first great hope to study varia-
tions of many genes simultaneously (Lander, 1999). Large
amounts of gene expression data have been generated by
researchers. There is a great need to develop analytical
methodology to analyze and to exploit the information
contained in gene expression data (Lander, 1999). Be-
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cause of the large number of genes and the complexity
of biological networks, clustering is a useful exploratory
technique for analysis of gene expression data. Many clus-
tering algorithms have been proposed for gene expression
data. For example, Eisen et al. (1998) applied a variant
of the hierarchical average-link clustering algorithm to
identify groups of co-regulated yeast genes. Ben-Dor
and Yakhini (1999) reported success with their CAST
algorithm.

Other techniques, such as principal component analy-
sis (PCA), have also been proposed to analyze gene ex-
pression data. PCA (Jolliffe, 1986) is a classical technique
to reduce the dimensionality of the data set by transform-
ing to a new set of variables (the principal components)
to summarize the features of the data. Principal compo-
nents (PCs) are uncorrelated and ordered such that the kth
PC has the kth largest variance among all PCs. The kth
PC can be interpreted as the direction that maximizes the
variation of the projections of the data points such that it is
orthogonal to the first k — 1 PCs. The traditional approach
is to use the first few PCs in data analysis since they cap-
ture most of the variation in the original data set. In con-
trast, the last few PCs are often assumed to capture only
the residual ‘noise’ in the data. PCA is closely related to a
mathematical technique called Singular Value Decompo-
sition (SVD). In fact, PCA is equivalent to applying SVD
on the covariance matrix of the data. Recently, there has
been a lot of interest on applying SVD to gene expression
data, for example, (Holter et al., 2000; Alter et al., 2000).

Using different data analysis techniques and different
clustering algorithms to analyze the same data set can
lead to very different conclusions. For example, Chu et
al. (1998) identified seven clusters in a subset of the
sporulation data set using a variant of the hierarchical
clustering algorithm of Eisen et al. (1998). However,
Raychaudhuri et al. (2000) reported that these seven
clusters are very poorly separated when the data is
visualized in the space of the first two PCs, even though
they account for over 85% of the variation on the data.
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PCA and clustering.

In the clustering literature, PCA is sometimes applied
to reduce the dimensionality of the data set prior to
clustering. The hope for using PCA prior to cluster
analysis is that PCs may ‘extract’ the cluster structure in
the data set. Since PCs are uncorrelated and ordered, the
first few PCs, which contain most of the variations in the
data, are usually used in cluster analysis, for example,
Jolliffe et al. (1980). There are some common rules of
thumb to choose how many of the first PCs to retain,
but most of these rules are informal and ad-hoc (Jolliffe,
1986). On the other hand, there is a theoretical result
showing that the first few PCs may not contain cluster
information: assuming that the data is a mixture of two
multivariate normal distributions with different means
but with an identical within-cluster covariance matrix,
(Chang, 1983) showed that the first few PCs may contain
less cluster structure information than other PCs. He also
generated an artificial example in which there are two
clusters, and if the data points are visualized in two
dimensions, the two clusters are only well-separated in the
subspace of the first and last PCs.

A motivating example.

A subset of the sporulation data (477 genes) were classi-
fied into seven temporal patterns (Chu et al., 1998). Fig-
ure lais a visualization of this data in the space of the first
two PCs, which contain 85.9% of the variation in the data.
Each of the seven patterns is represented by a different
color or different shape. The seven patterns overlap around
the origin in Figure 1a. However, if we view the same sub-
set of data points in the space of the first three PCs (con-
taining 93.2% of the variation in the data) in Figure 1b,
the seven patterns are much more separated. This exam-
ple shows that a small variation (7.4%) in the data helps to
distinguish the patterns, and different numbers and differ-
ent sets of PCs have a varying degree of effectiveness in
capturing cluster structure. Therefore, there is a great need
to investigate the effectiveness of PCA as a preprocessing
step to cluster analysis on gene expression data before one
can identify clusters in the space of the PCs. This paper is
an attempt of such an empirical study.

2 OUR APPROACH

Our goal is to empirically investigate the effectiveness
of clustering gene expression data using PCs instead of
the original variables. In this paper, genes are clustered,
hence the experimental conditions are the variables. Our
methodology is to run a clustering algorithm on a given
data set, and then apply the same algorithm to the data
after projecting it into the subspaces defined by different
sets of PCs. The effectiveness of clustering with the
original data and with different sets of PCs is determined
by assessing the quality of clusters, which is measured by

comparing the clustering results to an objective external
criterion of the data. In our experiments, we assume the
number of clusters is known and clustering results with the
correct number of clusters are produced. Both real gene
expression data sets with external criteria and synthetic
data sets are used in this empirical study.

2.1 Agreement between two partitions

In order to compare clustering results against external
criteria, a measure of agreement is needed. The adjusted
Rand index (Hubert and Arabie, 1985) assesses the degree
of agreement between two partitions of the same set
of objects. Based on an extensive empirical comparison
of several such measures, Milligan and Cooper (1986)
recommended the adjusted Rand index as the measure
of agreement even when comparing partitions having
different numbers of clusters.

Given a set of n objects S = {0y, ..., O,}, suppose
U = {uy,...,ug} and V. = {vy,...,vc} represent
two different partitions of the objects in S such that
UR uj=S= U]CZIUJ' and u; Nuy = ¥ = v; Ny for
1 <i#i <Randl < j # j < C.In our case,
one of the partitions is the external criterion and one is a
clustering result. Let a be the number of pairs of objects
that are placed in the same element in partition U and in
the same element in partition V, and d be the number of
pairs of objects in different elements in partitions U and
V. The Rand index (Rand, 1971) is simply the fraction of
agreement, i.e. (a + d)/ (g) The Rand index lies between
0 and 1. When the two partitions are identical, the Rand
index is 1. A problem with the Rand index is that the
expected value of the Rand index of two random partitions
does not take a constant value. The adjusted Rand index
(Hubert and Arabie, 1985) corrects for this by assuming

index—expected index
the gener al form maximum index—expected index *

value is 1 and its expected value in the case of random
clusters is 0. As with the Rand index, a higher adjusted
Rand index means a higher correspondence between the
two partitions. Please refer to our supplementary web site
or Yeung and Ruzzo (2000) for a detailed description of
the adjusted Rand index.

2.2 Subsets of PCs

Motivated by Chang’s theoretical result (Chang, 1983), we
would like to compare the effectiveness of clustering with
the first few PCs to that of other sets of PCs. In particular,
if there exists a set of ‘best’” PCs that is most effective
in capturing cluster structure, it would be interesting to
compare the performance of this set of ‘best’” PCs to the
traditional wisdom of clustering with the first few PCs of
the data. Since no such set of ‘best’ PCs is known, we
used the adjusted Rand index with the external criterion
to determine if a set of PCs is effective in clustering. One
way to determine the set of PCs that gives the maximum

Its maximum
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Fig. 1. Visualization of a subset of the sporulation data. (a) In the subspace of the first two PCs. (b) In the subspace of the first three PCs.

adjusted Rand index is by exhaustive search over all
possible sets of PCs. However, exhaustive search is very
computationally intensive. Therefore, we used heuristics
to search for a set of PCs with high adjusted Rand index.

2.2.1 The greedy approach. A simple heuristic we
implemented is the greedy approach, which is similar to
the forward sequential search algorithm (Aha and Bankert,
1996). Let mo be the minimum number of PCs to be
clustered, and p be the number of experimental conditions
in the data.

e This approach starts with an exhaustive search for a
set of my PCs with maximum adjusted Rand index.
Denote the optimum set of PCs as S,

e Foreachm = (mg+ 1), ..., p,

— For each component curr PC notin Sy, _1.

+ The data with all the genes projected onto
components S, 1 U{curr PC} is clustered, and
the adjusted Rand index is computed.

* Record the maximum adjusted Rand index over
all possible curr PC.

— S, 1s the union of the component with maximum
adjusted Rand index and S,,, 1.

2.2.2 The modified greedy approach. The modified
greedy approach requires an additional integer parameter,
k, which represents the number of best solutions to keep
in each search step. Denote the optimum k sets of compo-
nents as S,,, = {S,}i, e S,’j,}, where m = my, ..., p. This

approach also starts with an exhaustive search for my PCs
with the maximum adjusted Rand index. However, k sets
of components which achieve the top k adjusted Rand in-
dices are stored. For each m (where m = (mg+1),..., p)
and each of the S;',l (where i = 1, ..., k), one additional
component that is not already in Sl‘;1_1 is added to the set
of components, the subset of data with the extended set of
components is clustered, and the adjusted Rand index is
computed. The top k sets of m components that achieve
the highest adjusted Rand indices are stored in S,,. The
modified greedy approach allows the search to have more
choices in searching for a set of components that gives
a high adjusted Rand index. Note that when k£ = 1,
the modified greedy approach is identical to the simple
greedy approach, and when k = (rl:; ) the modified greedy
approach is reduced to exhaustive search. So the choice
for k is a tradeoff between running time and quality of
solution. In our experiments, k is set to be 3.

2.3 Summary

Given a gene expression data set with n genes and
p experimental conditions, our evaluation methodology
consists of the following steps:

(1) A clustering algorithm is applied to the given data
set, and the adjusted Rand index with the external
criterion is computed.

(2) PCA is applied to the given data set. The same
clustering algorithm is applied to the first m PCs
(where m = my, ..., p). The adjusted Rand index
is computed for each of the clustering results using
the first m PCs.
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(3) The same clustering algorithm is applied to sets of
PCs computed with the greedy and the modified
greedy approaches.

2.4 Random PCs and random projections

As a control, we also investigated the effect on the quality
of clusters obtained from random sets of PCs. Multiple
sets of random PCs (30 in our experiments) were chosen
to compute the average and standard deviation of the
adjusted Rand indices.

We also compared the quality of clustering results from
random PCs to that of random orthogonal projections of
the data. Again, multiple sets (30) of random orthogonal
projections were chosen to compute the average and
standard deviations.

3 DATA SETS

We used two gene expression data sets with external
criteria, and three sets of synthetic data to evaluate the
effectiveness of PCA. The word class refers to a group
in the external criterion that is used to assess clustering
results. The word cluster refers to clusters obtained by a
clustering algorithm. We assume both classes and clusters
are partitions of the data, i.e., every gene is assigned to
exactly one class and to exactly one cluster.

3.1 Gene expression data sets

3.1.1 The ovary data. A subset of the ovary data
obtained by Schummer er al. (1999) and Schummer
(2000) is used. The ovary data set was generated by
hybridizing to a membrane array containing a randomly
selected cDNA library. The subset of the ovary data we
used contains 235 clones and 24 tissue samples, 7 of
which are derived from normal tissues, 4 from blood
samples, and the remaining 13 from ovarian cancers in
various stages of malignancy. The tissue samples are the
experimental conditions. The 235 clones were sequenced,
and discovered to correspond to four different genes. The
numbers of clones corresponding to each of the four
genes are 58, 88, 57, and 32 respectively. We expect
clustering algorithms to separate the four different genes.
Hence, the four genes form the four class external criterion
for this data set. Different clones may have different
hybridization intensities. Therefore, the data for each
clone was normalized across the 24 experiments to have
mean 0 and variance 1.

3.1.2 The yeast cell cycle data. The second gene
expression data set we used is the yeast cell cycle data
set (Cho et al., 1998) which shows the fluctuation of
expression levels of approximately 6000 genes over two
cell cycles (17 time points). Cho et al. (1998) identified
420 genes which peak at different time points and
categorized them into five phases of cell cycle. Out of the

420 genes they classified, 380 genes were classified into
only one phase (some genes peak at more than one phase
in the cell cycle). Since the 380 genes were identified
according to the peak times of genes, we expect clustering
results to correspond to the five phases to a certain degree.
Hence, we used the 380 genes that belong to only one class
(phase) as our external criterion. The data was normalized
to have mean 0 and variance 1 across each cell cycle as
suggested in Tamayo et al. (1999).

3.2 Synthetic data sets

Since the array technology is still in its infancy, the ‘real’
data may be noisy, and clustering algorithms may not be
able to extract all the classes contained in the data. There
may also be information in real data that is not known
to biologists. Therefore, we complemented our empirical
study with synthetic data, for which the classes are known.

Modeling gene expression data sets is an ongoing ef-
fort by many researchers, and there is no well-established
model to represent gene expression data yet. The follow-
ing three sets of synthetic data represent our preliminary
effort on synthetic gene expression data generation. We do
not claim that any of the three synthetic data sets capture
all of the characteristics of gene expression data. Each of
the synthetic data sets has strengths and weaknesses. By
using all three sets of synthetic data, we hope to achieve
a thorough comparison study capturing many different as-
pects of expression data.

The first two synthetic data sets represent attempts to
generate replicates of the ovary data set by randomizing
different aspects of the original data. The last synthetic
data set is generated by modeling expression data with
cyclic behavior. In each of the three synthetic data sets,
ten replicates are generated. In each replicate, 235 obser-
vations and 24 variables are randomly generated. We also
ran experiments on larger synthetic data sets and observed
similar results (see supplementary web site for details).

3.2.1 Mixture of normal distributions on the ovary data.
Visual inspection of the ovary data suggests that the data is
not too far from normal. Among other sources of variation,
the expression levels for different clones of the same gene
are not identical because the clones represent different
portions of the cDNA. Figure 2a shows the distribution of
the expression levels in a normal tissue in a class (gene)
from the ovary data. We found that the distributions of
the normal tissue samples are typically closer to normal
distributions than those of tumor samples, for example,
Figure 2b.

The sample covariance matrix and the mean vector
of each of the four classes (genes) in the ovary data are
computed. Each class in the synthetic data is generated
according to a multivariate normal distribution with the
sample covariance matrix and the mean vector of the cor-
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Fig. 2. Histogram of the distributions of the expression levels in the ovary data.

responding class in the ovary data. The size of each class in
the synthetic data is the same as in the original ovary data.

This synthetic data set preserves the covariance between
the tissue samples in each gene. It also preserves the mean
vectors of each class. The weakness of this synthetic data
set is that the assumption of the underlying multivariate
normal distribution for each class may not be true for real
data.

3.2.2  Randomly resampled ovary data. In these data
sets, the random data for an observation in class ¢ (where
¢ = 1,...,4) under experimental condition j (where
j =1,...,24) are generated by randomly sampling (with
replacement) the expression levels under experiment j in
the same class c of the ovary data. The size of each class in
this synthetic data set is again the same as the ovary data.

This data set does not assume any underlying distribu-
tion. However, any possible correlation between tissue
samples (for example, the normal tissue samples may
be correlated) is not preserved due to the independent
random sampling of the expression levels from each
experimental condition. Hence, the resulting sample
covariance matrix of this randomly resampled data set
would be close to diagonal. However, inspection of the
original ovary data shows that the sample covariance
matrices are not too far from diagonal. Therefore, this
set of randomly resampled data represents reasonable
replicates of the original ovary data set.

3.2.3 Cyclic data. This synthetic data set models
cyclic behavior of genes over different time points. The
cyclic behavior of genes is modeled by the sine function.
There is evidence that the sine function correctly models
the cell cycle behavior (see Holter et al., 2000 and Alter et

al., 2000). Classes are modeled as genes that have similar
peak times over the time course. Different classes have
different phase shifts and have different sizes.

Let x; ; be the simulated expression level of gene i
and condition j in this data set with ten classes. Let
Xi,j = 8 + Aj x (a; + Big(i, j)), where ¢(i, j) = sin
(2% — wk() + €) (Zhao, 2000). «; represents the average
expression level of gene i, which is chosen according
to the standard normal distribution. f§; is the amplitude
control for gene i, which is chosen according to a
normal distribution with mean 3 and standard deviation
0.5. ¢ (i, j) models the cyclic behavior. Each cycle is
assumed to span eight time points (experiments). k(i) is
the class number of gene i, which is chosen according to
Zipf’s Law (Zipf, 1949) to model classes with different
sizes. Different classes are represented by different phase
shifts wy(;), which are chosen according to the uniform
distribution in the interval [0, 27]. €, which represents
noise of gene synchronization, is chosen according to
the standard normal distribution. A; is the amplitude
control of condition j, and is chosen according to the
normal distribution with mean 3 and standard deviation
0.5. §;, which represents an additive experimental error,
is chosen according to the standard normal distribution.
Each observation (row) is normalized to have mean O
and variance 1 before PCA or any clustering algorithm is
applied. A drawback of this model is the ad-hoc choice of
the parameters for the distributions of ;, B;, A, and § ;.

4 CLUSTERING ALGORITHMS AND
SIMILARITY METRICS

We used three clustering algorithms in our empirical
study: the Cluster Affinity Search Technique (CAST)
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(Ben-Dor and Yakhini, 1999), the hierarchical average-
link algorithm, and the k-means algorithm (with average-
link initialization) (Jain and Dubes, 1988). Please refer
to our supplementary web site for details of the clus-
tering algorithms. In our experiments, we evaluated the
effectiveness of PCA on clustering analysis with both
Euclidean distance and correlation coefficient, namely,
CAST with correlation coefficient, average-link with
both correlation and distance, and k-means with both
correlation and distance. CAST with Euclidean distance
usually does not converge, so it is not considered in
our experiments. If Euclidean distance is used as the
similarity metric, the minimum number of components in
sets of PCs (mg) considered is 2. If correlation is used,
the minimum number of components (mg) considered is
3 because there are at most 2 clusters if 2 components
are used (when there are 2 components, the correlation
coefficient is either 1 or —1).

5 RESULTS AND DISCUSSION

Here are the overall conclusions from our empirical study:

e The quality of clustering results (i.e. the adjusted Rand
index with the external criterion) on the data after PCA
is not necessarily higher than that on the original data
on both real and synthetic data.

e We also showed that in most cases, the first m PCs
(where m = mg,..., p) do not give the highest
adjusted Rand index, i.e. there exists another set of
m components that achieves a higher adjusted Rand
index than the first m components.

e There are no clear trends regarding the choice of the
optimal number of PCs over all the data sets and over
all the clustering algorithms and over the different
similarity metrics. There is no obvious relationship
between cluster quality and the number or set of PCs
used.

e On average, the quality of clusters obtained by cluster-
ing random sets of PCs tend to be slightly lower than
those obtained by clustering random sets of orthogo-
nal projections, especially when the number of com-
ponents is small.

In the following sections, the detailed experimental
results are presented. In a typical result graph, the
adjusted Rand index is plotted against the number of
components. Usually the adjusted Rand index without
PCA, the adjusted Rand index of the first m components,
and the adjusted Rand indices using the greedy and
modified greedy approaches are shown in each graph.
Note that there is only one value for the adjusted Rand
index computed with the original variables (without PCA),

while the adjusted Rand indices computed using PCs vary
with the number of components. Enlarged and colored
versions of the graphs can be found on our supplementary
web site. The results using the hierarchical average-link
clustering algorithm turn out to show similar patterns to
those using k-means (but with slightly lower adjusted
Rand indices), and hence are not shown in this paper. The
results of average-link can be found on our supplementary
web site.

5.1 Gene expression data
5.1.1 The ovary data.

CAST. Figure 3a shows the result on the ovary data using
CAST as the clustering algorithm and correlation coeffi-
cient as the similarity metric. The adjusted Rand indices
using the first m components (where m = 3, ..., 24) are
mostly lower than those without PCA. However, the ad-
justed Rand indices using the greedy and modified greedy
approaches for 4-22 components are higher than those
without PCA. This shows that clustering with the first m
PCs instead of the original variables may not help to ex-
tract the clusters in the data set, and that there exist sets
of PCs (other than the first few which contain most of the
variation in the data) that achieve higher adjusted Rand in-
dices than clustering with the original variables. Moreover,
the adjusted Rand indices computed using the greedy and
modified greedy approaches are not very different. Fig-
ure 3b shows the additional results of the average adjusted
Rand indices of random sets of PCs and random orthog-
onal projections. The standard deviation in the adjusted
Rand indices of the multiple runs (30) of random orthog-
onal projections are represented by the error bars in Fig-
ure 3b. The adjusted Rand indices of clusters from random
sets of PCs are more than one standard deviation lower
than those from random orthogonal projections when the
number of components is small. Random sets of PCs have
larger variations over multiple random runs, and their er-
ror bars overlap with those of the random orthogonal pro-
jections, and so are not shown for clarity of the figure. It
turns out that Figure 3b shows typical behavior of random
sets of PCs and random orthogonal projections over differ-
ent clustering algorithms and similarity metrics, and hence
those curves will not be shown in subsequent figures.

k-means. Figures 3c and d show the adjusted Rand in-
dices using the k-means algorithm on the ovary data with
correlation and Euclidean distance as similarity metrics re-
spectively. Figure 3c shows that the adjusted Rand indices
using the first m components tends to increase from below
the index without PCA to above that without PCA as the
number of components increases. However, the results us-
ing the same algorithm but Euclidean distance as the simi-
larity metric show a very different picture (Figure 3d): the
adjusted Rand indices are high for first two and three PCs

768



Principal component analysis for clustering expression data

0.75
0.7 BB B B BB g
-go.ss—®/ R
i "
- 0.6 1 ] L i
7
.2‘0.55 L
) —m— First
< 05 ——no PCA
—&—greedy
0.45 —x - modified greedy
04+ T T T T T T T T T T T T T
3 5 7 9 11 183 15 17 19 21 28
Number of components
(a) CAST with correlation
0.75
0.7 4
© 0.65
c
]
T o6
°
2 -
.10.55 l:
E 051 4 " ——no PCA
—&— greedy
—m—first
0.45 —x - modified greedy
oG4+ T T T T T T T T T T T T T T
3 5 7 9 11 13 15 17 19 21 28
number of components

(c) k-means with correlation

M s s =

T Y
£ JEENZaRsrZsadRRER
go.‘t— [ [ [ Jw /y”
W e

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Number of components

(b) CAST with correlation

0.75
0.7
5065
c
<
X 0.6
°
2
.30.55 1
T
< 05+ i
—m—first
—no PCA
0.45 1 —5—greedy
—* -modified greedy
[ e e e S e L S e e e e e L
2 4 6 8 10 12 14 16 18 20 22 24
number of components

(d) k-means with Euclidean distance

Fig. 3. Adjusted Rand index against the number of components on the ovary data.

and then drop drastically to below that without PCA. Man-
ual inspection of the clustering result of the first four PCs
using k-means with Euclidean distance shows that two
classes are combined in the same cluster while the cluster-
ing result of the first three PCs separates the four classes,
showing that the drastic drop in the adjusted Rand index
reflects degradation of cluster quality with additional PCs.
When the data points are visualized in the space of the first
three PCs, the four classes are reasonably well-separated
in the Euclidean space. However, when the data points are
visualized in the space of the first, second and fourth PCs,
the classes overlap. The addition of the fourth PC caused
the cluster quality to drop. With both the greedy and the
modified greedy approaches, the fourth PC was the second
to last PC to be added. Therefore, we believe that the addi-
tion of the fourth PC makes the separation between classes
less clear. Figures 3c and d show that different similarity
metrics may have very different effect on clustering with
PCs.

The adjusted Rand indices using the modified approach
in Figure 3c show an irregular pattern. In some instances,
the adjusted Rand index computed using the modified
greedy approach is even lower than that using the first
few components and that using the greedy approach. This

shows, not surprisingly, that our heuristic assumption for
the greedy approach is not always valid. Nevertheless, the
greedy and modified greedy approaches show that there
exists other sets of PCs that achieve higher adjusted Rand
indices than the first few PCs most of the time.

Effect of clustering algorithm. Note that the adjusted Rand
index without PCA using CAST with correlation (0.664)
is much higher than that using k-means (0.563) with
the same similarity metric. Manual inspection of the
clustering results without PCA shows that only CAST
clusters mostly contain clones from each class, while
k-means clustering results combine two classes into one
cluster. This again confirms that higher adjusted Rand
indices reflect higher cluster quality with respect to the
external criteria. With the first m components, CAST with
correlation has a similar range of adjusted Rand indices
to the other algorithms (approximately between 0.55
and 0.68).

Choosing the number of first PCs. A common rule of
thumb to choose the number of first PCs is to choose the
smallest number of PCs such that a chosen percentage of
total variation is exceeded. For the ovary data, the first
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Fig. 4. Adjusted Rand index against the number of components on the yeast cell cycle data.

14 PCs cover 90% of the total variation in the data. If the
first 14 PCs are chosen, it would have a detrimental effect
on cluster quality if CAST with correlation, k-means with
distance, or average-link with distance is the algorithm
being used.

When correlation is used (Figures 3a and ¢), the adjusted
Rand index using all 24 PCs is not the same as that using
the original variables. On the other hand, when Euclidean
distance is used (Figure 3d), the adjusted Rand index using
all 24 PCs is the same as that with the original variables.
This is because the Euclidean distance between a pair
of genes using all the PCs is the same as that using the
original variables. Correlation coefficients, however, are
not preserved after PCA.

5.1.2  The yeast cell cycle data.

CAST. Figure 4a shows the result on the yeast cell cy-
cle data using CAST as the clustering algorithm and cor-
relation coefficient as the similarity metric. The adjusted
Rand indices using the first 3—7 components are lower than
that without PCA, while the adjusted Rand indices with
the first 8—17 components are comparable to that without
PCA.

k-means. Figure 4b shows the result on the yeast cell
cycle data using k-means with Euclidean distance. The
adjusted Rand indices without PCA are relatively high
compared to those using PCs. Figure 4b on the yeast cell
cycle data shows a very different picture than Figure 3d
on the ovary data. This shows that the effectiveness of
clustering with PCs depends on the data set being used.

5.2 Synthetic data
5.2.1 Mixture of normal distributions on the ovary data.
CAST. The results using this synthetic data set are similar

to those of the ovary data in Section 5.1.1. Figure 5a shows
the results of our experiments on the synthetic mixture

of normal distributions on the ovary data using CAST
as the clustering algorithm and correlation coefficient as
the similarity metric. The lines in Figure S5a represent
the average adjusted Rand indices over the 10 replicates
of the synthetic data, and the error bars represent one
standard deviation from the mean for the modified greedy
approach and for using the first m PCs. The error bars
show that the standard deviations using the modified
greedy approach tend to be lower than that using the first m
components. A careful study also shows that the modified
greedy approach has lower standard deviations than the
greedy approach (data not shown here). The error bars
for the case without PCA are not shown for clarity of
the figure. The standard deviation for the case without
PCA is 0.064 for this set of synthetic data, which would
overlap with those using the first components and the
modified greedy approach. Using the Wilcoxon signed
rank test (Hogg and Craig, 1978), we show that the
adjusted Rand index without PCA is greater than that with
the first m components at the 5% significance level for
all m =3,...,21. A manual study of the experimental
results from each of the 10 replicates (details not shown
here) shows that 8 out of the 10 replicates show very
similar patterns to the average pattern in Figure 5a, i.e.
most of the cluster results with the first m components
have lower adjusted Rand indices than that without PCA,
and the results using the greedy and modified greedy
approach are slightly higher than that without PCA. In the
following results, only the average patterns will be shown.
Figure 5a shows a similar trend to real data in Figure 3a,
but the synthetic data has higher adjusted Rand indices for
the clustering results without PCA and with the greedy and
modified greedy approaches.

k-means. The average adjusted Rand indices using the
k-means algorithm with the correlation and Euclidean
distance as similarity metrics are shown in Figures 5b
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Fig. 5. Average adjusted Rand index against the number of components on the mixture of normal synthetic data.

and c respectively. In Figure 5b, the average adjusted Rand
indices using the first m components gradually increase as
the number of components increases. Using the Wilcoxon
signed rank test, we show that the adjusted Rand index
without PCA is less than that with the first m components
(where m = 5,...,24) at the 5% significance level. In
Figure Sc, the average adjusted Rand indices using the first
m components are mostly below that without PCA. The
results using average-link (not shown here) are similar to
the results using k-means.

5.2.2 Randomly resampled ovary data. Figures 6a
and b show the average adjusted Rand indices using
CAST with correlation, and k-means with Euclidean
distance on the randomly resampled ovary data. The
general trend is very similar to the results on the ovary
data and the mixture of normal distributions.

5.2.3 Cyclic data. Figure 7a shows the average ad-
justed Rand indices using CAST with correlation. The
quality of clusters using the first PCs are worse than that
without PCA, and is not very sensitive to the number of
first PCs used.

Figure 7b shows the average adjusted Rand indices

with the k-means algorithm with Euclidean distance as
the similarity metric. Again, the quality of clusters from
clustering with the first PCs is not higher than that from
clustering with the original variables.

5.3 Summary of results

On both real and synthetic data sets, the adjusted Rand
indices of clusters obtained using PCs determined by the
greedy or modified greedy approach tend to be higher
than the adjusted Rand index from clustering with the
original variables. Table 1 summarizes the comparisons
of the average adjusted Rand indices from clustering
with the first PCs (averaged over the range of number of
components) to the adjusted Rand indices from clustering
the original real expression data. An entry is marked
‘+’ in Table 1 if the average adjusted Rand index from
clustering with the first components is higher than the
adjusted Rand index from clustering the original data.
Otherwise, an entry is marked with a ‘—’. Table 1 shows
that with the exception of k-means with correlation and
average-link with correlation on the ovary data set, the
average adjusted Rand indices using different numbers
of the first components are lower than the adjusted Rand
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Fig. 7. Average adjusted Rand index against the number of components on the cyclic data.

indices from clustering the original data. On the synthetic
data sets, we applied the one-sided Wilcoxon signed rank
test to compare the adjusted Rand indices from clustering
the first components to the adjusted Rand index from
clustering the original data set on the 10 replicates. The
P-values, averaged over the full range of possible numbers
of the first components, are shown in Table 2. A low
P-value suggests rejecting the null hypothesis that the
adjusted Rand indices from clustering with and without
PCA are comparable. Table 2 shows that the adjusted
Rand indices from the first components are significantly
lower than those from without PCA on both the mixture
of normal and the cyclic synthetic data sets when CAST
with correlation is used. On the other hand, the adjusted
Rand indices from the first components are significantly
higher than those from without PCA when k-means with
correlation is used on the mixture of normal synthetic
data or when average-link with correlation is used on the
randomly resampled data. However, the latter results are
not clear successes for PCA since: (1) they assume that
the correct number of classes is known (which would not

Table 1. Comparisons of the average adjusted Rand indices from clustering
with different numbers of the first components to the adjusted Rand indices
from clustering the original real expression data. An entry marked ‘+’
indicates the average quality from clustering with the first components is
higher than that from clustering the original data

Data CAST k-means k-means Average- Average-
correlation correlation distance link link
correlation  distance
Ovary data - + - + -
Cell cycle data - - - - -

be true in practice); and (2) CAST with correlation gives
better results on the original data sets without PCA in both
cases. The average P-values of k-means with correlation
on the cyclic data are not available because the iterative k-
means algorithm does not converge on the cyclic data sets
when correlation is used as the similarity metric.
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Table 2. Average p-value of the Wilcoxon signed rank test over different number of components on synthetic data sets. Average p-values below 5% are bold

faced

Synthetic data Alternative CAST k-means k-means Average-link Average-link
hypothesis correlation correlation distance correlation distance
Mixture of normal no PCA > first 0.039 0.995 0.268 0.929 0.609
Mixture of normal no PCA < first 0.969 0.031 0.760 0.080 0.418
Randomly resampled no PCA > first 0.243 0.909 0.824 0.955 0.684
Randomly resampled no PCA < first 0.781 0.103 0.200 0.049 0.337
Cyclic data no PCA > first 0.023 Not available 0.296 0.053 0.799
Cyclic data no PCA < first 0.983 0.732 0.956 0.220

6 CONCLUSIONS

Our experiments on two real gene expression data sets and
three sets of synthetic data show that clustering with the
PCs instead of the original variables does not necessarily
improve, and may worsen, cluster quality. Our empirical
study shows that the traditional wisdom that the first few
PCs (which contain most of the variation in the data) may
help to extract cluster structure is generally not true. We
also show that there usually exists some other sets of m
PCs that achieve higher quality of clustering results than
the first m PCs.

Our empirical results show that clustering with PCs
has different impact on different algorithms and different
similarity metrics (see Tables 1 and 2). When CAST is
used with correlation as the similarity metric, clustering
with the first m PCs gives a lower adjusted Rand index
than clustering with the original variables for most of
m = 3,...,24, and this is true in both real and synthetic
data sets. On the other hand, when k-means is used with
correlation as the similarity metric, using all of the PCs in
cluster analysis instead of the original variables usually
gives higher or similar adjusted Rand indices on all of
our real and synthetic data sets. When Euclidean distance
is used as the similarity metric on the ovary data or the
synthetic data sets based on the ovary data, clustering
(either with k-means or average-link) using the first few
PCs usually achieves higher or comparable adjusted Rand
indices to without PCA, but the adjusted Rand indices
drop sharply with more PCs. Since the Euclidean distance
computed with the first m PCs is just an approximation to
the Euclidean distance computed with all the experiments,
the first few PCs probably contain most of the cluster
information while the last PCs are mostly noise. There is
no clear indication from our results of how many PCs to
use in the case of Euclidean distance. Choosing PCs by
the rule of thumb to cover 90% of the total variation in
the data are too many in the case of Euclidean distance
on the ovary data and yeast cell cycle data. Based on our
empirical results, we recommend against using the first
few PCs if CAST with correlation is used to cluster a gene

expression data set. On the other hand, we recommend
using all of the PCs if k-means with correlation is used
instead. However, the increased adjusted Rand indices
using the ‘appropriate’ PCs with k-means and average-
link are comparable to that of CAST using the original
variables in many of our results. Therefore, choosing a
good clustering algorithm is as important as choosing the
‘appropriate’ PCs.

There does not seem to be any general relationship
between cluster quality and the number of PCs used
based on the results on both real and synthetic data sets.
The choice of the first few components is usually not
optimal (except when Euclidean distance is used), and
often achieves lower adjusted Rand indices than without
PCA. There usually exists another set of PCs (determined
by the greedy or modified greedy approach) that achieves
higher adjusted Rand indices than clustering with the
original variables or with the first m PCs. However, both
the greedy and the modified greedy approaches require
the external criteria to determine a ‘good’ set of PCs. In
practice, external criteria are seldom available for gene
expression data, and so we cannot use the greedy or the
modified greedy approach to choose a set of PCs that
captures the cluster structure. Moreover, there does not
seem to be any general trend for the the set of PCs chosen
by the greedy or modified greedy approach that achieves
a high adjusted Rand index. A careful manual inspection
of our empirical results shows that the first two PCs are
usually chosen in the exhaustive search step for the set
of mo components that give the highest adjusted Rand
indices. In fact, when CAST is used with correlation as
the similarity metric, the three components found in the
exhaustive search step always include the first two PCs on
all of our real and synthetic data sets. The first two PCs
are usually returned by the exhaustive search step when
k-means with correlation, or k-means with Euclidean
distance, or average-link with correlation is used. We also
tried to generate a set of random PCs that always includes
the first two PCs, and then apply clustering algorithms and
compute the adjusted Rand indices. The result is that the

773



K.Y.Yeung and W.L.Ruzzo

adjusted Rand indices are similar to that computed using
the first components.

To conclude, our empirical study shows that clustering
with the PCs enhances cluster quality only when the right
number of components or when the right set of PCs is cho-
sen. However, there is not yet a satisfactory methodology
to determine the number of components or an informative
set of PCs without relying on external criteria of the data
sets. Therefore, in general, we recommend against using
PCA to reduce dimensionality of the data before applying
clustering algorithms unless external information is avail-
able. Moreover, even though PCA is a great tool to reduce
dimensionality of gene expression data sets for visualiza-
tion, we recommend cautious interpretation of any cluster
structure observed in the reduced dimensional subspace of
the PCs. We believe that our empirical study is one step
forward to investigate the effectiveness of clustering with
the PCs instead of the original variables.
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