
Entropy-based Subspace Clustering for Mining Numerical DataChun-hung Cheng Ada Wai-chee Fu Yi ZhangDepartment of Computer Science and EngineeringThe Chinese University of Hong Kongchcheng@cse.cuhk.edu.hk, adafu@cse.cuhk.edu.hkAbstractMining numerical data is a relatively di�cult problem indata mining. Clustering is one of the techniques. Weconsider a database with numerical attributes, in whicheach transaction is viewed as a multi-dimensional vector.By studying the clusters formed by these vectors, we candiscover certain behaviors hidden in the data. Traditionalclustering algorithms �nd clusters in the full space of thedata sets. This results in high dimensional clusters, whichare poorly comprehensible to human. One important taskin this setting is the ability to discover clusters embeddedin the subspaces of a high-dimensional data set. Thisproblem is known as subspace clustering. We follow thebasic assumptions of previous work CLIQUE. It is foundthat the number of subspaces with clustering is very large,and a criterion called the coverage is proposed in CLIQUEfor the pruning. In addition to coverage, we identify newuseful criteria for this problem and propose an entropy-based algorithm called ENCLUS to handle the criteria. Ourmajor contributions are: (1) identify newmeaningful criteriaof high density and correlation of dimensions for goodnessof clustering in subspaces, (2) introduce the use of entropyand provide evidence to support its use, (3) make use oftwo closure properties based on entropy to prune awayuninteresting subspaces e�ciently, (4) propose a mechanismto mine non-minimally correlated subspaces which are ofinterest because of strong clustering, (5) experiments arecarried out to show the e�ectiveness of the proposed method.1 IntroductionModern technology provides e�cient and low-cost meth-ods for data collection. However, raw data is rarelyof direct bene�t for higher level management, decisionmaking or more intelligent analysis. Data mining aimsat the construction of semi-automatic tools for the anal-ysis of large data sets. The mining of binary associa-

tion rules has been extensively studied in recent years,but databases in the real world usually have numer-ical attributes in addition to binary attributes. Un-fortunately, mining numerical data is a more di�cultproblem and relatively few works have been done onthis topic. Some previous works include [15, 13, 14].Here we attempt to mine numerical data using cluster-ing techniques. We consider a database consisting ofnumerical attributes. We can view each transaction ofthis database as a multi-dimensional vector. Clusteringis to discover homogeneous groups of objects based onthe values of these vectors. Hence, we can study thebehaviour of the objects by looking at the shapes andlocations of clusters. See Figure 1 for an example.We learn from statistics that it is possible to �ndcorrelation among di�erent factors from raw data, butwe cannot �nd the direction of implication and it canbe risky to conclude any causal relationship from rawdata [16]. Clustering is a method that �nds correlationswhile not infering any causal relationship.Not all clustering algorithms are suitable for ourproblem. They must satisfy some special requirementsin order to be useful to us. One important requirementis the ability to discover clusters embedded in subspacesof high dimensional data. Given a space X withdimensions formed from a set of attributes S, a spaceY with dimensions formed from a subset of S is calleda subspace of X. Conversely, X will be called asuperspace of Y . For instance, suppose there are threeattributes A, B and C. Clusters may exist inside thesubspace formed by A and B, while C is independentof A and B. In such case, C is a noise variable. Sincehigh dimensional information is hard to interpret, it ismore desirable if the clustering algorithm can presentthe cluster in the subspace AB rather than in the fullspace ABC. Real-life databases usually contain manyattributes so that either there is no proper cluster inthe full space, or knowing the existence of a cluster inthe full space is of little use to the user. Therefore, theability to discover embedded clusters is important. Thisproblem is called subspace clustering in [2].Data mining by de�nition deals with huge amount 1



salary

ageFigure 1: Example of a cluster.of data, which are often measured in gigabytes oreven terabytes. Although some traditional clusteringalgorithms are elegant and accurate, they involve toomany complicated mathematical operations. Thesemethods are shown to handle problem sizes of severalhundreds to several thousands transactions, which is farfrom su�cient for data mining applications [7, 19]. Weneed an algorithm that gives reasonable performanceeven on high dimensionality and large data sets.We prefer clustering algorithms that do not assumesome restrictive shapes for the clusters. Some clusteringalgorithms (e.g. K-means [18, 5], CLARANS [20],BIRCH [25] and ScaleKM [4]) assume that the clustersare concave in shape. We would adopt a de�nition ofcluster that does not have the above limitation. A goodalgorithm should also not make assumptions about thedistribution of the data and not be sensitive to theexistence of outliers. It should not require the usersto specify some parameters on which the users wouldhave di�culty to decide. For instance, the K-meansalgorithm requires the user to specify the number ofclusters, which is often not known to the user. Finallythere should be a meaningful and e�ective way toconvey the resulting clusters to the users for the purposeof data mining.A solution to the above problem would consist ofthe following steps: (1) Find the subspaces with goodclustering. (2) Identify the clusters in the selectedsubspaces. (3) Present the result to the users. We shallfocus on Step (1). The rest of this paper is organized asfollows. In Section 2, we discuss the related work doneon similar problems. Section 3 points out some newcriteria for good clustering and explains why they areneeded. In Section 4, we introduce the entropy-basedmethod for locating subspaces with good clustering. InSection 5 we discuss how the entropy-based method issuitable for the listed criteria. Section 6 describes theproposed algorithm. In Section 7, we would look atsome experimental results. Section 8 is a conclusion.

2 Related WorkThere are quite a number of previous works on the clus-tering problem by the database research community.Some examples are CLARANS [20], DBSCAN [12], DB-CLASD [24], Incremental DBSCAN [11], GRIDCLUS[23], CURE [17], BIRCH [25], and ScaleKM [4]. Noneof the above algorithms satis�es our most important re-quirement | the ability to identify clusters embeddedin subspaces of high-dimensional data. CLIQUE [2] isthe only published algorithm we are aware of that satis-�es this requirement. Since we follow closely the prob-lem setting of CLIQUE, we shall describe it in moredetails.First we introduce the target problem and assump-tions of CLIQUE [2]. A set of data points and twoparameters, � and � , are given. We discretize the dataspace S into non-overlapping rectangular units, whichis obtained by partitioning every dimension into � inter-vals of equal length. A unit is dense if the fraction of to-tal data points contained in the unit is greater than thethreshold � . Clusters are unions of connected denseunits within a subspace. We need to identify the denseunits in di�erent subspaces. The CLIQUE algorithmcan be divided into the following three steps: (1) Finddense units and identify subspaces containing clusters.(2) Identify clusters in the selected subspace. (3) Gen-erate minimal description for the clusters in disjunctivenormal form.Although it is theoretically possible to create ahistogram in all spaces to identify the dense units, thismethod would be computationally infeasible when thenumber of dimensions is large. To reduce the searchspace, a bottom-up algorithm is used that exploits themonotonicity of the clustering criterion with respectto dimensionality: if a collection of points S is acluster in a k-dimensional space, then S is also partof a cluster in any (k � 1)-dimensional projections ofthe space. The algorithm is iterative: First �nd 1-dimensional dense units by making a pass over thedata. Having determined (k � 1)-dimensional denseunits, Dk�1, the candidate k-dimensional units, Ck, aredetermined using the candidate generation procedures.A pass is made over the data to determine thosecandidate units that are dense, Dk. The algorithmiterates the above with increasing dimensionality, andterminates if no candidates are found. The candidategeneration procedure is similar to the one adopted in thewell-known Apriori algorithm [1] for mining associationrules.As the number of dimensions increases, the abovemethod may produce a large amount of dense units inthe subspace and the pruning above may not be e�ectiveenough. CLIQUE uses a new criteria for the pruningof subspace which is based on the coverage. Thecoverage of a subspace is the fraction of the database 2



that is covered by the dense units. Subspaces with highcoverages are selected and those with low coverages arepruned away.When the subspaces containing clusters are identi-�ed, the clusters in each subspace are to be determined.Recall that clusters are connected dense units. We cansimply use a depth-�rst search algorithm [3] to �nd theconnected components. The �nal step is to generateminimal cluster descriptions. The description is givenin form of DNF expression, e.g. ((30 � age < 50) ^ (4� salary < 8)) _ ((40 � age < 60) ^ (2 � salary < 6)).This is equivalent to a union of some hyper-rectangularregions. The regions can be found by a greedy growthmethod. We start with any dense unit and greedilygrow a maximal region in each dimension. The pro-cess is repeated until the union of all regions cover thewhole cluster. Then we need to remove the redundantregions. This is achieved by repeatedly removing thesmallest redundant region until no maximal region canbe removed.3 Criteria of Subspace ClusteringThere are many factors to be considered for a cluster-ing algorithm in data mining. We mentioned some ofthese in the introduction: e�ciency, shape of clusters,sensitivity to outliers, and the requirements of param-eters. A clustering algorithm will assume a certain setof criteria for a cluster, as well as criteria for what is agood clustering given a set of data.In addition to the clustering problem, we would liketo handle the problem of determining subspaces thathave \good clustering". We therefore need additioncriteria for determining which of two clustering for twodi�erent sets of data is better. In the following weintroduce a number of such criteria.3.1 Criterion of High CoverageThe �rst criterion that we use for goodness of clusteringis the coverage as de�ned for CLIQUE. This isa reasonable criterion since a subspace with moredistinguished clusters will have high coverage, whereasa subspace with close to random data distribution willhave low coverage.3.2 Criterion of high densityOther than coverage, we believe that other criteria arealso needed. The �rst criterion that we add is thecriterion of high density.Suppose we use only the coverage for measurementof goodness. A problem case is illustrated in Figure 2.It shows the probability density function of a randomvariable X. The value of coverage can be representedby the area of the shade portion since coverage is thefraction of the database that is covered by the denseunits. In this example, both cases (a) and (b) have
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(a) (b)Figure 2: Example of two data sets with equal coveragebut di�erent densities. The area of the shaded portionis the value of coverage.
Y
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y2

y1

x2x1Figure 3: Problem with independent dimensionsthe same coverage. However, this contradicts with ourintuition, because the points in case (b) is more closelypacked and more quali�ed as a cluster.3.3 Correlation of dimensionsThe third criterion that we consider is related tothe correlation of dimensions. We note that �ndingsubspaces with good clustering may not always behelpful, we also want the dimensions of the subspace tobe correlated. The reason is that although a subspacemay contain clusters, this may not be interesting to usif the dimensions are independent to each other. Forexample, Figure 3 shows such a scenario in 2D. In thisexample, since all the data points projected on X lieson [x1; x2) and projected on Y lies on [y1; y2), the dataobjects must be distributed at [x1; x2)� [y1; y2) in thejoint space. If the points are uniformly distributed at[x1; x2)� [y1; y2), although there is a cluster, looking atthe joint space gives us no more knowledge than lookingat each of the dimensions independently.Hence, we also require the dimensions of the subspaceto be correlated. Note that when we say correlatedhere, we mean the dimensions are not completelyindependent but it need not exist a very strongcorrelation.Having identi�ed a number of criteria for clustering,we shall �nd a metric that can measure all the criteriasimultaneously. A subspace which has good clusteringby the criteria will have high score in this metric. Thenwe can set a threshold on this measurement and �nd 3
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Area vs EntropyFigure 4: Area of Cluster vs Entropysubspaces which exceed this threshold. The metric thatwe use is the entropy, which we shall discuss in the nextsection.4 Entropy-based MethodWe propose to use an entropy-based method. Themethod is motivated by the fact that a subspace withclusters typically has lower entropy than a subspacewithout clusters. Entropy is a measure of uncertainty ofa random variable. LetX be a discrete random variable,X be the set of possible outcomes of X and p(x) bethe probability mass function of the random variableX. The entropy H(X) is de�ned by the followingexpression [9].H(X) = �Xx2X p(x) logp(x)If the base of log is 2, the unit for entropy is bit. Whenthere are more than one variable, we can calculate thejoint entropy to measure their uncertainty.H(X1; : : : ; Xn)= � Xx12X1 : : : Xxn2Xn p(x1; : : : ; xn) logp(x1; : : : ; xn)When the probability is uniformly distributed, we aremost uncertain about the outcome. Entropy is thehighest in this case. On the other hand, when the datapoints have a highly skewed probability mass function,we know that the variable is likely to fall within a smallset of outcomes so the uncertainty and the entropy arelow.4.1 Calculation of EntropySimilar to CLIQUE, we divide each dimension intointervals of equal length �, so the high-dimensionalspace is partitioned to form a grid. Suppose the data setis scanned once to count the number of points containedin each cell of the grid. The density of each cell can thusbe found. Let X be the set of all cells, and d(x) be thedensity of a cell x in terms of the percentage of datacontained in x. We de�ne the entropy of the data setto be: H(X) = �Xx2X d(x) logd(x)

When the data points are uniformly distributed, weare most uncertain where a particular point would lieon. The entropy is the highest. When the data pointsare closely packed in a small cluster, we know that aparticular point is likely to fall within the small areaof the cluster, and so the uncertainty and entropy willbe low. Figure 4 shows the result of an experimentstudying the relationship between the area of cluster ina two dimensional space [0,1) � [0,1). The smaller thearea of the cluster, the more closely packed the pointsand the lower the entropy.The size of interval � must be carefully selected. Ifthe interval size is too small, there will be many cellsso that the average number of points in each cell canbe too small. On the other hand, if the interval size istoo large, we may not able to capture the di�erencesin density in di�erent regions of the space. We suggestthe use of at least 35 points in each cell on the averagesince 35 is often considered as the minimum sample sizefor large sample procedures [10]. The size of interval �can be set accordingly.5 Entropy vs the Clustering CriteriaIn Section 3, we propose the use of three criteria for thegoodness of clustering: high coverage1, high density anddimensional correlation. In this section, we discuss howthe use of entropy can relate to the criteria we havechosen for the selection of subspaces. First we list thesymbols used in the discussion in Table 1.n the total number of unitsk the total number of dense units� the threshold on the density of adense unit (in percentage ofthe data)c coverage (percentage of data coveredby all dense units)p1; : : : ; pk the densities of the dense unitspk+1; : : : ; pn the densities of the non-dense unitsTable 1: Notations used5.1 Entropy and the coverage criterionTo investigate the relationship between entropy and thecoverage, we consider the following case. By assumingthere are k dense units out of n total units, it followsthat p1 + : : :+ pk = cpk+1 + : : :+ pn = 1� c1Coverage is the percentage of data covered by all dense unitsin a particular subspace. The original authors of CLIQUE de�neit as the number of objects covered by all dense units. Ourde�nition is slightly di�erent here. 4



dp1dc + : : :+ dpkdc = 1dpk+1dc + : : :+ dpndc = �1We want to estabish the relationship that, under certainconditions, the entropy decreases as the coverageincreases, i.e. dH(X)dc � 0.Theorem 1 dH(X)dc � 0 if and only if p dp1dc1 : : : p dpndcn � 1.ProofH(X) = � nXi=1 pi logpi= � kXi=1 pi logpi � nXj=k+1 pj log pjLet us di�erentiate the entropy with respect to thecoverage.dH(X)dc = � kXi=1hdpidc log pi + dpidc i� nXj=k+1hdpjdc log pj + dpjdc i= � kXi=1 hdpidc log pii� 1� nXj=k+1 hdpjdc log pji + 1= � kXi=1 hdpidc log pii� nXj=k+1 hdpjdc log pji= � log �p dp1dc1 : : : p dpndcn �The result follows and the proof is completed. 2Now we have the necessary and su�cient conditionfor our desirable property to hold. However, the condi-tion is complicated and di�cult to understand. Furtherinvestigation is needed to make it more comprehensive.Theorem 2 Suppose that dpidc � 0 for i = 1; : : : ; k anddpjdc � 0 for j = k + 1; : : : ; n and min1�i�k (pi) �maxk+1�j�n (pj). Then we havedH(X)dc � 0Proofp dp1dc1 : : : p dpndcn� � min1�i�k (pi)� dp1dc +:::+ dpkdc � � maxk+1�j�k (pj)� dpk+1dc +:::+ dpndc= min1�i�k (pi)maxk+1�j�n (pj)� 1

Then, Theorem 1 applies and the proof is completed. 2The conditions of Theorem 2 hold when the coverageis increased by increasing the densities of some denserunits and decreasing the densities of some non-denseunits. Although it is not true for all conditions, this isa supportive evidence of the use of entropy to reectthe coverage of clustering for a subspace.5.2 Entropy and the density criterionIn the example shown in Figure 2, entropy of case (b)is lower than that of case (a), which suggests case (b)is a better cluster. We see that entropy can bettercapture our intuition of good clustering as compared tothe mere use of coverage. To examine the relationshipbetween entropy and density, we consider the followingcase. Assume that the density of dense units are allequal to �, the density of non-dense units are all equalto �. The total number of dense units is k and thus thetotal number of non-dense units is n�k. Then we haveH(X) = � kXi=1 pi logpi= �0@ kXi=1 pi logpi + nXj=k+1pj log pj1A= �[k� log�+ (n � k)� log�]By assuming that � and � change continuously, theentropy becomes a di�erentiable function of density.Theorem 3 dH(X)d� � 0 if and only if � � �.Proof Note that k�+ (n� k)� = 1So k + (n � k)d�d� = 0Di�erential the entropy with respect to the density �,then we havedH(X)d� = � �k log�+ k + (n� k)d�d�(log � + 1)�= �k[log�� log �]= k log ��This shows that dH(X)d� � 0 if and only if � � �. Theproof is completed. 2This says that as the density of the dense unitsincreases, the entropy decreases. Hence entropy canrelate to the measurement of density in the clusteringof a subspace. 5



5.3 Entropy and variable correlationThe problem of correlated variables can be easilyhandled by entropy because the independence anddependence of the variables can be detected using thefollowing relationships in entropy [8].H(X1; : : : ; Xn) = H(X1) + : : :+H(Xn)i� X1; : : : ; Xn are independent (1)H(X1; : : : ; Xn; Y ) = H(X1; : : : ; Xn)i� Y is a function of X1; : : : ; Xn (2)We shall make use of the above property in the followingsection.6 AlgorithmIn this section, we introduce the proposed algorithmENCLUS in more details. There are two variations ofENCLUS, which are discussed at Section 6.2 and 6.3.The overall strategy consists of three main steps:1. Find out the subspaces with good clustering by anentropy-based method.2. Identify the clusters in the subspace found.3. Present the result to the users.In Step 2 and Step 3, we can adopt the method inCLIQUE or some of the existing clustering algorithms.We examine Step 1. Previously we use the term goodclustering to indicate that a subspace contains a goodset of clusters in an intuitive sense. Here we shall givethe term a more concrete de�nition by means of entropy.We need to set a threshold !. A subspace whose entropyis below ! is considered to have good clustering. Theproposed algorithm uses a bottom-up approach similarto the Apriori algorithm [1] for mining association rule.In Apriori, we start with �nding large 1-itemsets. Itis used to generate the candidate 2-itemsets, whichare checked against the database to determine large2-itemsets. The process is repeated with increasingitemset sizes until no more large itemset is found.Similarly, our bottom-up algorithm starts with �nd-ing one-dimensional subspaces with good clustering.Then we use them to generate the candidate two-dimensional subspaces and check them against the rawdata to determine those that actually have good clus-tering. The process is repeated with increasing dimen-sionalities until no more subspaces with good cluster-ing is found. We note a downward closure property forentropy. This is given by the non-negativity of Shan-non's information measures2 [8]. The correctness of thebottom-up approach is based on this property.2The values of entropy, conditional entropy, mutual informa-tion and conditional mutual information are always non-negative.This is not true to di�erential entropy because the value of dif-ferential entropy may be either positive or negative.

Lemma 1 (Downward closure) If a k-dimensional sub-space X1; : : : ; Xk has good clustering, so do all (k� 1)-dimensional projections of this space.Proof Since the subspace X1; : : : ; Xk has good cluster-ing, H(X1; : : : ; Xk) < !.H(X1; : : : ; Xk�1)� H(X1; : : : ; Xk�1) +H(XkjX1; : : : ; Xk�1)= H(X1; : : : ; Xk)< !Hence, the (k � 1)-dimensional projection X1; : : : ; Xkalso has good clustering. The above proof can berepeated for other (k � 1)-dimensional projections. 26.1 Dimensions CorrelationIn Section 3.3 we discuss the criterion of dimensionalcorrelation. In Section 5.3 we examine how entropycan be related to dimensional correlation. Here weshow the upward closure property of this criterion. Letp(x1; x2; :::; xi) be the joint probability mass functionof variables X1; X2; :::; Xi. In the following lemma,variables X1; X2; :::; Xn are considered not correlationi� p(x1; x2; :::; xn) = p(x1)p(x2):::p(xn).Lemma 2 (Upward closure) If a set of dimensions Sis correlated, so is every superset of S.ProofWe proof by contradiction. Suppose X1 and X2are correlated, but X1; X2 and X3 are not.p(x1; x2) = ZX3 p(x1; x2; x3)dx3= ZX3 p(x1)p(x2)p(x3)dx3= p(x1)p(x2) ZX3 p(x3)dx3= p(x1)p(x2)Hence X1 and X2 are not correlated, which is acontradiction. 2Traditionally, the correlation between two numericalvariables can be measured using the correlation coe�-cient. However, we can also detect correlation by en-tropy. Since we are already using entropy in the algo-rithm, using entropy to detect correlation introduces anegligible computational overhead. A set of variablesX1; : : : ; Xn are correlated if Equation 1 of Section 5.3is not satis�ed. To express it more precisely, we de�nethe term interest3 as below.interest(fX1; : : : ; Xng) = nXi=1H(Xi) �H(X1; : : : ; Xn)3The de�nition of interest is equivalent to the mutual in-formation between all individual dimensions of a subspaceI(X1;X2; : : : ;Xn). We use the term interest instead of \mutualinformation between all individual dimensions" to simplify ourterminology. 6
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X2X1 X4X3Figure 5: A lattice for 4 variables.k Current number of iterationsCk Set of k-dimensional candidate subspacesSk Set of k-dimensional signi�cant subspacesNSk Set of k-dimensional subspaces with goodclustering but not minimally correlatedTable 2: Notations used in the algorithmThe higher the interest, the stronger the correlation.We consider the variables to be correlated if and onlyif the interest exceeds a prede�ned threshold �. Theinterests of one-dimensional subspaces are always 0.6.2 Mining Signi�cant SubspacesA pair of downward and upward closure properties isused in [6], which proposes an algorithm for miningcorrelation rules. It is pointed out that downwardclosure is a pruning property. If a subspace does notsatisfy this property, we can cross out all its superspacesbecause we know they cannot satisfy this propertyeither. Upward closure, by contrast, is a constructiveproperty. If a subspace satis�es the property, all itssuperspaces also satisfy this property. However, upwardclosure property is also useful for pruning. The trick isthat we only �nd minimally correlated subspaces. If weknow a subspace is correlated, all its superspaces mustnot be minimally correlated. Therefore, upward closurebecomes a pruning property.Now we call the subspaces with good clustering andminimally correlated to be signi�cant subspaces. Dueto the upward closure property, the subspaces we areinterested in form a border. The border stores allthe necessary information. Refer to Figure 5 for anexample. In this �gure, the subspaces below the dottedlines all have good clustering (downward closed) andthe subspaces above the solid lines are all correlated

Algorithm 1 ENCLUS SIG(!; �)1 k = 12 Let Ck be all one-dimensional subspaces.3 For each subspace c 2 Ck do4 fc(�) = cal density(c)5 H(c) = cal entropy(fc(�))6 If H(c) < ! then7 If interest(c) > � then8 Sk = Sk [ c.9 else10 NSk = NSk [ c.11 End For12 Ck+1 = candidate gen(NSk)13 If Ck+1 = ;, go to step 16.14 k = k + 115 Go to step 3.16 Result = S8k SkFigure 6: Algorithm for mining signi�cant subspaces(upward closed). The border fX1X3; X2X3; X1X4gstores all the signi�cant subspaces, i.e. minimallycorrelated subspaces with good clustering.The details of the algorithm, called ENCLUS SIG,are given in Figure 6. Table 2 lists the notations used.The description of the procedures used in the algorithmis given as follows.cal density(c) Build a grid to count number of pointsthat fall in each cell of the grid as described inSection 4.1. The density of each cell can thus beestimated.cal entropy(fc(�)) Calculate the entropy using thedensity information obtained from scanning the dataset.candidate gen(NSk) Generate the candidate sub-spaces for (k + 1) dimensions using NSk. Thereis a join step and a prune step in the candidate gen-eration function. The join step can be expressed bythe following pseudo-code. It joins two subspaceshaving common �rst (k � 1) dimensions.insert into Ck+1select p:dim1; p:dim2; : : : ; p:dimk; q:dimkfrom NSk p, NSk qwhere p:dim1 = q:dim1; : : : ; p:dimk�1 =q:dimk�1; p:dimk < q:dimkIn the prune step, any subspace having a k-dimensional projection outside NSk is removed.6.3 Mining Interesting SubspacesSince correlation can usually be detected at low dimen-sion, the mining of high dimensional clusters is oftenavoided. This is good because low dimensional clus-ters are easier to interpret and the time for mining high 7



Algorithm 2 ENCLUS INT(!; �0)1 k = 12 Let Ck be all one-dimensional subspaces.3 For each subspace c 2 Ck do4 fc(�) = cal density(c)5 H(c) = cal entropy(fc(�))6 If H(c) < ! then7 If interest gain(c) > �0 then8 Ik = Ik [ c.9 else10 NIk = NIk [ c.11 End For12 Ck+1 = candidate gen(Ik [NIk)13 If Ck+1 = ;, go to step 16.14 k = k + 115 Go to step 3.16 Result = S8k IkFigure 7: Algorithm for mining interesting subspacesdimensional clusters can be saved. However, [6] didnot consider that sometimes we are interested in non-minimally correlated subspaces. For instance, A andB are correlated, but we may be interested in the sub-space ABC if ABC are more strongly correlated thanA and B alone. To measure the increase in correlation,we de�ne the term interest gain4. The interest gain forsubspace X1; : : : ; Xn is de�ned as follows.interest gain(fX1; : : : ; Xng)= interest(fX1; : : : ; Xng)�maxi finterest(fX1; : : : ; Xng � fXig)gThe interest gain for one dimensional subspace isde�ned to be 0. The interest gain of a k-dimensionalsubspace is the interest of the given subspace minus themaximuminterest of its (k�1)-dimensional projections.In other words, it is the increase in interest for addingan extra dimension.Our new goal becomes mining subspaces whoseentropy exceeds ! and interest gain exceeds a newthreshold �0. We call such subspaces to be interestingsubspaces. The mining of signi�cant subspace algorithmcan be modi�ed slightly to mine interesting subspaces.Figure 7 shows the modi�ed algorithm ENCLUS INT.Since we relax one of the pruning criteria, we expectmore candidates and a longer running time.4The de�nition of interest gain is equivalent to the mutualinformation between the original subspace Xi1 ; : : : ; Xin�1 anda new dimension Xin , i.e. I(Xi1 ; : : : ; Xin�1 ;Xin). We usethe term interest gain instead of \mutual information betweenthe original subspace and the new dimension" to simplify ourterminology.
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Figure 8: Entropy Threshold vs Running Time
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Figure 9: Interest Threshold vs Running Time (EN-CLUS SIG)7 ExperimentsTo evaluate the performance of the algorithms, we im-plemented our algorithms on Sun Ultra 5/270 work-station using GNU C++ compiler. High dimensionalsynthetic data were generated which contains clustersembedded in the subspaces. Our data generator allowsthe user to specify the dimensionality of data, the num-ber of subspaces containing clusters, the dimensionalityof clusters, the number of clusters in each subspace andthe number of transactions supporting each cluster. Un-less otherwise speci�ed, we use data of 10 dimensionsand 300,000 transactions in the experiments. Some �ve-dimensional clusters are embedded in the subspaces.Figure 8 shows the performance of the algorithmsunder di�erent values of !. We do not have a smoothcurve here, because when ! increases to a certain value,candidates of a higher dimension are introduced whichimpose a considerable amount of extra computation.From the �gure, we can see the running time of thealgorithm ENCLUS SIG ceases to increase when ! ishigh enough, because after that point, the pruningpower of entropy is negligible and most pruning isattributed to the upward closure property which isindependent of !. As for the algorithm ENCLUS INT,the running time keeps on increasing with ! becauseonly the entropy is utilized for pruning. 8



Figure 10: Pass No vs Percentage of Subspaces Pruned
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Figure 11: Scalability Test on Dimensionality of DataSetFigure 9 shows the performance of the ENCLUS SIGunder di�erent values of �. Again, the runningtime ceases to increase after the a certain point.This is because the pruning power of interest isnegligible and most pruning is done by entropy. Wehave also performed a similar set of experiments forENCLUS INT with ! = 8.5. The performance of theENCLUS INT under di�erent values of �0 is nearlyidentical, since only the entropy is used for pruning.The pruning power of the algorithm is illustrated inFigure 10. Our methods are compared to the naivealgorithm which examines all possible subspaces. Fromthe result, we can see our methods give signi�cantreduction on number of candidates in later passes.ENCLUS SIG always prunes more candidates thanENCLUS INT. This experiment is carried out with a20-dimensional data set.The result of the scalability test is shown in Figure 11.As expected, ENCLUS SIG outperforms ENCLUS INTbecause ENCLUS SIG only �nds minimally correlatedsubspaces while ENCLUS INT has to pay extra time tomine the non-minimally correlated subspaces. The gapbetween ENCLUS SIG and ENCLUS INT increaseswith the dimensionality, which suggests the pruningpower of the upward closure is more signi�cant there.We have experimented with up to 30 dimensions.For higher dimensions, the computation time would

increase further. We suggest that an approach similarto the minimal code length method in CLIQUE can beused which is based on entropy instead of coverage.To investigate the accuracy of the algorithms, we per-formed an experiment using a data set containing �ve5-dimensional clusters in �ve subspaces. ENCLUS INTsuccessfully discovers the �ve 5-dimensional subspacesthat contains our embedded clusters without report-ing false alarms of other 5-dimensional subspaces. EN-CLUS SIG expresses the correlated variables using anumber of two-dimensional subspaces. It does not ex-amine higher dimensional subspaces because they arenot minimally correlated.8 ConclusionWe propose to tackle the problem of mining numericaldata using clustering techniques since each transactionwith k attributes can be seen as a data point in ak-dimensional space. However, for large databases,there are typically a large number of attributes and thepatterns that occur in subsets of these attributes areimportant. Mining for clusters in subspaces is thereforean important problem. The proposed solution consistsof three steps, namely the identi�cation of subspacescontaining clusters, the discovery of clusters in selectedsubspaces and the presentation to the users. Weconcentrate on the subproblem of identifying subspacescontaining clusters because few works have been doneon it, one better known previous method is CLIQUE[2].We propose using three criteria for the goodnessof clustering in subspaces: coverage, density andcorrelation. Our proposed method is based on themeasure of entropy from information theory, whichtypically gives a lower value for a subspace with goodclustering. Although entropy has been used in decisiontrees for data mining [21, 22], to our knowledge,no previous work has used it for the problem ofsubspace clustering. We also justify the approach byestablishing some relationship between entropy and thethree criteria.Our algorithm incorporates the idea of using a pairof downward and upward closure properties, which are�rst used by [6] in the problem of mining correlationrules. This approach is shown e�ective in the reduc-tion of the search space. In our problem, the downwardclosure property is given by entropy while the upwardclosure property is given by the dimensional correla-tion. By the use of the two closure properties, the algo-rithm is expected to have good pruning power. Experi-ments have been carried out to show the proposed algo-rithm can correctly identify the signi�cant/interestingsubspaces and the pruning is e�ective and e�cient.Acknowlegments: We thank the anonymous refer- 9
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