
When Is \Nearest Neighbor" Meaningful?Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri ShaftCS Dept., University of Wisconsin-Madison1210 W. Dayton St., Madison, WI 53706fbeyer, jgoldst, raghu, urig@cs.wisc.eduAbstract. We explore the e�ect of dimensionality on the \nearest neigh-bor" problem. We show that under a broad set of conditions (muchbroader than independent and identically distributed dimensions), as di-mensionality increases, the distance to the nearest data point approachesthe distance to the farthest data point. To provide a practical perspec-tive, we present empirical results on both real and synthetic data setsthat demonstrate that this e�ect can occur for as few as 10-15 dimen-sions.These results should not be interpreted to mean that high-dimensionalindexing is never meaningful; we illustrate this point by identifying somehigh-dimensional workloads for which this e�ect does not occur. How-ever, our results do emphasize that the methodology used almost uni-versally in the database literature to evaluate high-dimensional indexingtechniques is awed, and should be modi�ed. In particular, most suchtechniques proposed in the literature are not evaluated versus simple lin-ear scan, and are evaluated over workloads for which nearest neighboris not meaningful. Often, even the reported experiments, when analyzedcarefully, show that linear scan would outperform the techniques beingproposed on the workloads studied in high (10-15) dimensionality!1 IntroductionIn recent years, many researchers have focused on �nding e�cient solutions tothe nearest neighbor (NN) problem, de�ned as follows: Given a collection of datapoints and a query point in an m-dimensional metric space, �nd the data pointthat is closest to the query point. Particular interest has centered on solving thisproblem in high dimensional spaces, which arise from techniques that approx-imate (e.g., see [24]) complex data|such as images (e.g. [15, 28, 29, 21, 29, 23,25, 18, 3]), sequences (e.g. [2, 1]), video (e.g. [15]), and shapes (e.g. [15, 30, 25,22])|with long \feature" vectors. Similarity queries are performed by taking agiven complex object, approximating it with a high dimensional vector to obtainthe query point, and determining the data point closest to it in the underlyingfeature space.This paper makes the following three contributions:1) We show that under certain broad conditions (in terms of data and query dis-tributions, or workload), as dimensionality increases, the distance to the nearestneighbor approaches the distance to the farthest neighbor. In other words, the



contrast in distances to di�erent data points becomes nonexistent. The conditionswe have identi�ed in which this happens are much broader than the indepen-dent and identically distributed (IID) dimensions assumption that other workassumes. Our result characterizes the problem itself, rather than speci�c algo-rithms that address the problem. In addition, our observations apply equally tothe k-nearest neighbor variant of the problem. When one combines this resultwith the observation that most applications of high dimensional NN are heuris-tics for similarity in some domain (e.g. color histograms for image similarity),serious questions are raised as to the validity of many mappings of similarityproblems to high dimensional NN problems. This problem can be further exac-erbated by techniques that �nd approximate nearest neighbors, which are usedin some cases to improve performance.2) To provide a practical perspective, we present empirical results based on syn-thetic distributions showing that the distinction between nearest and farthestneighbors may blur with as few as 15 dimensions. In addition, we performedexperiments on data from a real image database that indicate that these dimen-sionality e�ects occur in practice (see [13]). Our observations suggest that high-dimensional feature vector representations for multimedia similarity search mustbe used with caution. In particular, one must check that the workload yields aclear separation between nearest and farthest neighbors for typical queries (e.g.,through sampling). We also identify special workloads for which the concept ofnearest neighbor continues to be meaningful in high dimensionality, to empha-size that our observations should not be misinterpreted as saying that NN inhigh dimensionality is never meaningful.3) We observe that the database literature on nearest neighbor processing tech-niques fails to compare new techniques to linear scans. Furthermore, we caninfer from their data that a linear scan almost always out-performs their tech-niques in high dimensionality on the examined data sets. This is unsurprisingas the workloads used to evaluate these techniques are in the class of \badlybehaving" workloads identi�ed by our results; the proposed methods may wellbe e�ective for appropriately chosen workloads, but this is not examined in theirperformance evaluation.In summary, our results suggest that more care be taken when thinking ofnearest neighbor approaches and high dimensional indexing algorithms; we sup-plement our theoretical results with experimental data and a careful discussion.2 On the Signi�cance of \Nearest Neighbor"The NN problem involves determining the point in a data set that is nearestto a given query point (see Figure 1). It is frequently used in GeographicalInformation Systems (GIS), where points are associated with some geographicallocation (e.g., cities). A typical NN query is: \What city is closest to my currentlocation?"While it is natural to ask for the nearest neighbor, there is not always ameaningful answer. For instance, consider the scenario depicted in Figure 2.
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Fig. 1. Query point and its nearest neighbor.
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Fig. 2. Another query point and its nearest neighbor.Even though there is a well-de�ned nearest neighbor, the di�erence in distancebetween the nearest neighbor and any other point in the data set is very small.Since the di�erence in distance is so small, the utility of the answer in solvingconcrete problems (e.g. minimizing travel cost) is very low. Furthermore, considerthe scenario where the position of each point is thought to lie in some circle withhigh con�dence (see Figure 3). Such a situation can come about either fromnumerical error in calculating the location, or \heuristic error", which derivesfrom the algorithm used to deduce the point (e.g. if a at rather than a sphericalmap were used to determine distance). In this scenario, the determination of anearest neighbor is impossible with any reasonable degree of con�dence!While the scenario depicted in Figure 2 is very contrived for a geographicaldatabase (and for any practical two dimensional application of NN), we showthat it is the norm for a broad class of data distributions in high dimensionality.To establish this, we will examine the number of points that fall into a querysphere enlarged by some factor " (see Figure 4). If few points fall into thisenlarged sphere, it means that the data point nearest to the query point isseparated from the rest of the data in a meaningful way. On the other hand, ifmany (let alone most!) data points fall into this enlarged sphere, di�erentiating



Query PointFig. 3. The data points are approximations. Each circle denotes a region where thetrue data point is supposed to be.
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DMAXFig. 4. Illustration of query region and enlarged region. (DMIN is the distance to thenearest neighbor, and DMAX to the farthest data point.)the \nearest neighbor" from these other data points is meaningless if " is small.We use the notion instability for describing this phenomenon.De�nition 1 A nearest neighbor query is unstable for a given " if the distancefrom the query point to most data points is less than (1 + ") times the distancefrom the query point to its nearest neighbor.We show that in many situations, for any �xed " > 0, as dimensionality rises,the probability that a query is unstable converges to 1. Note that the pointsthat fall in the enlarged query region are the valid answers to the approximatenearest neighbors problem (described in [6]).3 NN in High-Dimensional SpacesThis section contains our formulation of the problem, our formal analysis of thee�ect of dimensionality on the meaning of the result, and some formal implica-tions of the result that enhance understanding of our primary result.



3.1 Notational ConventionsWe use the following notation in the rest of the paper:A vector: xProbability of an event e: P [e].Expectation of a random variable X: E [X ].Variance of a random variable X: var (X).IID: Independent and identically distributed.(This phrase is used with reference to the values assigned to a collection ofrandom variables.)X � F : A random variable X that takes on values following the distributionF .3.2 Some Results from Probability TheoryDe�nition 2 A sequence of random vectors (all vectors have the same arity)A1;A2; : : : converges in probability to a constant vector c if for all " > 0the probability of Am being at most " away from c converges to 1 as m ! 1.In other words: 8" > 0 , limm!1P [kAm � ck � "] = 1We denote this property by Am !p c. We also treat random variables that arenot vectors as vectors with arity 1.Lemma 1 If B1; B2; : : : is a sequence of random variables with �nite varianceand limm!1E [Bm] = b and limm!1 var (Bm) = 0 then Bm !p b.A version of Slutsky's theorem Let A1;A2; : : : be random variables (orvectors) and g be a continuous function. If Am !p c and g(c) is �nite theng(Am)!p g(c).Corollary 1 (to Slutsky's theorem) If X1; X2; : : : and Y1; Y2; : : : are se-quences or random variables s.t. Xm !p a and Ym !p b 6= 0 then Xm=Ym !pa=b.3.3 Nearest Neighbor FormulationGiven a data set and a query point, we want to analyze how much the distanceto the nearest neighbor di�ers from the distance to other data points. We dothis by evaluating the number of points that are no farther away than a factor" larger than the distance between the query point and the NN, as illustratedin Figure 4. When examining this characteristic, we assume nothing about thestructure of the distance calculation.We will study this characteristic by examining the distribution of the dis-tance between query points and data points as some variable m changes. Notethat eventually, we will interpret m as dimensionality. However, nowhere in the



following proof do we rely on that interpretation. One can view the proof asa convergence condition on a series of distributions (which we happen to calldistance distributions) that provides us with a tool to talk formally about the\dimensionality curse".We now introduce several terms used in stating our result formally.De�nition 3 :m is the variable that our distance distributions may converge under (m rangesover all positive integers).F data1; F data2; : : : is a sequence of data distributions.F query1; F query2; : : : is a sequence of query distributions.n is the (�xed) number of samples (data points) from each distribution.8m Pm;1; : : : ; Pm;n are n independent data points per m such that Pm;i �F datam.Qm � F querym is a query point chosen independently from all Pm;i.0 < p <1 is a constant.8m; dm is a function that takes a data point from the domain of F datam and aquery point from the domain of F querym and returns a non-negative real numberas a result.DMINm = min fdm(Pm;i; Qm) j1 � i � ng.DMAXm = max fdm(Pm;i; Qm) j1 � i � ng.3.4 Instability ResultOur main theoretical tool is presented below. In essence, it states that assumingthe distance distribution behaves a certain way as m increases, the di�erence indistance between the query point and all data points becomes negligible (i.e., thequery becomes unstable). Future sections will show that the necessary behaviordescribed in this section identi�es a large class (larger than any other classeswe are aware of for which the distance result is either known or can be readilyinferred from known results) of workloads. More formally, we show:Theorem 1 Under the conditions in De�nition 3, iflimm!1 var� (dm(Pm;1; Qm))pE [(dm(Pm;1; Qm))p]� = 0 (1)Then for every " > 0limm!1P [DMAXm � (1 + ")DMINm] = 1Proof Let �m = E [(dm(Pm;i; Qm))p]. (Note that the value of this expectationis independent of i since all Pm;i have the same distribution.)Let Vm = (dm(Pm;1; Qm))p=�m.Part 1: We'll show that Vm !p 1.



It follows that E [Vm] = 1 (because Vm is a random variable divided by itsexpectation.)Trivially, limm!1E [Vm] = 1.The condition of the theorem (Equation 1) means that limm!1 var (Vm) = 0.This, combined with limm!1E [Vm] = 1, enables us to use Lemma 1 to concludethat Vm !p 1.Part 2: We'll show that if Vm !p 1 thenlimm!1P [DMAXm � (1 + ")DMINm] = 1:Let Xm = (dm(Pm;1; Qm)=�m; : : : ; dm(Pm;n; Qm)=�m) (a vector of arity n).Since each part of the vector Xm has the same distribution as Vm, it followsthat Xm !p (1; : : : ; 1).Since min and max are continuous functions we can conclude from Slutsky'stheorem that min(Xm)!p min(1; : : : ; 1) = 1, and similarly, max(Xm)!p 1.Using Corollary 1 on max(Xm) and min(Xm) we getmax(Xm)min(Xm) !p 11 = 1Note that DMINm = �mmin(Xm) and DMAXm = �mmax(Xm). So,DMAXmDMINm = �mmax(Xm)�mmin(Xm) = max(Xm)min(Xm)Therefore, DMAXmDMINm !p 1By de�nition of convergence in probability we have that for all " > 0,limm!1P �����DMAXmDMINm � 1���� � "� = 1Also,P [DMAXm � (1 + ")DMINm] = P �DMAXmDMINm � 1 � "� = P �����DMAXmDMINm � 1���� � "�(P [DMAXm � DMINm] = 1 so the absolute value in the last term has no e�ect.)Thus,limm!1P [DMAXm � (1 + ")DMINm] = limm!1P �����DMAXmDMINm � 1���� � "� = 1In summary, the above theorem says that if the precondition holds (i.e., if thedistance distribution behaves a certain way as m increases), all points converge



to the same distance from the query point. Thus, under these conditions, theconcept of nearest neighbor is no longer meaningful.We may be able to use this result by directly showing that Vm !p 1 and usingpart 2 of the proof. (For example, for IID distributions, Vm !p 1 follows readilyfrom the Weak Law of Large Numbers.) Later sections demonstrate that ourresult provides us with a handy tool for discussing scenarios resistant to analysisusing law of large numbers arguments. From a more practical standpoint, thereare two issues that must be addressed to determine the theorem's impact:{ How restrictive is the conditionlimm!1 var� (dm(Pm;1; Qm))pE [(dm(Pm;1; Qm))p]� == limm!1 var ((dm(Pm;1; Qm))p)(E [(dm(Pm;1; Qm))p])2 = 0 (2)which is necessary for our results to hold? In other words, it says that aswe increase m and examine the resulting distribution of distances betweenqueries and data, the variance of the distance distribution scaled by theoverall magnitude of the distance converges to 0. To provide a better under-standing of the restrictiveness of this condition, Sections 3.5 and 4 discussscenarios that do and do not satisfy it.{ For situations in which the condition is satis�ed, at what rate do distances be-tween points become indistinct as dimensionality increases? In other words,at what dimensionality does the concept of \nearest neighbor" become mean-ingless? This issue is more di�cult to tackle analytically. We therefore per-formed a set of simulations that examine the relationship between m and theratio of minimum and maximum distances with respect to the query point.The results of these simulations are presented in Section 5 and in [13].3.5 Application of Our Theoretical ResultThis section analyses the applicability of Theorem 1 in formally de�ned situ-ations. This is done by determining, for each scenario, whether the conditionin Equation 2 is satis�ed. Due to space considerations, we do not give a proofwhether the condition in Equation 2 is satis�ed or not. [13] contains a full anal-ysis of each example.All of these scenarios de�ne a workload and use an Lp distance metric overmultidimensional query and data points with dimensionality m. (This makes thedata and query points vectors with aritym.) It is important to notice that this isthe �rst section to assign a particular meaning to dm (as an Lp distance metric),p (as the parameter to Lp), and m (as dimensionality). Theorem 1 did not makeuse of these particular meanings.We explore some scenarios that satisfy Equation 2 and some that do not. Westart with basic IID assumptions and then relax these assumptions in variousways. We start with two \sanity checks": we show that distances converge with



IID dimensions (Example 1), and we show that Equation 2 is not satis�ed whenthe data and queries fall on a line (Example 2). We then discuss examples involv-ing correlated attributes and di�ering variance between dimensions, to illustratescenarios where the Weak Law of Large Numbers cannot be applied (Examples3, 4, and 5).Example 1 IID Dimensions with Query and Data Independence.Assume the following:{ The data distribution and query distribution are IID in all dimensions.{ All the appropriate moments are �nite (i.e., up to the d2pe'th moment).{ The query point is chosen independently of the data points.The conditions of Theorem 1 are satis�ed under these assumptions. While thisresult is not original, it is a nice \sanity check." (In this very special case wecan prove Part 1 of Theorem 1 by using the weak law of large numbers. How-ever, this is not true in general.) The assumptions of this example are by nomeans necessary for Theorem 1 to be applicable. Throughout this section, thereare examples of workloads which cannot be discussed using the Weak Law ofLarge Numbers. While there are innumerable slightly stronger versions of theWeak Law of Large Numbers, Example 5 contains an example which meets ourcondition, and for which the Weak Law of Large Numbers is inapplicable.Example 2 Identical Dimensions with no Independence.We use the same notation as in the previous example. In contrast to the previouscase, consider the situation where all dimensions of both the query point andthe data points follow identical distributions, but are completely dependent (i.e.,value for dimension 1 = value for dimension 2 = : : :). Conceptually, the resultis a set of data points and a query point on a diagonal line. No matter howmany dimensions are added, the underlying query can actually be converted toa one-dimensional nearest neighbor problem. It is not surprising to �nd that thecondition of Theorem 1 is not satis�ed.Example 3 Unique Dimensions with Correlation Between All Dimensions.In this example, we intentionally break many assumptions underlying the IIDcase. Not only is every dimension unique, but all dimensions are correlated withall other dimensions and the variance of each additional dimension increases.The following is a description of the problem.We generate anm dimensional data point (or query point)Xm = (X1; : : : ; Xm)as follows:{ First we take independent random variablesU1; : : : ; Um such that Ui � Uniform(0;pi).{ We de�ne X1 = U1.{ For all 2 � i � m de�ne Xi = Ui + (Xi�1=2).



The condition of Theorem 1 is satis�ed.Example 4 Variance Converging to 0.This example illustrates that there are workloads that meet the preconditions ofTheorem 1, even though the variance of the distance in each added dimensionconverges to 0. One would expect that only some �nite number of the earlierdimensions would dominate the distance. Again, this is not the case.Suppose we choose a point Xm = (X1; : : : ; Xm) such that the Xi's are inde-pendent and Xi � N(0; 1=i). Then the condition of Theorem 1 is satis�ed.Example 5 Marginal Data and Query Distributions Change with Dimension-ality.In this example, the marginal distributions of data and queries change with di-mensionality. Thus, the distance distribution as dimensionality increases cannotbe described as the distance in a lower dimensionality plus some new componentfrom the new dimension. As a result, the weak law of large numbers, which im-plicitly is about sums of increasing size, cannot provide insight into the behaviorof this scenario. The distance distributions must be treated, as our techniquesuggests, as a series of random variables whose variance and expectation can becalculated and examined in terms of dimensionality.Let the m dimensional data space Sm be the boundary of an m dimensionalunit hyper-cube. (i.e., Sm = [0; 1]m � (0; 1)m). In addition, let the distributionof data points be uniform over Sm. In other words, every point in Sm has equalprobability of being sampled as a data point. Lastly, the distribution of querypoints is identical to the distribution of data points.Note that the dimensions are not independent. Even in this case, the condi-tion of Theorem 1 is satis�ed.4 Meaningful Applications of High Dimensional NNIn this section, we place Theorem 1 in perspective, and observe that it shouldnot be interpreted to mean that high-dimensional NN is never meaningful. Wedo this by identifying scenarios that arise in practice and that are likely to havegood separation between nearest and farthest neighbors.4.1 Classi�cation and Approximate MatchingTo begin with, exact match and approximate match queries can be reasonable.For instance, if there is dependence between the query point and the data pointssuch that there exists some data point that matches the query point exactly, thenDMINm = 0. Thus, assuming that most of the data points aren't duplicates, ameaningful answer can be determined. Furthermore, if the problem statement isrelaxed to require that the query point be within some small distance of a datapoint (instead of being required to be identical to a data point), we can still call
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Nearest ClusterFig. 5. Nearest neighbor query in clustered data.the query meaningful. Note, however, that staying within the same small distancebecomes more and more di�cult as m increases since we are adding terms to thesum in the distance metric. For this version of the problem to remain meaningfulas dimensionality increases, the query point must be increasingly closer to somedata point.We can generalize the situation further as follows: The data consists of a set ofrandomly chosen points together with additional points distributed in clustersof some radius � around one or more of the original points, and the query isrequired to fall within one of the data clusters (see Figure 5). This situationis the perfectly realized classi�cation problem, where data naturally falls intodiscrete classes or clusters in some potentially high dimensional feature space.Figure 6 depicts a typical distance distribution in such a scenario. There is acluster (the one into which the query point falls) that is closer than the others,which are all, more or less, indistinguishable in distance. Indeed, the properresponse to such a query is to return all points within the closest cluster, notjust the nearest point (which quickly becomes meaningless compared to otherpoints in the cluster as dimensionality increases).Observe however, that if we don't guarantee that the query point falls withinsome cluster, then the cluster from which the nearest neighbor is chosen is subjectto the same meaningfulness limitations as the choice of nearest neighbor in theoriginal version of the problem; Theorem 1 then applies to the choice of the\nearest cluster".4.2 Implicitly Low DimensionalityAnother possible scenario where high dimensional nearest neighbor queries aremeaningful occurs when the underlying dimensionality of the data is much lowerthan the actual dimensionality. There has been recent work on identifying thesesituations (e.g. [17, 8, 16]) and determining the useful dimensions (e.g. [20], whichuses principal component analysis to identify meaningful dimensions). Of course,these techniques are only useful if NN in the underlying dimensionality is mean-ingful.
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Fig. 6. Probability density function of distance between random clustered data andquery points.5 Experimental Studies of NNTheorem 1 only tells us what happens when we take the dimensionality to in-�nity. In practice, at what dimensionality do we anticipate nearest neighbors tobecome unstable? In other words, Theorem 1 describes some convergence butdoes not tell us the rate of convergence. We addressed this issue through em-pirical studies. Due to lack of space, we present only three synthetic workloadsand one real data set. [13] includes additional synthetic workloads along withworkloads over a second real data set.We ran experiments with one IID uniform(0,1) workload and two di�erentcorrelated workloads. Figure 7 shows the average DMAXm=DMINm as dimen-sionality increases of 1000 query points on synthetic data sets of one milliontuples. The workload for the \recursive" line (described in Example 3) hascorrelation between every pair of dimensions and every new dimension has alarger variance. The \two degrees of freedom" workload generates query anddata points on a two dimensional plane, and was generated as follows:{ Let a1; a2; : : : and b1; b2; : : : be constants in (-1,1).{ Let U1; U2 be independent uniform(0,1).{ For all 1 � i � m let Xi = aiU1 + biU2.This last workload does not satisfy Equation 2. Figure 7 shows that the \twodegrees of freedom" workload behaves similarly to the (one or) two dimensionaluniform workload, regardless of the dimensionality. However, the recursive work-load (as predicted by our theorem) was a�ected by dimensionality. More in-terestingly, even with all the correlation and changing variances, the recursiveworkload behaved almost the same as the IID uniform case!This graph demonstrates that our geometric intuition for nearest neighbor,which is based on one, two, and three dimensions, fails us at an alarming rate as
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Fig. 7. Correlated distributions, one million tuples.dimensionality increases. The distinction between nearest and farthest points,even at ten dimensions, is a tiny fraction of what it is in one, two, or threedimensions. For one dimension, DMAXm=DMINm for \uniform" is on the orderof 107, providing plenty of contrast between the nearest object and the farthestobject. At 10 dimensions, this contrast is already reduced by 6 orders of mag-nitude! By 20 dimensions, the farthest point is only 4 times the distance to theclosest point. These empirical results suggest that NN can become unstable withas few as 10-20 dimensions.Figure 8 shows results for experiments done on a real data set. The dataset was a 256 dimensional color histogram data set (one tuple per image) thatwas reduced to 64 dimensions by principal components analysis. There wereapproximately 13; 500 tuples in the data set. We examine k-NN rather than NNbecause this is the traditional application of image databases.To determine the quality of answers for NN queries, we examined the per-centage of queries in which at least half the data points were within some factorof the nearest neighbor. Examine the graph at median distance/k distance = 3.The graph says that for k = 1 (normal NN problem), 15% of the queries had atleast half the data within a factor of 3 of the distance to the NN. For k = 10,50% of the queries had at least half the data within a factor of 3 of the distanceto the 10th nearest neighbor. It is easy to see that the e�ect of changing k onthe quality of the answer is most signi�cant for small values of k.
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k = 1000Fig. 8. 64-D color histogram data.Does this data set provide meaningful answers to the 1-NN problem? the 10-NN problem? the 100-NN problem? Perhaps, but keep in mind that the data setwas derived using a heuristic that approximates image similarity. Furthermore,the nearest neighbor contrast is much lower than our intuition suggests (i.e., 2or 3 dimensions). A careful evaluation of the relevance of the results is de�nitelycalled for.6 Analyzing the Performance of a NN ProcessingTechniqueIn this section, we discuss the rami�cations of our results when evaluating tech-niques to solve the NN problem; in particular, many high-dimensional indexingtechniques have been motivated by the NN problem. An important point that wemake is that all future performance evaluations of high dimensional NN queriesmust include a comparison to linear scans as a sanity check.First, our results indicate that while there exist situations in which highdimensional nearest neighbor queries are meaningful, they are very speci�c innature and are quite di�erent from the \independent dimensions" basis that moststudies in the literature (e.g., [31, 19, 14, 10, 11]) use to evaluate techniques in acontrolled manner. In the future, these NN technique evaluations should focuson those situations in which the results are meaningful. For instance, answers



are meaningful when the data consists of small, well-formed clusters, and thequery is guaranteed to land in or very near one of these clusters.In terms of comparisons between NN techniques, most papers do not compareagainst the trivial linear scan algorithm. Given our results, which argue that inmany cases, as dimensionality increases, all data becomes equidistant to all otherdata, it is not surprising that in as few as 10 dimensions, linear scan handilybeats these complicated indexing structures. 1 We give a detailed and formaldiscussion of this phenomenon in [27].For instance, the performance study of the parallel solution to the k-nearestneighbors problem presented in [10] indicates that their solution scales morepoorly than a parallel scan of the data, and never beats a parallel scan in anyof the presented data.[31] provides us with information on the performance of both the SS tree andthe R* tree in �nding the 20 nearest neighbors. Conservatively assuming thatlinear scans cost 15% of a random examination of the data pages, linear scanoutperforms both the SS tree and the R* tree at 10 dimensions in all cases. In[19], linear scan vastly outperforms the SR tree in all cases in this paper for the16 dimensional synthetic data set. For a 16 dimensional real data set, the SRtree performs similarly to linear scan in a few experiments, but is usually beatenby linear scan. In [14], performance numbers are presented for NN queries wherebounds are imposed on the radius used to �nd the NN. While the performance inhigh dimensionality looks good in some cases, in trying to duplicate their resultswe found that the radius was such that few, if any, queries returned an answer.While performance of these structures in high dimensionality looks very poor,it is important to keep in mind that all the reported performance studies exam-ined situations in which the distance between the query point and the nearestneighbor di�ered little from the distance to other data points. Ideally, they shouldbe evaluated for meaningful workloads. These workloads include low dimensionalspaces and clustered data/queries as described in Section 4. Some of the existingstructures may, in fact, work well in appropriate situations.7 Related Work7.1 The Curse of DimensionalityThe term dimensionality curse is often used as a vague indication that highdimensionality causes problems in some situations. The term was �rst used byBellman in 1961 [7] for combinatorial estimation of multivariate functions. Anexample from statistics: in [26] it is used to note that multivariate density esti-mation is very problematic in high dimensions.1 Linear scan of a set of sequentially arranged disk pages is much faster than unorderedretrieval of the same pages; so much so that secondary indexes are ignored by queryoptimizers unless the query is estimated to fetch less than 10% of the data pages.Fetching a large number of data pages through a multi-dimensional index usuallyresults in unordered retrieval.



In the area of the nearest neighbors problem it is used for indicating that aquery processing technique performs worse as the dimensionality increases. In[11, 5] it was observed that in some high dimensional cases, the estimate of NNquery cost (using some index structure) can be very poor if \boundary e�ects"are not taken into account. The boundary e�ect is that the query region (i.e., asphere whose center is the query point) is mainly outside the hyper-cubic dataspace. When one does not take into account the boundary e�ect, the query costestimate can be much higher than the actual cost. The term dimensionality cursewas also used to describe this phenomenon.In this paper, we discuss the meaning of the nearest neighbor query and nothow to process such a query. Therefore, the term dimensionality curse (as usedby the NN research community) is only relevant to Section 6, and not to themain results in this paper.7.2 Computational GeometryThe nearest neighbor problem has been studied in computational geometry (e.g.,[4{6, 9, 12]). However, the usual approach is to take the number of dimensionsas a constant and �nd algorithms that behave well when the number of points islarge enough. They observe that the problem is hard and de�ne the approximatenearest neighbor problem as a weaker problem. In [6] there is an algorithm thatretrieves an approximate nearest neighbor in O(logn) time for any data set. In[9] there is an algorithm that retrieves the true nearest neighbor in constantexpected time under the IID dimensions assumption. However, the constants forthose algorithms are exponential in dimensionality. In [6] they recommend notto use the algorithm in more than 12 dimensions. It is impractical to use thealgorithm in [9] when the number of points is much lower than exponential inthe number of dimensions.7.3 Fractal DimensionsIn [17, 8, 16] it was suggested that real data sets usually have fractal properties(self-similarity, in particular) and that fractal dimensionality is a good tool indetermining the performance of queries over the data set.The following example illustrates that the fractal dimensionality of the dataspace from which we sample the data points may not always be a good indicatorfor the utility of nearest neighbor queries. Suppose the data points are sampleduniformly from the vertices of the unit hypercube. The data space is 2m points(in m dimensions), so its fractal dimensionality is 0. However, this situationis one of the worst cases for nearest neighbor queries. (This is actually the IIDBernoulli(1=2) which is even worse than IID uniform.) When the number of datapoints in this scenario is close to 2m, nearest neighbor queries become stable,but this is impractical for large m.However, are there real data sets for which the (estimated) fractal dimension-ality is low, yet there is no separation between nearest and farthest neighbors?This is an intriguing question that we intend to explore in future work.



We used the technique described in [8] on two real data sets (described in[13]). However, the fractal dimensionality of those data sets could not be esti-mated (when we divided the space once in each dimension, most of the datapoints occupied di�erent cells). We used the same technique on an arti�cial 100dimensional data set that has known fractal dimensionality 2 and about thesame number of points as the real data sets (generated like the \two degrees offreedom" workload in Section 5, but with less data). The estimate we got forthe fractal dimensionality is 1:6 (which is a good estimate). Our conclusion isthat the real data sets we used are inherently high dimensional; another possibleexplanation is that they do not exhibit fractal behavior.8 ConclusionsIn this paper, we studied the e�ect of dimensionality on NN queries. In particular,we identi�ed a broad class of workloads for which the di�erence in distancebetween the nearest neighbor and other points in the data set becomes negligible.This class of distributions includes distributions typically used to evaluate NNprocessing techniques. Many applications use NN as a heuristic (e.g., featurevectors that describe images). In such cases, query instability is an indicationof a meaningless query. This problem is worsened by the use of techniques thatprovide an approximate nearest neighbor to improve performance.To �nd the dimensionality at which NN breaks down, we performed exten-sive simulations. The results indicated that the distinction in distance decreasesfastest in the �rst 20 dimensions, quickly reaching a point where the di�erencein distance between a query point and the nearest and farthest data points dropsbelow a factor of four. In addition to simulated workloads, we also examined tworeal data sets that behaved similarly (see [13]).In addition to providing intuition and examples of distributions in that class,we also discussed situations in which NN queries do not break down in highdimensionality. In particular, the ideal data sets and workloads for classi�ca-tion/clustering algorithms seem reasonable in high dimensionality. However, ifthe scenario is deviated from (for instance, if the query point does not lie in acluster), the queries become meaningless.The practical rami�cations of this paper are for the following two scenarios:Evaluating a NN workload. Make sure that the distance distribution (be-tween a random query point and a random data point) allows for enoughcontrast for your application. If the distance to the nearest neighbor is notmuch di�erent from the average distance, the nearest neighbor may not beuseful (or the most \similar").Evaluating a NN processing technique. When evaluating a NN processingtechnique, test it on meaningful workloads. Examples for such workloads aregiven in Section 4. In addition, the evaluation of the technique for a particularworkload should take into account any approximations that the techniqueuses to improve performance. Also, one should ensure that a new processingtechnique outperforms the most trivial solutions (e.g., sequential scan).
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