
1/13

COMP5331 Knowledge Discovery in Databases (Fall Semester 2019)
Homework 1 Solution

Q1

(a)
Yes. It can be adapted.

First of all, we obtain the 2-sequence by scanning the database.
(NOTE: The 2-sequence contains two kinds of sequences – (1) the sequence contains only one timestamp
entry (e.g. <{D, E}>) and (2) the sequence contains two or more timestamp entries (e.g. <{D}, {E}>).

The Apriori-like algorithm is described as follows.
1. k=2
2. Find all frequent 2-sequences and store them in Lk
3. repeat
4. k=k+1
5. Generate candidate k-sequences from Lk-1 (which will be described later) and store them in Ck
6. Scan the database and count the support of each candidate in Ck
7. Find the k-sequence in Ck with support ≧ minsupport and store them in Lk
8. until Lk = empty set
9. return Li for i=2,…k

e.g.
We obtain the following 2-sequences.
 {<{A}, {D}>, <{A}, {E}>, <{A}, (G}>, <{D, E}> }

Next, we generate the candidate 3-sequences by the join-and-prune process.

The join step of the generation process is described as follows.
A sequence s(1) is joined with another sequence s(2) only if the subsequence obtained by dropping the first
item in s(1) is identical to the subsequence obtained by dropping the last item in s(2). The resulting candidate
is the sequence s(1), concatenated with the last item from s(2). The last item from s(2) can either be joined into
the same timestamp element as the last item in s(1) or different timestamp elements depending on the
following conditions.
1. If the last two items in s(2) belong the same timestamp element, then the last item in s(2) is part of the

last timestamp element in s(1) in the joined sequence. (e.g. Suppose we have frequent sequences
<{A},{B},{C}> and <{B},{C, D}> in Lk-1. Candidate <{A},{B},{C, D}> is obtained by joining
<{A},{B},{C}> and <{B), {C, D}>).

2. If the last two items in s(2) belong to different timestamp elements, then the last item in s(2) becomes a
separate timestamp element appended to the end of s(1) in the joined sequence. (e.g. Suppose we have
frequent sequences <{A},{B},{C}> and <{B},{C},{D}> in Lk-1. Candidate <{A},{B},{C},{D}> is
obtained by joining <{A},{B},{C}> and <{B},{C},{D}>).

e.g. In the running example, we obtain one candidate 3-sequence <{A}, {D,E}> (by joining <{A}, {D}>
and <{D, E}>) after the join step.

The prune step of the generation process is described as follows.
A candidate k-sequence is pruned if at least one of its (k-1)-sequence is infrequent.

2/13

For example, <{A}, {D,E}> is a candidate 3-sequence. We need to check whether <{A}, {E}> is a frequent
2-sequence (NOTE: We do not need to check whether <{A}, {D}> and <{D, E}> are frequent 2-sequence
because <{A}, {D,E}> was generated from these two frequent sequences). Since <{A}, {E}> is frequent,
<{A}, {D,E}> is also considered as a candidate 3-sequence after the prune step.

Then, we do the counting step to count the support of each candidate in the set.
As the support of <{A}, {D,E}> is 2, then it is one of the final results.

We repeat the process until Lk is an empty set.

In our running example, all sequences with support at least 2 are {<{A}, {D,E}> }

(b)
No. This is because if a k-sequence is frequent, it is not necessarily true that all its sub-sequences are
frequent.

Consider an example with the following 4 transactions.
 Customer W, Rich = Yes, time 1, items A, B, C
 Customer X, Rich = Yes, time 2, items A, B, C
 Customer Y, Rich = No, time 3, items A, B, C
 Customer Z, Rich = No, time 4, items A, B
The above transactions can be transformed into four sequences as follows.
W, Yes: <{A, B, C}>
X, Yes: <{A, B, C}>
Y, No: <{A, B, C}>
Z, No: <{A, B}>

The supports of <{A, B, C}> with respect to values “Yes” and “No” are 2 and 1, respectively.
Thus, the important ratio of <{A, B, C}> is 2/1 = 2.

Consider a sub-sequence of <{A,B,C}>, i.e., <{A, B}>.
The supports of <{A, B}> with respect to values “Yes” and “No” are both 2.
Thus, the important ratio of <{A, B}> is 2/2 = 1 < 2.

Note that <{A, B}> is a subsequence of <{A, B, C}> but the important ratio of <{A, B}> is smaller than

the important ratio of <{A, B, C}>. Thus, the apriori property is not satisfied. Thus, we cannot adapt the
Apriori algorithm.

3/13

Q2

(a)
(i) {C}, {D}

(ii) {C, D}, {A, C}, {A, D}

(iii) {A, C, D}, {B, E, F}

(b)
Yes. It can be adapted.

There is a support threshold s which changes over time.
Initially, it is set to 1.
According to the current threshold value equal to 1, we build an FP-tree.

Initially, we have three variables, L1, L2 and L3.
L1 is a variable storing the current-best S1, 2.
L2 is a variable storing the current-best S2, 2.
L3 is a variable storing the current-best S3, 2.
Initially, each of these variables is set to an empty set.

We also have three variables, x1, x2 and x3.
x1 is a variable storing the 2nd (or l-th) greatest value of the multi-set containing the supports of all itemsets
in L1
x2 is a variable storing the 2nd (or l-th) greatest value of the multi-set containing the supports of all itemsets
in L2
x3 is a variable storing the 2nd (or l-th) greatest value of the multi-set containing the supports of all itemsets
in L3
Initially, each of these variables is set to 1.

From the FP-tree above, construct the FP-conditional tree for each item (or itemset) according to the current
value of the support threshold s.

The method is the same as the original FP-growth algorithm.
However, there is the following modification.
Whenever we generate the frequent itemsets from the current conditional FP-tree according to the current
threshold s (which is being updated), for each frequent itemset just generated, if the size of the itemset is K
where K = 1, 2 and 3, we do the following. (Otherwise, we do nothing).

a. Set a variable x to the 2nd (or l-th) greatest value of the multi-set containing the supports of all
itemsets in LK (If there are fewer than 2 (or l) values in this multi-set, x is set to 1.)

b. If the support of this itemset is greater than x, we insert it into LK.
c. Update variable x again to be the 2nd (or l-th) greatest value of the multi-set containing the supports

of all itemsets in the updated LK
d. Remove all itemsets in LK with support smaller than x
e. Update xK to max{xK, x}
f. Update the support threshold s to be min{x1, x2, x3}

4/13

Example

Counting:

A 2 C 3
B 1 D 3
C 3 Sorting A 2
D 3 B 1
E 1 E 1
F 1 F 1

 Items (Ordered) frequent items
 C, D C, D
 B, E, F B, E, F
 A, C, D C, D, A
 A, C, D C , D, A

 FP-tree

 C
 D
 A
 B
 E
 F

 Conditional FP-tree on F (count = 1)
 B: 1, E: 1, F: 1

 B L1 = {F: 1}
 E L2 = {BF: 1, EF: 1}

 L3 = {BEF: 1}

root

C: 3 B: 1

D: 3 E: 1

A: 2 F: 1

B: 1

E: 1

5/13

Conditional FP-tree on E (count = 1)
 B: 1, E: 1

 B L1 = {E:1, F: 1}
 L2 = {BE: 1, BF: 1, EF: 1}

 L3 = {BEF: 1}

 Conditional FP-tree on B (count = 1)
 B: 1

 L1 = {B: 1, E:1, F: 1}
 L2 = {BE: 1, BF: 1, EF: 1}

 L3 = {BEF: 1}

 Conditional FP-tree on A (count = 2)
 C: 2, D: 2, A: 2

 C L1 = {A: 2, B: 1, E: 1, F: 1}
 D L2 = {AC: 2, AD: 2}

 L3 = {ACD: 2, BEF: 1}

 Conditional FP-tree on D (count = 3)
 C: 3, D: 3

 C L1 = {A: 2, D: 3}
 L2 = {AD: 3, AC: 2, AD: 2}

 L3 = {ACD: 2, BEF: 1}

 Conditional FP-tree on C (count = 3)
 C: 3

 L1 = {C: 3, D: 3}
 L2 = {AD: 3, AC: 2, AD: 2}

 L3 = {ACD: 2, BEF: 1}

B: 1

C: 2

D: 2

C: 3

Final result

6/13

(c)
1. By finding Sk,l , we control the number of the resulting frequent itemsets (e.g., in case that finding
frequent itemsets in the traditional problem returns a huge number of frequent itemsets, finding the frequent
itemsets of Sk,l can reduce the resulting frequent itemsets by returning some top ones only.).
2. In the traditional problem of finding frequent itemsets, setting the hard threshold of support is not user-
friendly. To deal with this issue, instead of specifying a hard “absolute” threshold, we can use a soft
“relative” threshold.
Q3.
(a) No. This is because this algorithm terminates when k is equal to the total number of data points. In this
case, ek is equal to 0. Even if k is larger, ek is also equal to 0 and thus ek converges. The value k is not what
we desire because we want to group “similar” points.
Alg:
a. First, multiply each attribute of each data point by a positive real number such that the “closest” pair
between two points is at least 1.0.
b. Second, define dk to be the product of the distances between any two clusters according to distance
“single linkage”.
c. We change Step 4 from ek to dk .
d. We change Step 5 to the following:

We repeat Step 3 to Step 4 for different possible values of k and obtain the corresponding values of
dk.

 e. We find the k s.t. dk is maximized.

The reasons are:
1. If k is larger than the number of clusters, in k-means, one single cluster will be represented by more than
one means. In other words, the real cluster is split into a number of groups in k-means. It is expected that
these groups are very close and thus dk is small.
2. If k is smaller than the number of clusters, in k-means, two or more clusters will be represented by one
mean/group.
 There are two cases:

 Case 1:

One cluster is split into two or more groups.
In the example, when k=2, cluster 2 is split into group 1 and group 2. It is easy to see that dk is small.

 Case 2:

Cluster 3

Cluster 2

Cluster 1

Group1 Group 2

7/13

In this example, when k=2, cluster 1 and cluster 2 completely belong to group 1 while cluster 3 and
cluster 4 completely belong to group 2.
In this case, we know that the separation between group 1 and group 2 is large and thus dk is large.
However, when k=4, we have

Obviously, dk in this case is larger.

In conclusion, if we find k s.t. dk is maximized, we can find a good value for the number of clusters.

(b) The distance metric between a point p and the cluster center c can be modified as follows.
Let Xp be a “special” cluster containing only p.
Let Xc be the cluster representing the cluster center c which contains some assigned points.
The first assigned point of Xc is the point closest to c for each c.
The distance metric between a point p and the cluster enter c is equal to the distance between Xp and Xc
according to the single linkage distance in an iterative manner.
While there are still remaining points, find a remaining point p and a cluster X such that the distance
between p and X is the shortest and assign p to cluster X.

Cluster 3

Cluster 4

Cluster 2

Cluster 1

Group 1 Group 2

Cluster 2 Cluster 4

Cluster 3 Cluster 1

Group 1

Group 2

Group 3

Group 4

8/13

Q4.
(a) (i)

 1 2 3 4 5 6 7 8

1 0

2 12 0

3 2 12.17 0

4 12.65 4 12.17 0

5 4.24 15.3 3.16 15.03 0

6 14.32 3.61 14.87 7.28 18.03 0

7 10.3 11.4 12.08 14.76 14.42 10.82 0

8 20.62 21.19 18.68 17.46 18.79 24.7 29 0

 (ii)

 1 2 3 4 5 6 7 8

1 0

2 12 0

3 2 12.17 0

4 12.65 4 12.17 0

5 4.24 15.3 3.16 15.03 0

6 14.32 3.61 14.87 7.28 18.03 0

7 10.3 11.4 12.08 14.76 14.42 10.82 0

8 20.62 21.19 18.68 17.46 18.79 24.7 29 0

Mean of the following clusters:
 {1} : (20, 15)
 {2} : (8, 15)
 {3} : (20, 17)

{4} : (8, 19)
 {5} : (23, 18)
 {6} : (6, 12)
 {7} : (15, 6)
 {8} : (15, 35)

9/13

 (1,3) 2 4 5 6 7 8

(1,3) 0

2 12.04 0

4 12.37 4 0

5 3.61 15.3 15.03 0

6 14.56 3.61 7.28 18.03 0

7 11.18 11.4 14.76 14.42 10.82 0

8 19.65 21.19 17.46 18.79 24.7 29 0

Mean of the following clusters:
 {1, 3} : (20, 16)
 {2} : (8, 15)

{4} : (8, 19)
 {5} : (23, 18)
 {6} : (6, 12)
 {7} : (15, 6)
 {8} : (15, 35)

 (1,3,5) 2 4 6 7 8

(1,3,5) 0

2 13.11 0

4 13.21 4 0

6 15.71 3.61 7.28 0

7 12.24 11.4 14.76 10.82 0

8 19.29 21.19 17.46 24.7 29 0

Mean of the following clusters:
 {1, 3, 5} : (21, 16.67)
 {2} : (8, 15)

{4} : (8, 19)
 {6} : (6, 12)
 {7} : (15, 6)
 {8} : (15, 35)

10/13

 (1,3,5) (2,6) 4 7 8

(1,3,5) 0

(2,6) 14.35 0

4 13.21 5.59 0

7 12.24 10.97 14.76 0

8 19.29 22.94 17.46 29 0

Mean of the following clusters:

 {1, 3, 5} : (21, 16.67)
 {2, 6} : (7, 13.5)

{4} : (8, 19)
 {7} : (15, 6)
 {8} : (15, 35)

 (1,3,5) (2,4,6) 7 8

(1,3,5) 0

(2,4,6) 13.73 0

7 12.24 12.08 0

8 19.29 21.11 29 0

Mean of the following clusters:

 {1, 3, 5} : (21, 16.67)
 {2, 4, 6} : (7.33, 15.33)
 {7} : (15, 6)
 {8} : (15, 35)

11/13

 (1,3,5) (2,4,6,7) 8

(1,3,5) 0

(2,4,6,7) 12.31 0

8 19.29 22.74 0

Mean of the following clusters:

 {1, 3, 5} : (21, 16.67)
 {2, 4, 6, 7} : (9.25, 13)
 {8} : (15, 35)

 (1,2,3,4,5,6,7) 8

(1,2,3,4,5,6,7) 0

8 20.44 0

Mean of the following clusters:
 {1, 2, 3, 4, 5, 6, 7} : (14.29, 14.57)
 {8} : (15, 35)

12/13

Dendrogram:

(b)
No.

In the worst case, there is a need to execute the whole algorithm from scratch.
Consider the case when the new data point is involved in the “closest” pair with another point (out of the 8
data points). If this is the case, all steps computed in (a) have to be re-computed.

13/13

Q5
(a)
Algorithm:

1. For each data point p
 Perform a range query from p with radius
 N(p) ← the result of the range query
 If |N(p)| MinPts,
 Mark p as a core point.

2. For each core point p
 Generate a cluster C for p.

3. While there exist two clusters C1 and C2 such that there exist p1 C1 and p2 C2 where N(p1)
contains p2
 Merge these two clusters.

4. For each point p where |N(p)| < MinPts,
 if N(p) contains a core point q,
 Assign p to the cluster q belongs to.

(b)
(i) Let p’ be the new data point.
Algorithm:

1. Perform a range query from p’ with radius
2. Find a set S of points such that each point p in this set satisfies (1) the -neighborhood of p (on

the original dataset together with the new point), denoted by N(p), includes p’, and (2) |N(p)| ==
MinPts.

3. For each point p in S (together with p’ when |N(p’)| >= MinPts),
 Mark p as a core point
 Generate a cluster C for p

4. While there exist two clusters C1 and C2 such that there exist p1 C1 and p2 C2 where N(p1)
contains p2

 Merge these two clusters.
5. If |N(p’)| < MinPts and N(p’) contains a core point q,

 Assign p’ to the cluster q belongs to.

(ii) Let n be the number of data points.
Step 1 could be done in O(log n) with a range query on all points (with the preprocessing phase of
building an index on all points which takes O(n log n)).
Step 2 could be done in O(log n + l) where l is the total size of S.
(This could be implemented by a point query on a set of all spheres with the radius equal to .)
Step 3 could be done in O(l) time.
Consider Step 4. Consider that we build an index on the spheres of all points with the radius equal
to for each separate cluster. Let m be the greatest number of points in a cluster. The time of
building a single index is O(m log m). Let k be the total number of clusters. The total time of
building all indices is O(k m log m). Step 4 could be done as follows. For each data point p (which
belongs to a cluster C1) and for each index corresponding to a cluster C2 not containing this point p,
we issue a point query on this index. If the answer of this query is non-empty, we merge C1 with C2
conceptually. Otherwise, we do nothing.
Consider Step 5. It takes O(1).
Finally, we maintain the index for the final merged cluster by re-building all indices from scratch
which takes O(k m log m). Note that k and m are typically much smaller than n in practice.

Thus, the overall time complexity is O(log n + l + k m log m).

