COMP5331 Knowledge Discovery in Databases (Fall Semester 2019) Homework 1 Solution

Q1

(a)

Yes. It can be adapted.

First of all, we obtain the 2-sequence by scanning the database. (NOTE: The 2-sequence contains two kinds of sequences – (1) the sequence contains only one *timestamp entry* (e.g. $\langle D, E \rangle$) and (2) the sequence contains two or more timestamp entries (e.g. $\langle D \rangle$, $\langle E \rangle$).

The Apriori-like algorithm is described as follows.

- 1. k=2
- 2. Find all frequent 2-sequences and store them in L_k
- 3. repeat
- 4. k=k+1
- 5. Generate candidate k-sequences from L_{k-1} (which will be described later) and store them in C_k
- 6. Scan the database and count the support of each candidate in C_k
- 7. Find the k-sequence in C_k with support \geq minsupport and store them in L_k
- 8. until $L_k = empty set$
- 9. return L_i for i=2,...k

e.g.

We obtain the following 2-sequences.

 $\{<\{A\}, \{D\}>, <\{A\}, \{E\}>, <\{A\}, (G\}>, <\{D, E\}>\}$

Next, we generate the candidate 3-sequences by the join-and-prune process.

The join step of the generation process is described as follows.

A sequence $s^{(1)}$ is joined with another sequence $s^{(2)}$ only if the subsequence obtained by dropping the first item in $s^{(1)}$ is identical to the subsequence obtained by dropping the last item in $s^{(2)}$. The resulting candidate is the sequence $s^{(1)}$, concatenated with the last item from $s^{(2)}$. The last item from $s^{(2)}$ can either be joined into the same timestamp element as the last item in $s^{(1)}$ or different timestamp elements depending on the following conditions.

- 1. If the last two items in $s^{(2)}$ belong the same timestamp element, then the last item in $s^{(2)}$ is part of the last timestamp element in $s^{(1)}$ in the joined sequence. (e.g. Suppose we have frequent sequences $\langle \{A\}, \{B\}, \{C\} \rangle$ and $\langle \{B\}, \{C, D\} \rangle$ in L_{k-1} . Candidate $\langle \{A\}, \{B\}, \{C, D\} \rangle$ is obtained by joining $\langle \{A\}, \{B\}, \{C\} \rangle$ and $\langle \{B\}, \{C, D\} \rangle$).
- 2. If the last two items in $s^{(2)}$ belong to different timestamp elements, then the last item in $s^{(2)}$ becomes a separate timestamp element appended to the end of $s^{(1)}$ in the joined sequence. (e.g. Suppose we have frequent sequences $\{A\},\{B\},\{C\}>$ and $\{B\},\{C\},\{D\}>$ in L_{k-1} . Candidate $\{A\},\{B\},\{C\},\{D\}>$ is obtained by joining $\{A\},\{B\},\{C\}>$ and $\{B\},\{C\},\{D\}>$).

e.g. In the running example, we obtain one candidate 3-sequence $\langle A \rangle$, $\{D,E\} \rangle$ (by joining $\langle A \rangle$, $\{D\} \rangle$ and $\langle D,E \rangle$) after the join step.

The *prune* step of the generation process is described as follows.

A candidate k-sequence is pruned if at least one of its (k-1)-sequence is infrequent.

For example, $\{A\}$, $\{D,E\}$ is a candidate 3-sequence. We need to check whether $\{A\}$, $\{E\}$ is a frequent 2-sequence (NOTE: We do not need to check whether $\{A\}$, $\{D\}$ and $\{D, E\}$ are frequent 2-sequence because $\{A\}$, $\{D,E\}$ was generated from these two frequent sequences). Since $\{A\}$, $\{E\}$ is frequent, $\{A\}$, $\{D,E\}$ is also considered as a candidate 3-sequence after the prune step.

Then, we do the *counting* step to count the support of each candidate in the set. As the support of $\{A\}$, $\{D,E\}$ is 2, then it is one of the final results.

We repeat the process until L_k is an empty set.

In our running example, all sequences with support at least 2 are $\{\langle A \rangle, \{D,E\} \rangle$

(b)

No. This is because if a k-sequence is frequent, it is not necessarily true that all its sub-sequences are frequent.

Consider an example with the following 4 transactions.

Customer W, Rich = Yes, time 1, items A, B, C Customer X, Rich = Yes, time 2, items A, B, C Customer Y, Rich = No, time 3, items A, B, C Customer Z, Rich = No, time 4, items A, B The above transactions can be transformed into four sequences as follows. W, Yes: <{A, B, C}> X, Yes: <{A, B, C}> Y, No: <{A, B, C}> Z, No: <{A, B}>

The supports of $\{A, B, C\}$ with respect to values "Yes" and "No" are 2 and 1, respectively. Thus, the important ratio of $\{A, B, C\}$ is 2/1 = 2.

Consider a sub-sequence of $\{A,B,C\}>$, i.e., $\{A,B\}>$. The supports of $\{A,B\}>$ with respect to values "Yes" and "No" are both 2. Thus, the important ratio of $\{A,B\}>$ is 2/2 = 1 < 2.

Note that <{A, B}> is a subsequence of <{A, B, C}> but the important ratio of <{A, B}> is smaller than the important ratio of <{A, B, C}>. Thus, the apriori property is not satisfied. Thus, we cannot adapt the Apriori algorithm.

Q2

- (a) (i) {C}, {D}
- (ii) $\{C, D\}, \{A, C\}, \{A, D\}$
- (iii) $\{A, C, D\}, \{B, E, F\}$
- (b) Yes. It can be adapted.

There is a support threshold s which changes over time. Initially, it is set to 1. According to the current threshold value equal to 1, we build an FP-tree.

Initially, we have three variables, L1, L2 and L3.

L1 is a variable storing the current-best $S_{1,2}$.

L2 is a variable storing the current-best $S_{2,2}$.

L3 is a variable storing the current-best $S_{3,2}$.

Initially, each of these variables is set to an empty set.

We also have three variables, x1, x2 and x3.

x1 is a variable storing the 2^{nd} (or 1-th) greatest value of the multi-set containing the supports of all itemsets in L1

x2 is a variable storing the 2^{nd} (or 1-th) greatest value of the multi-set containing the supports of all itemsets in L2

x3 is a variable storing the 2^{nd} (or 1-th) greatest value of the multi-set containing the supports of all itemsets in L3

Initially, each of these variables is set to 1.

From the FP-tree above, construct the FP-conditional tree for each item (or itemset) according to the current value of the support threshold s.

The method is the same as the original FP-growth algorithm.

However, there is the following modification.

Whenever we generate the frequent itemsets from the current conditional FP-tree according to the current threshold s (which is being updated), for each frequent itemset just generated, if the size of the itemset is K where K = 1, 2 and 3, we do the following. (Otherwise, we do nothing).

- a. Set a variable x to the 2nd (or 1-th) greatest value of the multi-set containing the supports of all itemsets in LK (If there are fewer than 2 (or 1) values in this multi-set, x is set to 1.)
- b. If the support of this itemset is greater than x, we insert it into LK.
- c. Update variable x again to be the 2nd (or 1-th) greatest value of the multi-set containing the supports of all itemsets in the updated LK
- d. Remove all itemsets in LK with support smaller than x
- e. Update xK to max $\{xK, x\}$
- f. Update the support threshold s to be $min\{x1, x2, x3\}$

Example

Counting:

Conditional FP-tree on F (count = 1) B: 1, E: 1, F: 1

$L_1 = \{F: 1\}$	
$L_2 = \{BF: 1, EF: \}$	1}
$L_3 = \{BEF: 1\}$	

Conditional FP-tree on E (count = 1) B: 1, E: 1

 $L_1 = \{E:1, F:1\}$

Conditional FP-tree on B (count = 1) B: 1

Conditional FP-tree on A (count = 2) C: 2, D: 2, A: 2

Conditional FP-tree on D (count = 3) C: 3, D: 3

Conditional FP-tree on C (count = 3) C: 3

- $L_2 = \{BE: 1, BF: 1, EF: 1\}$ $L_3 = \{BEF: 1\}$
- $L_1 = \{B: 1, E:1, F: 1\}$ $L_2 = \{BE: 1, BF: 1, EF: 1\}$ $L_3 = \{BEF: 1\}$

 $L_1 = \{A: 2, B: 1, E: 1, F: 1\}$ $L_2 = \{AC: 2, AD: 2\}$ $L_3 = \{ACD: 2, BEF: 1\}$

(c)

1. By finding $S_{k,l}$, we control the number of the resulting frequent itemsets (e.g., in case that finding frequent itemsets in the traditional problem returns a huge number of frequent itemsets, finding the frequent itemsets of $S_{k,l}$ can reduce the resulting frequent itemsets by returning some top ones only.). 2. In the traditional problem of finding frequent itemsets, setting the hard threshold of support is not user-

friendly. To deal with this issue, instead of specifying a hard "absolute" threshold, we can use a soft "relative" threshold.

Q3.

(a) No. This is because this algorithm terminates when k is equal to the total number of data points. In this case, e_k is equal to 0. Even if k is larger, e_k is also equal to 0 and thus e_k converges. The value k is not what we desire because we want to group "similar" points.

Alg:

a. First, multiply each attribute of each data point by a positive real number Δ such that the "closest" pair between two points is at least 1.0.

b. Second, define d_k to be the product of the distances between any two clusters according to distance "single linkage".

c. We change Step 4 from e_k to d_k .

d. We change Step 5 to the following:

We repeat Step 3 to Step 4 for different possible values of k and obtain the corresponding values of d_k .

e. We find the k s.t. $d_k \mbox{ is maximized}.$

The reasons are:

1. If k is larger than the number of clusters, in k-means, one single cluster will be represented by more than one means. In other words, the real cluster is split into a number of groups in k-means. It is expected that these groups are very close and thus d_k is small.

2. If k is smaller than the number of clusters, in k-means, two or more clusters will be represented by one mean/group.

There are two cases:

• Case 1:

•

One cluster is split into two or more groups.

In the example, when k=2, cluster 2 is split into group 1 and group 2. It is easy to see that d_k is small. Case 2:

6/13

In this example, when k=2, cluster 1 and cluster 2 completely belong to group 1 while cluster 3 and cluster 4 completely belong to group 2.

In this case, we know that the separation between group 1 and group 2 is large and thus d_k is large. However, when k=4, we have

Obviously, d_k in this case is larger.

In conclusion, if we find k s.t. d_k is maximized, we can find a good value for the number of clusters.

(b) The distance metric between a point p and the cluster center c can be modified as follows.

Let X_p be a "special" cluster containing only p.

Let X_c be the cluster representing the cluster center c which contains some assigned points.

The first assigned point of X_c is the point closest to c for each c.

The distance metric between a point p and the cluster enter c is equal to the distance between X_p and X_c according to the single linkage distance in an iterative manner.

While there are still remaining points, find a remaining point p and a cluster X such that the distance between p and X is the shortest and assign p to cluster X.

Q4. (a) (i)

(-)								
	1	2	3	4	5	6	7	8
1	0							
2	12	0						
3	2	12.17	0					
4	12.65	4	12.17	0				
5	4.24	15.3	3.16	15.03	0			
6	14.32	3.61	14.87	7.28	18.03	0		
7	10.3	11.4	12.08	14.76	14.42	10.82	0	
8	20.62	21.19	18.68	17.46	18.79	24.7	29	0

(ii)

	1	2	3	4	5	6	7	8
1	0							
2	12	0						
3	2	12.17	0					
4	12.65	4	12.17	0				
5	4.24	15.3	3.16	15.03	0			
6	14.32	3.61	14.87	7.28	18.03	0		
7	10.3	11.4	12.08	14.76	14.42	10.82	0	
8	20.62	21.19	18.68	17.46	18.79	24.7	29	0

Mean of the following clusters:

{1}:(20, 15)

{2} : (8, 15)

{3} : (20, 17)

- {4} : (8, 19)
- {5} : (23, 18)
- {6} : (6, 12)
- {7} : (15, 6)

{8} : (15, 35)

	(1,3)	2	4	5	6	7	8
(1,3)	0						
2	12.04	0					
4	12.37	4	0				
5	3.61	15.3	15.03	0			
6	14.56	3.61	7.28	18.03	0		
7	11.18	11.4	14.76	14.42	10.82	0	
8	19.65	21.19	17.46	18.79	24.7	29	0

Mean of the following clusters:

 $\{1, 3\} : (20, 16) \\ \{2\} : (8, 15) \\ \{4\} : (8, 19) \\ \{5\} : (23, 18) \\ \{6\} : (6, 12) \\ \{7\} : (15, 6) \\ \{8\} : (15, 35)$

	(1,3,5)	2	4	6	7	8
(1,3,5)	0					
2	13.11	0				
4	13.21	4	0			
6	15.71	3.61	7.28	0		
7	12.24	11.4	14.76	10.82	0	
8	19.29	21.19	17.46	24.7	29	0

Mean of the following clusters:

 $\{1, 3, 5\} : (21, 16.67)$

{2} : (8, 15)

{4} : (8, 19)

{6}: (6, 12)

{7}: (15, 6)

{8}: (15, 35)

	(1,3,5)	(2,6)	4	7	8
(1,3,5)	0				
(2,6)	14.35	0			
4	13.21	5.59	0		
7	12.24	10.97	14.76	0	
8	19.29	22.94	17.46	29	0

Mean of the following clusters:

 $\{1, 3, 5\} : (21, 16.67)$ $\{2, 6\} : (7, 13.5)$ $\{4\} : (8, 19)$ $\{7\} : (15, 6)$ $\{8\} : (15, 35)$

	(1,3,5)	(2,4,6)	7	8
(1,3,5)	0			
(2,4,6)	13.73	0		
7	12.24	12.08	0	
8	19.29	21.11	29	0

Mean of the following clusters:

{1, 3, 5} : (21, 16.67) {2, 4, 6} : (7.33, 15.33) {7} : (15, 6) {8} : (15, 35)

	(1,3,5)	(2,4,6,7)	8
(1,3,5)	0		
(2,4,6,7)	12.31	0	
8	19.29	22.74	0

Mean of the following clusters:

 $\{1, 3, 5\} : (21, 16.67) \\ \{2, 4, 6, 7\} : (9.25, 13) \\ \{8\} : (15, 35)$

	(1,2,3,4,5,6,7)	8
(1,2,3,4,5,6,7)	0	
8	20.44	0

Mean of the following clusters:

{1, 2, 3, 4, 5, 6, 7} : (14.29, 14.57) {8} : (15, 35)

No.

In the worst case, there is a need to execute the whole algorithm from scratch.

Consider the case when the new data point is involved in the "closest" pair with another point (out of the 8 data points). If this is the case, all steps computed in (a) have to be re-computed.

Q5

(a)

Algorithm:

1. For each data point p

Perform a range query from p with radius $\boldsymbol{\epsilon}$

- $N(p) \leftarrow$ the result of the range query
- If $|N(p)| \ge MinPts$,

Mark p as a core point.

- 2. For each core point p Generate a cluster C for p.
- 3. While there exist two clusters C1 and C2 such that there exist $p1 \in C1$ and $p2 \in C2$ where N(p1) contains p2
 - Merge these two clusters.
- 4. For each point p where |N(p)| < MinPts,
 - if N(p) contains a core point q,
 - Assign p to the cluster q belongs to.

(b)

(i) Let p' be the new data point.

Algorithm:

- 1. Perform a range query from p' with radius $\boldsymbol{\epsilon}$
- Find a set S of points such that each point p in this set satisfies (1) the ε-neighborhood of p (on the original dataset together with the new point), denoted by N(p), includes p', and (2) |N(p)| == MinPts.
- For each point p in S (together with p' when |N(p')| >= MinPts), Mark p as a core point
 - Generate a cluster C for p
- While there exist two clusters C1 and C2 such that there exist p1 ∈ C1 and p2 ∈ C2 where N(p1) contains p2

Merge these two clusters.

- If |N(p')| < MinPts and N(p') contains a core point q, Assign p' to the cluster q belongs to.
- (ii) Let n be the number of data points.

Step 1 could be done in $O(\log n)$ with a range query on all points (with the preprocessing phase of building an index on all points which takes $O(n \log n)$).

Step 2 could be done in $O(\log n + 1)$ where 1 is the total size of S.

(This could be implemented by a point query on a set of all spheres with the radius equal to ϵ .) Step 3 could be done in O(l) time.

Consider Step 4. Consider that we build an index on the spheres of all points with the radius equal to ε for each separate cluster. Let m be the greatest number of points in a cluster. The time of building a single index is O(m log m). Let k be the total number of clusters. The total time of building all indices is O(k m log m). Step 4 could be done as follows. For each data point p (which belongs to a cluster C1) and for each index corresponding to a cluster C2 not containing this point p, we issue a point query on this index. If the answer of this query is non-empty, we merge C1 with C2 conceptually. Otherwise, we do nothing.

Consider Step 5. It takes O(1).

Finally, we maintain the index for the final merged cluster by re-building all indices from scratch which takes O(k m log m). Note that k and m are typically much smaller than n in practice.

Thus, the overall time complexity is $O(\log n + l + k m \log m)$.