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COMP5331 Knowledge Discovery in Databases (Fall Semester 2019) 
Homework 3 Solution 

 
 
Q1  
 
(a)  
Let N be the total number of items read so far. 
 
The first 2t elements find their way into S.  
 
When the sampling rate is r  2,  
   we have N = rt +  
           where   [1, rt) 
 
Consider  
  N = rt +  
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Consider an element e in S 
 

The stored frequency f
~

of e is at most the true frequency 0f  of e 

 

Why is the value of f
~

different from 0f ? Why not the same? 

This is because the stored frequency f
~

 is deducted by tossing a coin repeatedly. If the outcome is “tail”, the 
stored frequency will be decremented.  
 
The reason why e still remains in S is that the outcome of the last toss is “head”. 
 
Note that  

                      P(Head) = 
r

1
 

             and   P(Tail) = 1-
r

1
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Structure of the proof: 
A. First, we prove the following 
 
       with confidence at least 1-, 

   0f - f
~
N 

 
B. Second, with the above result, we prove the following 
 
        The algorithm returns the -deficient synopsis. 
 
Part A 
 
Lemma 1 
 
Let C be a non-negative integer.  

Prob( 0f - f
~

= C) 
r

1 C

r
)

1
1(   

where r is the current sampling rate. 
 
 
 
Proof: 
 
 
Let x be the total number of the changes of sampling rate.  
Let ri be the sampling rate at the i-th time of changing sampling rate. 
 
Consider the two scenarios.  
The first scenario is that after each boundary, the entry for an item is still in the memory. 
 
    For the i-th time of changing sampling rate,  
                     we decrement the stored frequency of e by ni times 
                   (i.e., there are ni tails when we toss a coin repeatedly) 

1 2t 4t 8t

n1 tails n2 tails n3 tails 

… 

r1  r2  r3  

P(tail) = 1 – 1/r1 
           ≤ 1 – 1/rx 

P(tail) = 1 – 1/r2 
           ≤ 1 – 1/rx 

P(tail) = 1 – 1/r3 
           ≤ 1 – 1/rx 
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Thus, for each i in  [1, x], we know that P(tail) = 1 – 1/ri 
                                                                             ≤ 1 – 1/rx 
 
 
 
 
 
The second scenario is that after the i-th boundary, the entry for an item is not in the memory. 
 

 
Thus, for each i in  [1, x], we know that P(Unsuccessful insertion) = 1 – 1/ri 
                                                                                                           ≤ 1 – 1/rx 
 
 
 
Just after the x-th time of changing sampling rate,  

                0f - f
~

is equal to C 

 
There are C times of frequency loss of fo. 
 
Each frequency loss is either (1) we observe a tail when we toss a coin (when we reach the boundary)  
or (2) we encounter an unsuccessful insertion (between two adjacent boundaries). 
 
Since P(tail) ≤ 1 – 1/rx and P(Unsuccessful insertion) ≤ 1 – 1/rx,  
       P(a frequency loss of fo) ≤ 1 – 1/rx 
 
Since there are C times of frequency loss of fo 
and  
we know that the outcome of the last coin toss is head (since the entry for the item is still in the memory), 
   P(there are C times of frequency loss of fo)                         

≤
xr

1 C

xr
)

1
1(   

 

1 2t 4t 8t

Unsuccessful 
insertion 

n3 tails 

… 

r1  r2  r3  

P(Unsuccessful insertion) = 1 – 1/r1 
                                           ≤ 1 – 1/rx 
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Lemma 2 
 

             Prob ( 0f - f
~
N) e-t  

 
 
Proof: 

We want to calculate the probability that the difference between 0f and f
~

 is at least N  

(i.e., Prob ( 0f - f
~
N)  ). 

 

    Prob ( 0f - f
~
N)   

= Prob ( 0f - f
~

=N) + Prob ( 0f - f
~

=N+1) + Prob ( 0f - f
~

=N+2) + … 

 N

rr
)

1
1(

1
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1
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
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Lemma 3 
 

The probability that at least one of the frequent elements has 0f - f
~
N is at most  

 
Proof: 
The greatest no. of frequent elements (i.e., elements with frequency at least sN ) is equal to 

= 
sN

N
 

= 
s

1
 

 

Thus, the probability that at least one of the frequent elements has 0f - f
~
N is  

e-t

s

1
  

=
s

e t

 

=
s

e
s 



  )log(

1 11




 


s

e
s ))log(

1
( 11  




 

=  
 
Lemma 4 
 
With confidence at least 1-, 

   0f - f
~
N…………………………..(1) 

 
Proof: 

          The probability that each frequent element has 0f - f
~
N 

       = 1- probability that at least one of the frequent elements has 0f - f
~
N 

     (the boundary case (i.e., when 0f - f
~

= N) is not handled here for the sake of simplicity) 

       1- 
 
In other words, 

          Prob ( 0f - f
~
N)  1- 

 
We can also write 
       with confidence at least 1-, 

   0f - f
~
N…………………………..(1) 

 
 
Lemma 4 is the result for Part A.
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Part B 
Next, we check the three conditions of the -deficient synopsis. 
 
The second condition is satisfied with confidence at least 1-. 
 
Consider the first condition.  
 
    Consider an item with true frequency 0f  sN 

    From (1),  

                              f
~

+N 0f  

                          f
~

+NsN 
 
   We conclude that 
                     an item has true frequency 0f  sN 

                it has f
~

+NsN (during the execution of the algorithm) 
                this item is in the algorithm output 
 
Thus, the first condition is satisfied.  
 
Consider the third condition. 
 
    Consider an item with true frequency 0f  (s-)N 

    Thus, we have          0f  sN-N 

   0f + N sN 

   f
~

+ N sN           (since f
~
 0f ) 

   We conclude that this item is NOT in the algorithm output (i.e., it is classified as an infrequent item). 
 
Thus, the third condition is satisfied.  
 
 
(b) Differences: 
1. Sticky Sampling Algorithm is a probabilistic algorithm. 
    Lossy Counting Algorithm is a deterministic algorithm. 
2. Storage of Sticky Sampling Algorithm is independent of  
    Storage of Lossy Counting Algorithm is dependent on  
 
(c) Differences: 
1. Lossy Counting Algorithm requires an error parameter  which we can deduce the memory storage 
    Space-saving Algorithm requires the memory parameter M which we can deduce the error 
2. Given the same memory (i.e., the max. memory that we can use), Space-Saving Algorithm has smaller 
error than Lossy Counting Algorithm.  
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Q2. 

(a) (i)w= 
2.0

1
= 5 

(ii) (1) )0,1,( 2I  

     )0,2,( 3I  

           )0,1,( 4I  

)0,1,( 5I  

      (2) )0,2,( 3I             (Remove 42 , II , 5I  since 1f ) 

(iii)(1) )1,2,( 2I  

    )0,2,( 3I  

    )1,3,( 4I  

(2) )1,2,( 2I  

            )1,3,( 4I              (Remove 3I  since 2f ) 

(iv) (1) )2,2,( 1I  

           )1,3,( 2I  

           )1,3,( 4I  

           )2,1,( 6I  

           )2,1( 7I  

      (ii) )2,2,( 1I  

           )1,3,( 2I  

           )1,3,( 4I              (Remove 76 , II  since 3f ) 

 
(v) 3152.0 N  
      6154.0 sN  
Consider )1,3,( 4I  

sNNf  (i.e. 633  ) 

4I is the output of the algorithm. 

Consider )1,3,( 2I  
sNNf  (i.e. 633  ) 

2I is the output of the algorithm. 

      Consider )2,2,( 1I  
sNNf  (i.e. 632  ) 

1I is not the output of the algorithm. 
 

      Output:{ 42 , II } 
 

(b)  
Optional solution 1 (mining frequent itemsets): 

(i) memory = )(log
1

1

N
i

mm

i













     

           (OR )(log
1

)12( NM 


      where M is the total number of items.). 
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(ii) It is not nicely bounded because the memory consumption contains an exponential factor on m or M. 
Optional solution 2 (mining frequent items): 

(i) memory = )(log
1

Nm 

  

(ii) It is nicely bounded. 
 
Q3 
(a)(i) 
Let M be the memory size (in bytes (not the number of entries in form of (e, f, ) discussed in class)). 
We divide the memory into two parts: 
1. Part 1: buffer which stores the incoming data 
2. Part 2: summary of previous batches. 
We allocate the memory for part 1 with B bytes. And the memory for part 2 is M-B bytes. 
 
Since B is given, the memory size for Part 1 and the memory size for part 2 are fixed. 
We divide the memory for Part 2 into 4 partitions of equal size (We do not divide the memory into 4 
partitions of adjustable size because in the worst case, in order to minimize the error, we also need the 
equal-sized partitions.) 
Thus, we have four batches. Each batch is associated with a summary. For each batch, we can update the 
summary (associated to the batch) like what the original space-saving algorithm does. 
Given a set S of data points, the summary stored in the Space-Saving algorithm for this set is denoted by 
SpaceSaving(S). Let X = SpaceSaving(S). X contains two components. The first component denoted by 
X.E contains a list of entries each in form of  (e, f, �) where e is the item number, f is the frequency of 
the item (recorded after this entry is created) and  is the maximum possible error in f. The second 
component denoted by X.p is equal to the variable pe used in algorithm Space-Saving discussed in class 
(i.e., the greatest possible frequency error). 
 
Output: 
 
Let f(e, Bi) be the count of element e stored in the summary of batch Bi.  
If the entry (e, f, �) for e exists in the summary of batch Bi, f(e, Bi) is equal to f. Otherwise, it is equal 
to 0.  
 

Let (e, Bi) be the   value of element e stored in batch Bi.  

If the entry (e, f, �) for e exists in the summary X of batch Bi,  (e, Bi) is equal to . Otherwise, it is 
equal to X.p. 
 

For each item e, calculate fe=


4

1

),(
i

iBef  and  e=



4

1

),(
i

iBe  

Get a list of items where fe+ e sN  where N=4B 
 
(ii)  
The memory for part 2 is M-B. Since the memory for part 2 is divided into 4 equal-sized parts, each part 
occupies (M-B)/4.  
 
Consider a part containing a summary X. 
Assume that the second component of X (i.e., X.p) occupies 1 byte.  
Since the second component of X occupies 1 bytes, the first component of X occupies (M-B)/4 - 1. 
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Let m be the size occupied by a single entry in form of (e, f,  ). 
The total number of entries each in form of (e, f,  ) is equal to [(M-B)/4 – 1]/m. 

For each batch, the greatest error in fraction = 

m

BM
1

4

1




= 
4

4

 BM

m
. 

The overall greatest error in count = 
4

16
4

4

4




 BM

mB
B

BM

m
 

The overall greatest error in fraction = 
4

4

4

1

4

16




 BM

m

BBM

mB
 

 
(b)(i)The answer of (b)(i) is the same as the answer of (a)(i). But we need to update the output part.  
Note that the incomplete batch contains all items over data streams instead of the summary. 
Let f(e, Bi) be the count of element e stored in batch Bi. The definition is the same as (a)(i). 
 
Let  (e, Bi) be the   value of element e stored in batch Bi. The definition is the same as (a)(i). 
 
Let I be the incomplete batch.  
Let f(e, I) be the exact count of element e in the incomplete batch I.  
 
Consider batch B1, for each item e, calculate Ye=min{ f(e, B1)+ (e, B1),0.5B} 
Consider batch B2, B3, B4, I,  

 For each item e, calculate fe=


4

2

),(
i

iBef +f(e, I) and  e=



4

2

),(
i

iBe +0 

Get a list of items where fe+ e+Ye sN  where N = 4B. 
 
(ii) For each of batches B2, B3, B4, 

the greatest error in fraction =

m

BM
1

4

1




= 
4

4

 BM

m
. 

For batch I, the greatest error = 0 in both count and fraction. 
For batch B1, the greatest error in fraction is 0.5, so the greatest error in count is 0.5B. 

The overall greatest error in count = B
BM

m
3

4

4



+0+0.5B=

4

12

 BM

mB
+0.5B 

So, the overall greatest error in fraction = )5.0
4

12
(

4

1
B

BM

mB

B



 =

8

1

4

3


 BM

m
. 

 



10/11 

 
Q4 
a. We propose a dominance graph G for the data structure. 
V is a set of points in the sliding window which may become a skyline point currently or later. 
E is a set of edges where each edge corresponds to a dominance relationship, e.g., an edge (u, v) 
corresponds to that point u dominates point v. 
 
Besides, we maintain a list L containing all points (or nodes) with in-degree = 0. 
 
We present the algorithm as follows. 
 
Algorithm 
1. -L   
2. -V   
3. -E   
4. -G (V, E) 
5. -When there is a new point Pnew, 
6.   -if there is a point Pold which expires, 
7.    -remove point Pold from V 
8.    -remove all edges involving Pold from E 
9.    -for each edge removal, update L if  a point has in-degree = 0  
10.     (by inserting this point with in-degree = 0 into L) 
11.   -VV {Pnew} 
12.   -for each point qV which is dominated by Pnew, 
13.    -EE {Pnew, q}  
14.    -for each edge addition, update L if   a point in L has in-degree updated to non-zero 
15.     (by deleting this point from L) 
16.   -for each point qV which  dominates Pnew, 
17.    -EE {q, Pnew} 
18. -Output all points (or nodes) with in-degree = 0 (by using L). 

 
 
It is easy to see that the output cost is O(L) = O(|S|). 
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Q5  
 
(a) 

 
 
 
 
 
 
 
 
Stochastic matrix: 



















05.010

0001

1000

05.000

S

R

Q

P
SRQP

 

 
(b) Yes. The spider trap corresponds to a set {Q, S}. 
 
(c) Equation to be solved: 













































































2.0

2.0

2.0

2.0

05.010

0001

1000

05.000

8.0

S

R

Q

P

S

R

Q

P

 

(d)

 

 1 2 3 4 5 6 7 … 13 
P 1 0.6 0.6 0.47 0.47 0.43 0.43 … 0.41 
Q 1 1.0 1.32 1.32 1.42 1.42 1.46 … 1.47 
R 1 1.0 0.68 0.68 0.58 0.58 0.54 … 0.53 
S 1 1.4 1.4 1.53 1.53 1.57 1.57 … 1.59 

So the ranking is S, Q, R, P. 
 
 
 
 
 

P R 

Q S 


