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Abstract. Sequence data analysis has been extensively studied in the literature.
However, most previous work focuses on analyzing sequence data from a single
source or party. In many applications such as logistics and network traffic analy-
sis, sequence data comes from more than one source or party. When multiple au-
tonomous organizations collaborate and integrate their sequence data to perform
analysis, sensitive business information of individual parties can be easily leaked
to the other parties. In this paper, we propose the notion of competitive privacy
to model the privacy that should be protected when carrying out data analysis
on integrated sequence data. We propose a query restrictionalgorithm that can
reject malicious queries with low auditing overhead. Experimental results show
that our proposed method guarantees the protection of competitive privacy with
only a significantly small portion of queries being restricted.

1 Introduction
Sequence data analysis has been studied extensively in the literature [4, 6, 2]. Most
previous work focuses on analyzing sequence data collectedfrom a single source or
party. However, in applications such as logistics and network traffic analysis, some au-
tonomous enterprises may want to integrate their sequence data in order to carry out
joint data analysis. As a motivating example, consider the collaboration between a bus
companyB and a metro companyM in a city that has implemented RFID-based elec-
tronic transportation payment systems (e.g., Washington DC’s SmarTrip system). Each
passenger has an RFID-card that can be used as a form of e-money for the fare of var-
ious transportations. Each transportation company participates in the e-transport net-
work records a huge volume of passenger transactions every day. In this example, we
can view each passenger traveling history as a datasequence. In Figure 1a, if a passen-
ger traveled from “Airport Bus Stop” to “Downtown Bus Stop” by bus, transferred from
“Downtown Bus Stop” to “Downtown Station” (via a transfer terminal in “Downtown”)
and finally traveled from “Downtown Station” to “Uptown Station” by metro, her trav-
eling history can be represented as a data sequence (“Airport Bus Stop”, “Downtown
Bus Stop”, “Downtown Station”, “Uptown Station”).

Suppose thatB andM collaborate and offer discounts to passengers who traveled
from the airport to uptown using a combination of bus and metro (transited at Down-
town). One interesting query is to ask the number of passengers who traveled from
“Airport Bus Stop” to “Uptown Station” via the transfer terminal in “Downtown”. Fur-
thermore, during data analysis, queries are often refined todifferent abstraction levels
by the data analysts interactively. For example, if a concept hierarchy is defined for
stations/stops like the one in Figure 1b, then the above query may be “rolled-up” by
the user to ask for the number of passengers who traveled from“Airport District” to
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Fig. 1. Motivating Example

“Uptown District” via the transfer terminal in “Downtown”.All these operations can
be handled by sequence analytical systems such as [2] and [4]efficiently. One way to
evaluate the analytical queries above is to have bus and metro to integratetheir passen-
ger data, which are originallyownedand stored separately. LetDM be the data owned
by M andDB be the data owned byB. DM andDB are integrated to form a new
datasetDI . In practice, however, bothM andB actually do not want to disclose their
data to their competitors, if possible. For instance, assume that there are two services
operated byM andB separately from “Downtown District” to “Bay District”. Specif-
ically, M operates a servicesM from “Downtown Station” to “Bay Station” whileB
operates a servicesB from “Downtown Bus Stop” to “Bay Bus Stop”. If passengers
want to travel from “Downtown District” to “Bay District”, they may choose eithersM

or sB. Thus, these two servicessM andsB arecompetitive. Suppose thatM poses a
query and observes that the total number of passengers usingservicesB (operated by
B) is extremely large compared with its own servicesM . M may then offer discounts
to customers who use its servicesM in order to attract the customers originally using
servicesB. It is easy to see that, once there are discounts for servicesM , the original
servicesB operated byB is definitely affected. Thus, the statistical information about
the total number of passengers using servicesB can be regarded as the “competitive
privacy” of partyB and that should get protected during data analysis.

The objective of this paper is to support data analysis, in particular, OLAP, on an
integrated sequence data set without compromising competitive privacy. Informally, let
Q(sB, f) be an aggregate sequence query [2] that specifies an aggregate functionf on
all the sequences in the integrated data setDI that matchsB and the data values insB

are allowned by(or originated from) partyB (formal definitions are given in Section 2),
we say that there is a breach ofcompetitive privacyif given a real numbere, other parties
(exceptB) can infer a valuẽf such that|f̃ − f(sB)| ≤ e, wheref(sB) denotes the
answer of queryQ. In this paper, we present a query restriction strategy to support data
analysis on an integrated sequence data set without breaching the competitive privacy of
any party. The strategy rejects a queryQ if its answer can lead to a breach of competitive
privacy. Existing query restriction strategies like [1], [5] and [3] focus on the protection
of individual privacy or data privacy on a relational data set owned by a single party.
The query restriction strategy in this paper focuses on the protection of competitive
privacy on a sequence data set integrated from multiple autonomous parties.

2 Preliminary
We are given a setV of values that are associated with a concept hierarchy. Figure 1b
shows a concept hierarchy. Nodes at the leaf level correspond to the values recorded in
the data. A nodeN is said to begroundif it is at the leaf level ornon-groundif it is not.

Each value inV corresponds to a node in the concept hierarchy. Without ambiguity,
in the following, the terms “nodes” and “values” are used interchangeably. Each leaf
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nodeN is associated with anownership, denoted byN.T . For example, since “Down-
town Station” and “Uptown Station” are values originated from the metro companyM ’s
data, theownershipof these nodes areM . In Figure 1b, the ownership of a leaf node
is next to itself. The non-leaf nodes such as “Downtown District” and “Urban Region”
are used for data analysis and they do not have any ownership.

Suppose there arem datasetsD = {D1, D2, ..., Dm} owned by m parties
P1, P2, ..., Pm, respectively. Each data set contains a number of sequences. A sequence
s is represented in the form of(N1, N2, ..., Nk) whereNl is a ground or non-ground
value inV for l ∈ [1, k]. We say that this sequences is of lengthk. Implicitly, each
valueNi in s is associated with a timestamp, denoted byNi.ts, such that ifi < j,
Ni.ts < Nj .ts for anyi, j ∈ [1, k]. Each sequences in datasetDi is associated with a
unique identifier, denoted bys.id (e.g., the card id of an RFID card).

An integrated datasetDI can be obtained by integrating the set of databasesD
according to the timestamp of the values. Specifically, letC be the set of sequence
identifiers inD. For eachx ∈ C, we obtain a setS of sequences from all datasets in
D such thatS = {s ∈ D|s.id = x}. Let N be the multi-set containing the values
of all sequences inS. We generate a new sequences′ of length |N | in the form of
(N1, N2, ...N|N |), such that ifi < j, Ni.ts < Nj .ts for any i, j ∈ [1, |N |]. The new
sequences′ will be inserted into the integrated datasetDI .

In this paper, we focus on aggregate sequence queries [2]. Ifsuch a queryQ(s, f),
or simplyQ if the context is clear, is posed on a sequence data setDI , it applies an ag-
gregate functionf on all the sequences inDI thatMATCH s, and returns a scalar value,
denoted asf(s), to a user. We remark thatMATCH can be any pattern matching func-
tion. For example, it can be a sub-string matching function (i.e., if s is a sub-string of
a sequences′ in DI , MATCH returnstrue) or a sub-sequence matching function (i.e.,
if s is a sub-sequence ofs′ in DI , MATCH returnstrue). The technique in this paper
is applicable to all kinds of aggregate sequence queries discussed in [2]. Nonetheless,
for the sake of illustration, the following discussion mainly centers around theCOUNT
aggregation function and the sub-string matching function. Therefore in the following,
unless stated otherwise, we assume a queryQ(s, f) on DI means that for each se-
quence inDI which containss as substring (despite the number of occurrences ofs in
a sequence) increments the value off(s) by one. A queryQ(s, f) is of lengthk if the
length of sequences specified inQ is k. We denote that by|Q|. As the data is actually
integrated from multiple parties, we assume that all queries are of length at least two.

As in traditional OLAP environments, users may interactively refine their queries.
For instance, a user (of partyPi) may first issue a query to obtain the number of cus-
tomers who traveled from “Airport Bus Stop” to “Uptown Bus Stop” and then refine
her queryQ by a “pattern roll-up” operation [2] in order to obtain the number of pas-
sengers who traveled from “Airport District” to “Uptown District”. These concepts can
be formalized as follows.

Assume partyPi issues her first queryQ1 at timet = 1, second queryQ2 at time
t = 2 and so on. LetKPi

(t) be the knowledge of partyPi at timet. Thus, the initial
knowledge of partyPi before she issues any query on the integrated data setDI , de-
noted asKPi

(1−), contains all aggregate valuesf(s) for all s in Di. Further, lett− and
t+ be the timeimmediatelybefore and after timet, i.e., t− is any time between time
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t−1 and timet, andt+ be any time between timet and timet+1. Thus, for anyt > 1,
KPi

(t−) = KPi
((t − 1)+). After partyPi issues a queryQt at time t, if Qt is not

rejected,Pi’s knowledgeKPi
(t+) is immediately updated toKPi

(t−)∪ {f(s)} (where
f(s) is the answer ofQt); otherwise,Pi’s knowledgeKPi

(t+) remains asKPi
(t−).

3 Competitive Privacy
In this section, we present the concept ofcompetitve privacy, which is the key element
that we should consider when supporting data analysis on a sequence data set that is in-
tegrated from multiple autonomous parties. We assume that the integrated data setDI

is located at trusted partyT and the involved parties send their queries toT . The RFID
transport payment company can be regarded as the trusted parties for the motivating ex-
ample. Although a trusted party is involved, the privacy issue has not been resolved yet.
Specifically, in the following, we are going that formalize the concept of competitive
privacy and show that if a partyP can pose any queries without any restriction, that will
breach competitive privacy of some party. Let us begin with the definition ofconflicting
node set. Given a ground nodeN , theconflicting node setof N , denoted byC(N), is a
set of ground nodes such that for each nodeN ′ ∈ C(N), N ′.T 6= N.T . The conflicting
node set isspecifiedor givenby the multiple autonomous parties and the trusted party.

In our running example, if the metro company offers a servicefrom “Downtown
Station” to “Bay Station” and the bus company offers a service from “Downtown Bus
Stop” to “Bay Bus Stop”, then the manager of the metro may specify that the conflicting
node set of “Downtown Station” as{“Downtown Bus Stop”}. Similarly, the manager
is likely to specify that the conflicting node set of “Bay Station” as{“Bay Bus Stop”}.
We remark that we assume the notion of conflicting node set is symmetric in this paper.
As a result, ifC(“Downtown Station”)={“Downtown Bus Stop”}, thenC(“Downtown
Bus Stop’”)={“Downtown Station”}.

Given a sequencesi in Di in the form of (Np, Nq) and another sequencesj of
Dj in the form of (Nr, Ns), sj is a competitive sequenceof si, if Nr ∈ C(Np) and
Ns ∈ C(Nq). The set of competitive sequences ofsi is denoted byC(si). For exam-
ple, let sM=(“Downtown Station”, “Bay Station”) inDM andsB=(“Downtown Bus
Stop”, “Bay Bus Stop”) inDB. Following the example above, as “Downtown Station”
∈ C(“Downtown Bus Stop”) and “Bay Station”∈ C(“Bay Bus Stop”),sM is a com-
petitive sequence ofsB (and vice versa because of the symmetric property). Note that
instead of asking the managers (which are the target users ofOLAP systems) to specify
the (query) views that needed to be protected as in [3], we intentionally introduce the no-
tion of conflicting node such that it is more non-technical people friendly. For example,
rather than directly specifyingsM andsB as competitive sequences, it would be more
intuitive for those business people, say, the operation manager of partyM to directly
specify “Downtown Station” and “Downtown Bus Stop” as “conflicting”. Nonetheless,
of course, it is also possible for users to directly specify competitive sequences as well.
Now, we can define the competitive privacy of a partyP as follows.

Definition 1 (Competitive Privacy). The competitive privacyCP of a party Pi is
defined as the statistical information of all competitive sequences inDi, i.e., CP =
{f(s)|∀s ∈ Di and there existss′ ∈ Dj such thatj 6= i ands′ ∈ C(s)}. ut

Similar to what we discussed in Section 1, the statistical information of each com-
petitive sequences, namelyCP, are regarded as the “competitive privacy” of a party.
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Thus, without any query restriction, a party candirectly obtain the statistical informa-
tion of the competitive sequence of the other party easily and can do something bad to
the other party.

We now show that partyM can infer a value forCOUNT(sB), throughquery infer-
ences, even though it only obtains the statistical information other than the value of
COUNT(sB).

Example 1 (Query Inferences).In our motivating example, both the bus (partyB) and
the metro (partyM ) offer services from Downtown district to Bay district. Assume that
each of the parties provide only one service from Downtown district to Bay district.

Initially, KM (1−) = {COUNT(sM )}. Suppose at time 1,M issues a query
Q1(ŝ, COUNT), whereŝ=(“Downtown District”, “Bay District”) (where the concepthi-
erarchy is the one in Figure 1b). Without any query restriction,Q1 can be posed onDI

and thus the knowledge ofM can be updated toKM (1+) = {COUNT(sM ), COUNT(ŝ)}.
AssumeCOUNT(sM ) = 10, 000 andCOUNT(ŝ) = 90, 000, PartyM can infer a value for
f(sB) asCOUNT(ŝ) − COUNT(sM ) = 80, 000 ut

Definition 2 (Competitive Privacy Breach).Given two competitive sequencessi and
sj obtained fromDi andDj respectively. At timet, we say that there is acompetitive
privacy breachwith respect to partyPj by partyPi if, given a real numbere, Pi can
infer a valuef̃(sj |KPi

(t−)) for f(sj) such that|f̃(sj |KPi
(t−))− f(sj)| ≤ e based on

knowledgeKPi
(t−). ut

4 Query Restriction
In this section, we will give a high-level description of theproposed algorithm called
CCF (conservative competition-free) to avoid any competitive privacy breach. Details
of this algorithm can be found in [7]. Intuitively, we rejectsome queries which may
breach competitive privacy. Consider a queryQ which has sequences. We reject query
Q if one of the following two conditions holds.Condition 1:There exists a competitive
sequence which is a sub-sequence ofs. Condition 2:There exists ageneralized version
of competitive sequence which is a sub-sequence ofs. We say that sequencesi =
(N1, N2, ..., Nl) is ageneralized versionof another sequencesj = (M1, M2, ..., Ml) if
Nx is equal toMx or is an ancestor node ofMx (in the concept hierarchy) for allx ∈
[1, l]. In [7], we prove that our query restriction algorithm can avoid any competitive
privacy breach.

5 Empirical Study
We have conducted extensive experiments on a Pentium IV 2.4GHz PC with 1GB mem-
ory, on a Linux platform. The programs were implemented in C++. We evaluated our
algorithm, CCF, on both synthetic and real datasets, in terms of four measurements:
(1) average auditing time, (2) ratio of restricted queries, and (3)storage. The average
auditing time corresponds to the average time to check whether a query is rejected by
our proposed algorithm CCF. The ratio of restricted queriesis equal to the total number
of restricted queries by CCF over the total number of issued random queries. The stor-
age corresponds to the memory usage to hold all competitive sequences of all parties,
namelyCS. All experiments were conducted 100 times and we took the average for the
results. In our experiments, we generate 10,000 batches of queries. Each batch contains
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Fig. 2. Effect of the total number of tuples

20 queries. We randomly generate a queryQ1 with sequences = (N1, N2, .., N|Q1|)
as follows. For eachNi wherei ∈ [1, |Q1|], we randomly select a value in the concept
hierarchy. Then, we refine queryQ1 and generate another new queryQ2. We adopt the
refinement operations from [2]: Append, De-tail, Pre-pend,De-head, Pattern-roll-up
and Pattern-drill-down. We randomly select one of the operations and generate query
Q2. Similarly, we repeatedly generate queryQi from Qi−1 until i = 20.

Synthetic Dataset:The synthetic dataset is generated by a dataset generator. This gen-
erator creates sequences with 4 parameters, namelyn, p, c and l, wheren is the total
number of (integrated) sequences,p is the total number of parties,c is the percentage
of ground competitive sequences in each party’s dataset, and l is the average length
of the data sequences. The data sequence is generated as the same way as [2] and we
randomly assignc% of sequences as competitive. We generate a generalizationhierar-
chy of height 3. We partition the ground nodes into differentgroups such that different
ground nodes, sayv andv′, wherev ∈ C(v′) (or v′ ∈ C(v)) forms the same group.
For each group of ground nodes, we create an internal nodeN . Finally, we create a
root nodeN ′ such that the parent of all internal nodes constructed isN ′. Thus, the final
hierarchy has height equal to 3. The default values ofn (num. of tuples),p (num. of
parties),c (the ratio of ground competitive sequences) andl (average sequence length)
are 500K, 4, 0.05, and 20, respectively. In the experiments,we study the effect of the
total number of tuples and the length of the query.

In Figure 2(a), the average audit time remains nearly unchanged when the dataset
size changes. The auditing time of our proposed algorithm mainly depends on the size of
CS (Details can be found in [7]). Since the size ofCS is fixed (Figure 2(c)), the change
in the dataset size does not affect the auditing time too much. Besides, we can observe
that the average auditing time increases with|Q|, the length of the query. Figure 2(b)
shows that the number of restricted queries is nearly the same with different dataset size.
Similarly, since the percentage of competitive sequences remains unchanged when the
dataset size changes, the ratio of restricted queries also remains unchanged. When|Q|
increases, it is trivial that the ratio increases. Figure 2(c) shows the storage of algorithm
CCF keeps unchanged when the dataset size increases. This isbecause the storage for
setCS is independent of the dataset size.
Real Dataset:The real dataset is obtained from a local transportation organization
called MTR in Hong Kong. It consists of passenger transactions of 5-working-day, all
recorded by an RFID-based electronic payment system. The passenger transactions are
consolidated from 4 different in-city railway lanes. Each lane corresponds to a party.
There are 63 stations in total and 6 of them are transfer terminals. In particular, 5
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transfer terminals allow passengers to switch to another lane, and 1 transfer terminal
is a hub that allow passengers to switch to two other lanes. Anexample record is like
(N1, N2, N3, N4), which denotes that there was a passenger entered the railway net-
work at stationN1, got off at stationN2, transferred to another lane at stationN3 and
finally left the railway network at stationN4. All pairs of transfer terminals as defined
as conflicting. That is, in this example,C(N2) = {N3}. All together we have 1,387,831
sequence records. The average sequence length of a record is2.9 stations. According to
the locations of stations, we divide the stations into different regions such that there are
63 leaf values and 31 non-leaf values in the concept hierarchy of height 4.

We carry out experiments that are similar to the results for synthetic datasets. Fig-
ure 3 shows that the experimental results are similar to those on the synthetic data. In
order to conduct the experiments with the variation of the number of tuples, we ran-
domly sample a subset of tuples. The average audit time, the ratio of restricted queries
and storage remain nearly unchanged when we vary the total number of tuples.

6 Conclusion
Most previous works focus on privacy issues over data from a single source. This paper
formulates a problem called competitive privacy which considers privacy issues when
sequence data is integrated from more than one source. Our proposed algorithm CCF
rejects queries efficiently and guarantees no competitive privacy breach. In all experi-
ments, the auditing step can be achieved within 0.04s and theratio of the total number
of restricted queries over the total number of queries is also small (within 0.15).
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