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INTRODUCTION 

Association rule mining (Agrawal, Imilienski and Swami, 1993) has been 
proposed for understanding the relationships among items in transactions or market 
baskets. For instance, if a customer buys butter, what is the chance that he/she buys 
bread at the same time? Such information may be useful for decision makers to 
determine strategies in a store.  

More formally, given a set I = {I1, I2,…, In} of items (e.g. carrot, orange and 
knife, in a supermarket). The database contains a number of transactions. Each 
transaction t is a binary vector with t[k]=1 if t bought item Ik  and t[k]=0 
otherwise(e.g. {1, 0, 0, 1, 0}). An association rule is of the form X Ij , where X is 
a set of some items in I, and Ij is a single item not in X (e.g. {Orange, Knife}  
Plate). 

A transaction t satisfies X if for all items Ik in X, t[k] = 1. The support for a 
rule X Ij is the fraction of transactions that satisfy the union of X and Ij. A rule X 

 Ij has confidence c% if and only if c% of transactions that satisfy X also satisfy 
Ij . 

The mining process of association rule can be divided into two steps. 
1. Frequent Itemset Generation: generate all sets of items that have support 

greater than a certain threshold, called minsupport 
2. Association Rule Generation: from the frequent itemsets, generate all 

association rules that have confidence greater than a certain threshold 
called minconfidence 

 
Step 1 is much more difficult compared with Step 2. Thus, researchers 

(Agrawal, Imilienski &Swamin, 1993; Han, Pei & Yin, 2000; Han, Wang, Lu and 
Tzvetkov, 2002; Liu, Pan, Wang & Han, 2002; Fu, Kwong & Tang, 2000) have 
focused on the studies of frequent itemset generation.  

Different algorithms have been proposed for finding frequent itemsets. The 
Apriori Algorithm is a well-known approach which is proposed by Agrawal & 
Srikant (1994). It is an iterative approach and there are two steps in each iteration. 
The first step generates a set of candidate itemsets. Then, the second step prunes all 
disqualified candidates (i.e. all infrequent itemsets).  The iterations begin with size 
2 itemsets and the size is incremented at each iteration. The algorithm is based on 
the closure property of frequent itemsets: if a set of items is frequent, then all its 
proper subsets are also frequent. The weaknesses of this algorithm are the 
generation of a large number of candidate itemsets and the requirement to scan the 
database once in each iteration. 
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A data structure called FP-tree and an efficient algorithm called FP-growth are 
proposed by Han, Pei & Yin (2000) to overcome the above weaknesses. The idea of 
FP-tree is fetching all transactions from the database and inserting them into a 
compressed tree structure. Then, algorithm FP-growth reads from the structure FP-
tree to mine frequent itemsets.  

  
 
 
 

VARIATIONS IN ASSOCIATION RULES 
 

 Many variations on the above problem formulation have been suggested. The 
association rules can be classified based on the following (Han and Kamber, 2000):  

 
1. Association Rules based on the Type of Values of Attribute 

Based on the type of values of attributes, there are two kinds – boolean 
association rule, which is presented above, and quantitative association rule. 
Quantitative association rule describes the relationships among some quantitative 
attributes (e.g. income and age). An example is income(40K..50K)  age(40..45). 
One proposed method is grid-based - first dividing each attribute into a fixed 
number of partitions (Association Rule Clustering System (ARCS) inLent, Swami 
& Widom 1997). There is also a non-grid based approach which does not require 
any fixed number of partition initially (Srikant & Agrawal, 1996; Zhang, 
Padmanabhan, & Tuzhilin, 2004). Srikant & Agrawal (1996) proposes to partition 
quantitative attributes dynamically and to merge the partitions based on a measure 
of partial completeness.   

 
2. Association Rules based on the Dimensionality of Data 

Association rules can be divided into single-dimensional association rules and 
multi-dimensional association rules One example of single-dimensional rule is 
buys({Orange, Knife})  buys(Plate) which contains only the dimension buys.  
Multi-dimensional association rule is the one containing attributes for more than 
one dimension. For example, income(40K..50K)  buys(Plate). One mining 
approach is to borrow the concept of data cube in the field of data warehousing. 
Figure 1 shows a lattice for the data cube for the dimensions age, income and buys. 
Researchers (Kamber, Han & Chiang, 1997) have applied the data cube model and 
used the aggregate techniques for mining. 
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3. Association Rules based on the Level of Abstractions of Attribute 
 
The rules discussed in previous sections can be viewed as single-level 

association rule. A rule which references different levels of abstraction of 
attributes is called a multilevel association rule. Suppose there are two rules – 
income(10K..20K)  buys(fruit) and income(10K..20K)  buys(orange). There 
are two different levels of abstractions in these two rules because “fruit” is a 
higher-level abstraction of “orange”. Han & Fu (1995) and Srikant & Agrawal 
(1995) apply a top-down strategy to the concept hierarchy in the mining of frequent 
itemsets. 

 

 
 
 

OTHER EXTENSIONS TO ASSOCIATION RULE MINING 
 

There are other extensions to association rule mining. Some of them (Bayardo, 
1998) find maxpattern (i.e. maximal frequent patterns) while others (Pei, Han & 
Mao, 2000; Zaki & Hsiao, 2002) find frequent closed itemsets. Maxpattern is a 
frequent itemset which does not have a frequent item superset. A frequent itemset 
is a frequent closed itemsets if there exists no itemset X’ such that (1) X⊂X’ and (2) 
∀ transactions t, X is in t implies X’is in t. These considerations can reduce the 
resulting number of frequent itemsets significantly.  

Another variation of the frequent-itemset problem is mining top-K frequent 
itemsets (Fu, Kwong & Tang, 2000; Cheung & Fu, 2004). The problem is to find K 
frequent itemsets with the greatest supports. It is often more reasonable to assume 
the parameter K, instead of the data-distribution dependent parameter of 

(buys)(age) 
(income)

()

(age,income) 
(age, buys)

(income, buys)

(age, income, buys)

Figure 1: A lattice showing the data cube for the dimensions age, income and buys.  
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minsupport because the user typically would not have the knowledge of the data 
distribution before data mining.  

The other variations of the problem are the incremental update of mining 
association rules (Sarda & Srinivas, 1998; Hidber, 1999), constraint-based rule 
mining (Ng, Lakshmanan, Han & Pang, 1998; Pei & Han, 2000; Grahne & 
Lakshmanan, 2000), distributed and parallel association rule mining (Agrawal & 
Shafer, 1996; Zaki, 1999; Schuster, Wolff & Trock, 2003; Gilburd, Schuster, & 
Wolff, 2004), association rule mining with multiple minimum supports/without 
minimum support (Liu, Hsu & Ma, 1999; Chiu, Wu, & Chen, 2004), association 
rule mining with weighted item and weight support (Cai, Fu, Cheng & Kwong, 
1998; Tao, Murtagh & Farid, 2003), and fuzzy association rule mining (Kuok, Fu & 
Wong 1998). 

Association rule mining has been integrated with other data mining problems. 
There have been integration of classification and association rule mining (Liu, Hsu 
& Ma, 1998) and the integration of association rule mining with relational database 
systems (Sarawagi, Thomas & Agrawal, 1998).  

 
 
APPLICATION OF ASSOCIATION RULES  to MPIS  

 
Other than market basket analysis (Blischok, 1995), association rules can also 

help in applications such as intrusion detection (Lee, Stolfo & Mok, 1999), 
heterogeneous genome data (Satou, Shibayama, Ono, et al, 1997), mining remotely 
sensed images/data (Dong, Perrizo, Ding and Zhou, 2000) and product assortment 
decisions (Brijs, Swinnen, Vanhoof & Wets, 1999; Brijs, Goethals, Swinnen, 
Vanhoof & Wets, 2000; Wang & Su, 2002; Wong, Fu & Wang, 2003; Wong & Fu, 
2004). Here we focus on the application on product assortment decisions as it is 
one of very few examples where the association rules are not the end mining results. 

Transaction database in some applications can be very large. For example 
Hedberg (1995) quoted that Wal-Mart kept about 20 million sales transactions per 
day. Such data requires sophisticated analysis. As pointed out by Blischok (1995), 
a major task of talented merchants is to pick the profit generating items and discard 
the losing items. It may be simple enough to sort items by their profit and do the 
selection. However, this ignores a very important aspect in market analysis - the 
cross-selling effect. There can be items that do not generate much profit by 
themselves but they are the catalysts for the sales of other profitable items. 
Recently, some researchers (Kleinberg, Papadimitriou & Raghavan, 1998) suggest 
that concepts of association rules can be used in the item selection problem with 
the consideration of relationships among items.  

One example of the product assortment decisions is Maximal-Profit Item 
Selection (MPIS) with Cross-selling considerations (Wong, Fu & Wang, 2003). 
Consider the major task of merchants to pick profit generating items and discard 
the losing items. Assume we have a history record of the sales (transactions) of all 
items. This problem is to select a subset from the given set of items so that the 
estimated profit of the resulting selection is maximal among all choices.  

Suppose a shop carries office equipments of monitors, keyboards and 
telephones, with profits of $1000K, $100K and $300K, respectively. If now the 
shop decides to remove one of the three items from its stock, the question is which 
two we should choose to keep. If we simply examine the profits, we may choose to 
keep monitors and telephones, and so the total profit is $1300K. However, we know 
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that there is strong cross-selling effect between monitor and keyboard (see the table 
below). If the shop stops carrying keyboard, the customers of monitor may choose 
to shop elsewhere to get both items. The profit from monitor may drop greatly, and 
we may be left with profit of $300K from telephones only. If we choose to keep 
both monitors and keyboards, then the profit can be expected to be $1100K which 
is higher.  

 
Monitor Keyboard Telephone 

1 1 0 
1 1 0 
0 0 1 
0 0 1 
0 0 1 
1 1 1 

 
MPIS will give us the desired solution. MPIS utilizes the concept of the 

relationship between selected items and unselected items. Such relationship is 
modeled by the cross-selling factor. Suppose d is the set of unselected items and I 
is the selected item. A loss rule is proposed in the form I  ◊d, where ◊d means 
the purchase of any item in d. The rule indicates that from the history, whenever a 
customer buys the item I, he/she also buys at least one of the items in d. 
Interpreting this as a pattern of customer behavior, and assuming that the pattern 
will not change even when some items were removed from the stock, if none of the 
items in d are available then the customer also will not purchase I. This is because 
if the customer still purchases I,  without purchasing any items in d, then the pattern 
would be changed. Therefore, the higher the confidence of I  ◊d, the more likely 
the profit of I should not be counted. This is the reasoning behind the above 
definition. In the above example, suppose we choose monitor and telephone. Then, 
d = {keyboard}. All profits of monitor will be lost because, in the history, we find 
conf(I  ◊d)=1, where I = monitor. This example illustrates the importance of the 
consideration of cross-selling factor in the profit estimation. 

Wong, Fu & Wang (2003) proposes two algorithms to deal with this problem. 
The first one is an optimization approach called QP. They approximate the total 
profit of the item selection in quadratic form and solve a quadratic optimization 
problem. The second one is a greedy approach called MPIS_Alg. This algorithm 
prune items iteratively according to an estimated function based on the formula of 
the total profit of the item selection until J items remain.  

Another the product assortment decision problem is studied in (Wong & Fu, 
2004), which addresses the problem of selecting a set of marketing items in order 
to boost the sales of the store.  
 
FUTURE TRENDS 

A new area for investigation of the problem of the frequent itemsets is mining 
data streaming for frequent itemsets (Manku & Motwani, 2002; Giannella, Han, 
Pei, Yan & Yu, 2003; Chang & Lee, 2003). In such kind of problem, the data is so 
massive that all data cannot be stored in the memory of a computer and cannot be 
processed by traditional algorithms. The objective of all proposed algorithm is to 
store as few as possible and to minimize the error generated by some estimation in 
the model. For instance, Yu, Chong, Lu & Zhou (2004) recently proposed a false-
negative oriented algorithm for frequent itemset mining. 
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Privacy preservation on the association rule mining is also rigorously studied 
in these few years (Vaidya & Clifton, 2002; Rizvi & Haritsa, 2002; Agrawal, 
Evfimievski & Srikant, 2003). The problem is to mine from two or more different 
sources without exposing individual transaction data to each others.  
 
 
CONCLUSION 

Association rule mining plays an important role in the literature of data mining. 
It poses many challenging issues for the development of efficient and effective 
methods. After taking a closer look, we find that the application of association 
rules requires much more investigations in order to aid in more specific targets. We 
may see a trend towards the study of applications of association rules.  
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TERMS AND THEIR DEFINITION 
 
Transaction: a record containing the items bought by customers 
Apriori Algorithm: an algorithm to find frequent itemsets and association rule. The process of 
finding frequent itemsets involves two steps – candidate itemset generation and pruning.  
FP-Growth: an algorithm to find frequent itemsets by using a data structure called FP-tree 
Association Rule: a kind of rules in the form X  Ij, where X is a set of some items and Ij is a 
single item not in X. 
Support (Rule): The support of a rule X  Ij, where X is a set of  items and Ij is a single item not 
in X, is the fraction of transactions containing all items in X and item Ij. 
Confidence: The confidence of a rule X  Ij, where X is a set of items and Ij is a single item not 
in X, is the fraction of the transactions containing all items in set X that also contain item Ij. 
Itemset: a set of items 
k-itemset: itemset with k items 
Support (Itemset), or frequency: The support of an itemset X is the fraction of transactions 
containing all items in X. 
Frequent Itemset/Pattern: the itemset with support greater than a certain threshold, called 
minsupport. 
Large Itemset: same as Frequent Itemset. See Frequent Itemset. 
Infrequent Itemset: the itemset with support smaller than a certain threshold, called minsupport. 
Small Itemset: same as Infrequent Itemset. See Infrequent Itemset. 
Maximal Frequent Itemset/Pattern, or maxpattern: frequent itemset which does not have a 
frequent item superset 
Frequent Closed Itemset/pattern: an itemset X if there exists no itemset X’ such that (1)  X⊂X’  
and (2) ∀ transactions t, X ∈ t implies X’ ∈t. 
Loss Rule: a kind of association rule used to model the loss of items in the problem MPIS 
Maximal-Profit Item Selection (MPIS): the problem of item selection which selects a set of 
items in order to maximize the total profit with the consideration of cross-selling effect 
Boolean Association Rule:   association rule with only binary attributes  
Quantitative Association Rule:  association rule with quantitative attributes 
Single-level Association Rule: a kind of association rule with one level of abstraction only 
Multi-level Association Rule: a kind of association rule with different levels of abstractions 


