
Finding the Influence Set through Skylines

Xiaobing Wu1 Yufei Tao1 Raymong Chi-Wing Wong2 Ling Ding1 Jeffrey Xu Yu1

Chinese University of Hong Kong1 Hong Kong University of Science and Technology2

Sha Tin, New Territories, Hong Kong Clear Water Bay, Hong Kong

ABSTRACT
Given a set P of products, a set O of customers, and a prod-
uct p ∈ P , a bichromatic reverse skyline query retrieves all
the customers in O that do not find any other product in
P to be absolutely better than p. More specifically, a cus-
tomer o ∈ O is in the reverse skyline of p ∈ P if and only no
other product in P better matches the preference of o on all
dimensions.

The only existing bichromatic reverse skyline algorithm,
which we refer to as basic, is designed for uncertain data.
This paper focuses on traditional datasets, where each ob-
ject is a precise point. Since a precise point can be regarded
as a special uncertain object, basic can still be applied. How-
ever, as precise data are inherently easier to handle than
uncertain data, one should expect that basic can be fur-
ther improved by taking advantage of the reduced problem
complexity. Indeed, we observe several non-trivial heuristics
that can optimize the access order to achieve stronger prun-
ing power. Motivated by this, we propose a new algorithm
called BRS, and prove that BRS never entails more I/Os
than basic. Besides our theoretical analysis, we also per-
form extensive experiments to show that in practice BRS
usually outperforms basic by a large factor. For example,
when both P and O follow the anti-correlated distribution,
BRS is faster than basic by an order of magnitude. Finally,
we address a new variation of bichromatic reverse skyline
search where the conventional definition of dynamic skylines
no longer makes sense.

1. INTRODUCTION
The skyline operator and its variants (as surveyed in

Section 2) have been extensively studied in the past ten
years, due to their significant importance in a large num-
ber of multi-criteria decision making applications. Specifi-
cally, a point p dominates another p′, if the coordinate of p

is not larger than that of p′ on every dimension, and strictly
smaller on at least one dimension. The skyline of a point
set S includes all the points in S that are not dominated by

Permission to copy without fee all or part of this material isgranted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

engine capacity (cc)

passenger seat number

p�
p�

p� p�
p�
p�

1.5k 2k 2.5k 3k 3.5k

o

1

3

5

7
seat number difference

p� p�
p� p	

p
 (also p�)
0 0.5k 1k 1.5k 2k

capacity difference (cc)
0

2

4

6

(a) The raw space (b) The transformed space

Figure 1: A dynamic skyline example

any other point.
Some applications require the skyline of a dataset dynami-

cally generated based on a given query. Consider a car dealer
that is promoting six vehicle models, denoted by p1, p2, ...,
p6 in Figure 1a. Here, each point captures the engine ca-
pacity and the number of passenger seats of a vehicle. Point
o represents the profile of a customer that prefers a vehicle
with 3 passenger seats and a 2000-cc engine. Since no vehicle
matches the profile exactly, the dealer makes recommenda-
tions by resorting to skyline analysis. For this purpose, each
vehicle pi (1 ≤ i ≤ 6) is transformed into a new space, where
the horizontal (vertical) dimension equals the absolute dif-
ference between the capacities (seat-numbers) of pi and o.
Figure 1b demonstrates the resulting points (notice that p5

and p6 are converted to the same location). The skyline in
the transformed space includes p2 and p3. The other vehi-
cles would not be attractive to o. For instance p1 would not
attract o, because p3 (dominating p1) suits the profile of o

at least as nicely on all aspects, and better on one attribute
(i.e., seat-number). The dealer can thus recommend p2 and
p3 to the customer.

The skyline in Figure 1b is called the dynamic skyline [24]
of o. In general, if a point p is in the dynamic skyline of
o, then o is said to be in the reverse skyline of p [19]. For
example, in Figure 1, o is in the reverse skylines of p2 and p3.
Intuitively, the reverse skyline of a vehicle p includes those
customers that do not find any other vehicle to be better
than p on both axes.

Generally, given a set P of products, a set O of customers,
and a product p ∈ P , a bichromatic reverse skyline query re-
trieves all the customers in O whose dynamic skylines con-
tain p. For example, let P be the set of vehicles in Figure 1a,
and O be the set of customers in Figure 2. It is not hard

engine capacity (cc)

passenger seat number
o�

o
o�

1.5k 2k 2.5k 3k 3.5k

o�
1

3

5

7

o� o�
Figure 2: Customer dataset for bichromatic skyline
retrieval

to verify that the dynamic skylines of o1, o2, o3, o4, o5, o6

are {p1}, {p1, p5}, {p1, p2}, {p2, p3}, {p5}, and {p6}, respec-
tively. Therefore, the reverse skyline of p1 is {o1, o2, o3}.

Bichromatic reverse skyline retrieval is useful in many
other applications. As another example, consider a
personality-based matching service, where P is a set of men
and O a set of women. Every man (woman) is a point in a
data space, where each dimension describes an aspect of per-
sonality. For instance, a dimension may indicate how much,
in a range from 0 to 1, a person likes sports. Similarly, other
dimensions may represent the degree of interest in ancient
music, art, investment, etc. The bichromatic reverse skyline
of a man p ∈ P includes all the women in O that cannot find
any other man matching their personalities better than p in
all aspects. Bichromatic reverse skylines are also interesting
in profile-based investment. Imagine P as a set of stocks and
O as a set of customer profiles. The dimensions are different
properties of stocks, such as risk (on the scale from 0 to 1),
volatility, daily turn-over, and so on. Thus, the bichromatic
reverse skyline of a stock p ∈ P consists of all the customers
in O that cannot find any other stock better than p in all
dimensions.

The only existing algorithm for bichromatic reverse sky-
line queries is due to Lian and Chen [19]. That algorithm,
which we refer to as basic, is designed for uncertain datasets,
where each object is modeled as a probability distribu-
tion function (pdf). In this work, we focus on traditional
datasets, where each object is a precise point. All the ap-
plications mentioned earlier are examples of bichromatic re-
verse skyline search on precise points.

Since a precise point can be regarded as a special un-
certain object, basic is still applicable. However, as precise
data are inherently easier to handle than uncertain data, one
should expect that basic can be further improved by taking
advantage of the reduced problem complexity. Indeed, we
observe several non-trivial heuristics that can optimize the
access order to achieve stronger pruning power. Motivated
by this, we propose a new algorithm called BRS, and prove
that BRS never entails more I/Os than basic. Besides our
theoretical analysis, we also perform experiments to show
that in practice BRS usually outperforms basic by a large
factor. For example, when both participating datasets fol-
low the anti-correlated distribution (a benchmark distribu-
tion for skyline research [3]) BRS is faster than basic by an
order of magnitude.

Our last contribution is to point out that the conventional
definition of dynamic skylines, hence also bichromatic re-
verse skylines formulated based on it, does not make sense

in some applications. Specifically, we show that some dimen-
sions have a fixed optimization direction, making it unrea-
sonable to minimize the absolute difference between coordi-
nates as in Figure 1. We address this problem by extending
the notions of dynamic skylines and reverse skylines to the
general scenario where the data space can have any mixture
of dimensions, i.e., either those conventionally targeted by
the previous work or the new ones identified in this paper.
We extend both the basic and BRS algorithms to such a
scenario.

The rest of the paper is organized as follows. Section 2
surveys the existing literature on skylines. Section 3 reviews
the basic algorithm in [19]. Section 4 proposes our new algo-
rithm BRS and proves its superiority over basic. Section 5
addresses a drawback of bichromatic reverse skylines when
some dimensions of the data space have an obvious pref-
erential direction. Section 6 evaluates the efficiency of our
techniques with extensive experimentation. Section 7 con-
cludes the paper with directions for future work.

2. RELATED WORK
The skyline literature has expanded to a vast scale. Next,

we point to several major topics in the literature. The sky-
line operator is first introduced to databases by Borzsonyi et
al. [3]. Since then, numerous algorithms have been proposed
for its efficient computation. These solutions can be classi-
fied into two categories, depending on whether they assume
an index. The no-index category includes BNL [3], SFS [9],
LESS [13], D&C [3], Bitmap [32], and Lattice [22]. They
demand no preprocessing at all, but must scan the entire
database at least once. The with-index category, which in-
cludes Index [32], B-tree [3], NN [16], and BBS [24], achieves
better efficiency by examining only the part of the dataset
that may contain skyline points. In particular, the BBS algo-
rithm is I/O-optimal, in the sense that it requires the fewest
I/O accesses among all the algorithms using the same index.
It is shown in [17] that BBS is especially efficient when ap-
plied on an R-tree built from the Z-order space filling curve.

The cardinality of the skyline increases rapidly with the
dimensionality (see a detailed analysis in [7]). After the
dimensionality has reached a certain level, service recom-
mendation by skyline is ineffective, as the skyline becomes
too gigantic for a customer to scrutinize manually. This
calls for innovative approaches for eliminating certain sky-
line objects of relatively poor quality. These approaches
include influence analysis [6], k-dominant skyline [5], and
k-representative skyline [21].

There are also substantial works on skyline computation
in arbitrary subspaces of the data space. In particular, SUB-
SKY [33] considers centralized databases, while SKYPEER
[35] discusses distributed systems. An interesting concept
in this regard is skyline cube [27, 40], which enumerates the
skyline in every possible subspace. Fast algorithms for de-
riving the skyline cube are available in [25, 39].

Several works [20, 23, 29, 37] tackle the challenge of real-
time skyline maintenance on data streams. The solutions of
[14, 36] efficiently produce skylines from peer-to-peer net-
works. Skyline algorithms are also studied in web search
[1], parallel computation [10, 34, 38], partially-ordered do-
mains [4], spatial databases [30], road networks [12], uncer-
tain databases [26], and multiple relations [15]. The skyline
operator has led to the dada cube [18], which is an effec-
tive tool for optimizing product specifications. Furthermore,

skylines have been applied for other purposes such as bar-
gaining [31] and privacy protection [8].

The concept of reverse skyline is first introduced by Dellis
and Seeger [11], but in a monochromatic context involving a
single dataset. Lian and Chen [19] extend the definition of
reverse skyline to the bichromatic scenario, and propose an
algorithm for its efficient computation on uncertain data. In
the next section, we will discuss their technique in detail.

3. PROBLEM DEFINITION AND THE BA-
SIC ALGORITHM

We consider two sets, denoted as P and O, of points in
the same d-dimensional space Ω. Each point in P is referred
to as a product, and each point in O a customer. Given any
dimension X of Ω, we use p[X] to denote the coordinate of
a point p on X. Without loss of generality, assume that all
the coordinates be non-negative.

The next definition describes, from the perspective of a
customer o ∈ O, the superiority between two products p

and p′ of P .

Definition 1 (Dynamic Dominance). In the view of
a customer o ∈ O, a product p ∈ P dynamically dominates
p′ ∈ P if (i) for each dimension X of Ω, |o[X] − p[X]| ≤
|o[X]−p′[X]|, and (ii) equality does not hold on at least one
dimension X.

We emphasize that the notion of dynamic dominance is
meaningful only in the view of a customer. The dominance
relation between two products p and p′ may actually be re-
versed in the views of different customers.

Definition 2 (Bichromatic Reverse Skyline).
Given a product p ∈ P , its bichromatic reverse skyline is
the set of customers o ∈ O such that, in the view of o, p is
not dynamically dominated by any other product p′ ∈ P .

All “reverse skylines” in the sequel are bichromatic (as
opposed to its monochromatic counterpart in [11]).

Suppose that we want to find the reverse skyline of p ∈ P .
Let us cut the space Ω into 2d quadrants with d orthogonal
hyper-planes. For example, given p3 in Figure 3a, we par-
tition Ω using a horizontal and a vertical line. Note that
the boundary between two quadrants belongs to both quad-
rants. Let us extract a skyline of P in every quadrant, and
call it a quadrant skyline. For example, in Figure 3a, the
quadrant skyline in the first quadrant is {p5}, and that in
the second quadrant is {p6}, and so on. The next definition
formalizes the notions of “dominance in a quadrant”, and
“quadrant skyline”.

Definition 3 (Quadrant Skyline). Let p be a prod-
uct in P , and Ωquad any quadrant of p. Given two points x

and y in Ωquad, x dominates y in Ωquad if |x[X] − p[X]| ≤
|y[X] − p[X]| on all dimensions X, and equality does not
hold on at least one dimension.

Let Pquad be the set of products in P − {p} that are in
Ωquad. The quadrant skyline of p in Ωquad includes all the
products in Pquad that are not dominated by any other prod-
uct of Pquad in Ωquad.

Let Squad be a quadrant skyline of p. Then, for every
product p̂ ∈ Squad, take the mid-point p̂′ of (the segment
connecting) p̂ and p. Replacing each p̂ with p̂′, we derive a
new point set S′

quad, and call it a midway quadrant skyline
of p. To illustrate, consider the first quadrant in Figure 3a,
where the quadrant skyline of p3 is {p5}. The midway sky-
line of p3 in this quadrant contains a single point p′

5, which,
as shown in Figure 3b, is the mid-point of p3 and p5. Simi-
larly, the midway skylines of p3 in quadrants 2, 3, 4 are {p′

6},
{p′

2}, and {p′

1}, respectively.
In each quadrant, there is a portion, referred to as the

anti-dominance area (ADA), which is not dominated by any
point in the midway skyline of p in this quadrant. Note that
the ADA includes every midway skyline point, since a point
does not dominate itself. The search region of p is the union
of the ADAs of all the quadrants. In Figure 3b, the shaded
area represents the search region of p3.

We are ready to give an important property of reverse
skylines.

Lemma 1. (Proved in [19]; see Lemmas 5.1 and 5.2
there) The reverse skyline of a product p ∈ P is exactly
the set of customers of O, which fall in the search region of
p.

Let O the set of dots in Figure 3c. Given the search re-
gion of p3 shown in Figure 3b, by Lemma 1, we immedi-
ately conclude that the reverse skyline of p3 contains only
o4. Figures 3d and 3e present the search regions of p1 and
p6, respectively. It is easy to see that the reverse skyline of
p1 is {o1, o2, o3}, and that of p6 is {o6}.

Leveraging Lemma 1, Lian and Chen [19] propose an al-
gorithm basic for computing the reverse skyline of p. Basic
is originally designed for an uncertain dataset, where each
object is described by a pdf. However, since a point can be
regarded as a special pdf, basic trivially applies to precise
datasets too.

Specifically, given a precise dataset, basic works in two
steps. The first P-step retrieves all the quadrant skylines
of p, which can be accomplished using, for example, the
BBS algorithm reviewed in Section 2. Once the quadrant
skylines are derived, all the midway quadrant skylines of p

are determined as well — simply replacing each product p̂

in a quadrant skyline with the mid-point of p̂ and p. Then,
the second O-step fetches all the customers that are inside
the search region of p. This can be done efficiently using an
index (e.g., an R-tree) on O.

Finally, we note that basic as described in [19] interleaves
the two P- and O-steps in its execution, instead of separating
them. The interleaving is necessary in the context of [19],
where each object is represented by a large number of points
describing its probability density function. In our scenario
where each object is a precise point, the original algorithm
in [19] achieves exactly the same performance as the basic
algorithm described above.

4. THE BRS ALGORITHM
The basic algorithm has two drawbacks. First, it lacks

progressiveness in result outputting, because no reverse sky-
line point can be returned until the P-step has completed.
Second, its P-step totally ignores the dataset O, and there-
fore, misses the opportunity of using the characteristics of O

capacity (cc)

seat number

p�
p�

p� p�
p�
p�

1.5k 2k 2.5k 3k 3.5k

1

3

5

7

quadrant 1
quadrant 2quadrant 3

quadrant 4

capacity (cc)

seat number

p�
p�

p�' p�
p�
p�

1.5k 2k 2.5k 3k 3.5k

1

3

5

7

p�'
midway quad. skylines

p�
p�'

p�'p�'
engine capacity (cc)

seat number

o�
o�

o
1.5k 2k 2.5k 3k 3.5k

o!
1

3

5

7

o" o#
(a) Quadrant skylines of p3 (b) Midway quadrant (c) Dataset O

skylines and search regions of p3

capacity (cc)

seat number

p$
p%

p& p'
p(
p)

1.5k 2k 2.5k 3k 3.5k

1

3

5

7
search region

quadrant 2

capacity (cc)

seat number

p*
p+

p, p-
p.
p/

1.5k 2k 2.5k 3k 3.5k

1

3

5

7

search region

quadrant 4

(d) Search regions of p1 (e) Search regions of p6

Figure 3: Search regions of bichromatic reverse skyline retrieval

to prune the data of P . Remember that basic is designed for
uncertain data, where the high complexity of the problem
limits the variety of heuristics that can be used. As precise
data are easier to process, intuitively one should expect the
existence of a faster algorithm.

In this section, we develop a new algorithm BRS (bichro-
matic reverse skyline) that overcomes the drawbacks of ba-
sic. BRS aims at minimizing the I/O cost, since reverse
skyline retrieval is I/O-bounded, as shown in the experi-
ments. It assumes that each of P and O is indexed by a
multi-dimensional access method. Our discussion uses R-
trees, but it can be easily adapted to other data-partitioning
or space-partitioning indexes such as Quad-trees, kdB-trees,
etc. In Section 4.1, we describe a transformation that signif-
icantly simplifies our analysis. Then, Section 4.2 elaborates
the proposed heuristics, based on which Section 4.3 presents
the details of BRS, and proves that it never entails higher
I/O overhead than basic.

4.1 More on Midway Conversion
For simplicity, we will use 2D examples, since our solu-

tion can be generalized to any dimensionality in a straight-
forward manner. Recall that, given a query product p ∈ P ,
its search region is the union of the ADAs (anti-dominance
areas) of four quadrants (see Figure 3b). Since all quadrants
are symmetric, it suffices to focus on only quadrant 1 of p.
For this reason, we will treat the quadrant as a new data
space Ω′ directly, which has p as its origin. Accordingly, P

(O) is assumed to contain only the products (customers) of
this quadrant. In Section 4.3, we will come back to this issue
and remove the assumption.

Further recall that the search region of p is bounded by
its midway skylines, which, in turn, are derived from its

quadrant skylines (again, consult Figure 3b). To eliminate
this complication, let us replace each product p̂ ∈ P (p̂ 6= p)
with the mid-point p̂′ of p̂ and p. This way, we obtain a new
point set P ′, which consists of all the mid-points created
from P . In the sequel, we will work with P ′ only; the benefit
is that the notion of “midway skyline” is no longer needed
— the midway skyline of p (in the first quadrant) is simply
the skyline of P ′ in Ω′.

To illustrate the above midway conversion, let p = p3 in
Figure 3b. Thus, Ω′ is the first quadrant of p3, and P , after
eliminating all the products outside quadrant 1, is {p4, p5}.
Hence, P ′ includes two points p′

4 and p′

5 as shown in the
figure. The midway skyline of p3 in quadrant 1 is {p′

5},
which is the skyline of P ′ in Ω′.

It is important to note that our midway conversion is con-
ceptual, namely, P ′ is not materialized; every time a product
p̂ ∈ P is encountered, its mid-point p̂′ is computed on the
fly with no I/O overhead. This also applies to the R-tree on
P . Specifically, the MBR N of any node in the tree can be
trivially transformed to an MBR N ′ of a node in an R-tree
on P ′ — each corner of N ′ is the mid-point of p (i.e., the
query) and the corresponding corner of N . Hence, from now
on, we will consider that an R-tree on P ′ is available.

Now, we re-visit the basic algorithm using a more complex
example in Figure 4. Specifically, Figure 4a demonstrates a
P ′ including eight points p′

1, ..., p′

8, together with the MBRs
in the R-tree on P ′, which is given in Figure 4b. Notice
that the origin of the coordinate system is the query p. Fig-
ure 4c shows a set O involving eight customers o1, ..., o8,
and the MBRs of the R-tree on O in Figure 4d. The P-step
of basic first extracts the skyline Ssky = {p′

1, p
′

5, p
′

6, p
′

7} of
P ′ (i.e., the midway skyline of p in the first quadrant). The
shaded area of Figure 4a indicates the ADA of the skyline.

x

y

p0'p1' p2'
p3'

p4'
p5'N1

N4 N5
N3

p1'
N1 N4 N2 N0N5 N3

p4' p5' p3' p6' p7'N1 N4 N2 N0N5 N3
1 2 3 4 5 6 7 8 9 10p

1
2
3
4
5
6
7
8
9
10

anti-dominance area

N2 N0 p2' p0'
p6' p7'

(a) The P ′ dataset (b) The R-tree on P ′ (derived from
the R-tree on P with no I/O cost)

x

y

o8 o9
o:

o; o<M8
M=

M>
M?

o8
M8 M? M9 M>M= M:

o? o9 o> o= o: o; o<M8 M? M9 M>M= M:
1 2 3 4 5 6 7 8 9 10p

1
2
3
4
5
6
7
8
9
10

o? o>
o= M9 M:

(c) The O dataset (d) The R-tree on O

Figure 4: The running example for Section 4

Then, the O-step fetches all the customers that are inside
the shaded area. Therefore, the reverse skyline of p contains
o1, o2, and o7 (note that o3 and o5 are not in the ADA,
because they are dominated by p′

1 and p′

5, respectively).
Let us implement the two steps using the R-trees. The

best way to find Ssky is to employ the state-of-the-art al-
gorithm BBS [24]. As a property of this algorithm [24],
BBS visits all the nodes whose MBRs intersect the ADA.
Hence, in our example the P-step explores all the nodes in
Figure 4b except N2. Then, the O-step simply accesses the
shaded nodes in Figure 4d, whose MBRs intersect the ADA.

Which I/Os can be avoided? Certainly not the nodes
(in the tree of O) visited in the O-step, as skipping any of
them potentially incurs false misses. However, we can hope
to avoid accessing some nodes fetched by BBS because, as
explained later, it is possible to retrieve the reverse sky-
line without getting the entire Ssky. As shown later in Sec-
tion 4.3, our algorithm BRS explores only the shaded nodes
in the tree of Figure 4b, i.e., saving three node accesses (N1,
N3, N4) from BBS.

4.2 Heuristics
Before discussing our pruning strategies, we first introduce

two crucial concepts: P -safe collection and O-safe collection,
which are sets of (intermediate/leaf) entries in the R-trees
of P and O, respectively. Informally, these entries have an
important feature: even without further information from
either tree, we can still compute the reverse skyline correctly,
by resorting to only those collections. Next, we provide the
formal definitions.

Definition 4 (P -safe Collection). A P -safe collec-
tion is a set CP of entries in the R-tree of P ′ such that, any
point in the skyline Ssky of P ′ is either in CP , or in the
subtree of an entry in CP .

For example, as explained earlier, in Figure 4a the skyline
Ssky of P ′ is {p′

1, p
′

5, p
′

6, p
′

7}. A legal CP can be {p′

1, N3, N4}.
Obviously, any point in Ssky is either in CP , or in the sub-
tree of an entry in CP (e.g., p′

5 is underneath N3). Note
that {p′

1, N2, N3, N4} is also a legal CP , even though it has
a “redundant” N2 that contains no skyline point in its sub-
tree. Intuitively, CP gives us enough information to find Ssky

exactly, whenever necessary.

Definition 5 (O-safe Collection). An O-safe col-
lection is a set CO of entries in the R-tree of O such that, if
o ∈ O is a reverse skyline point that has not been reported,
then o must be either in CO, or in the subtree of an entry
CO.

We stress that CO depends on which reverse skyline points
have been already output. For instance, as mentioned be-
fore, in Figure 4c the final reverse skyline contains o1, o2,
and o7. Assuming that none of them has been reported yet,
a CO can be {M1, M4}, or {M1, M2, o7} (as with CP , CO may
have redundant entries, e.g., M2 here, which has no reverse
skyline point in its subtree). If o7 has been reported, then
{M1} becomes a legal CO. Intuitively, CO ensures that we
can eventually discover all the reverse skyline points without
any false miss.

Next, given a non-empty CP , we formulate an optimistic
and a pessimistic estimate of the actual skyline Ssky of
P ′. To obtain an optimistic skyline Sopt, for each entry
e ∈ CP , we take the min-corner of (the MBR of) e, which
is the corner of e closest to the query p. Specially, if e is
a point, then its min-corner is simply the point itself. Sopt

is the skyline of the min-corners of all the entries in CP .
To illustrate, consider the MBRs in Figure 5a, and assume
CP = {N1, N3, N4}. The min-corners of N1, N3, N4 are A,
B, C respectively, which constitute Sopt.

The construction of the pessimistic skyline Spes is more
complicated. For each entry e ∈ CP , we will prepare d

minmax-corners1 of e, where d is the dimensionality. Specif-
ically, we first take the min-corner of e, which is adjacent to
d boundaries of (the MBR of) e. Each boundary is essen-
tially a (d − 1)-dimensional rectangle. We use the point of
this rectangle, which is the farthest to the query p, as a
minmax-corner of e. Specially, if e is a point, then all its d

minmax-corners degenerate into e itself. Spes is the skyline
of the minmax-corners of all entries in CP . For example,
consider again CP = {N1, N3, N4}. As mentioned before,
the min-corner of N1 is A, which is adjacent to two bound-
aries of N1: edges AE and AD, respectively (Figure 5b).
On boundary AE (AD), the farthest point to p is E (D);
hence, the minmax-corners of N1 are E and D. Similarly,
the minmax-corners of N3 (N4) are F , G (H , I). Therefore,
Spes = {D, E, F, G, H, I}.

Similar to the ADA of Ssky , let the anti-dominance area
(ADA) of Sopt (or Spes) be the portion of the first quad-
rant of the query p that is not dominated by any point in
Sopt (Spes). Intuitively, the optimistic (pessimistic) skyline
Sopt (Spes) is below (above) the skyline Ssky of P ′. More
formally, the ADA of Sopt is entirely covered by the ADA
of Ssky, and the ADA of Spes completely covers the ADA
of Ssky. This can be observed by comparing the ADA of

1The name stems from the well-known metric of MINMAX
distance [28].

x

y

N@
1 2 3 4 5 6 7 8 9 10p

1
2
3
4
5
6
7
8
9
10

NA
NBA

C
B

optimistic skyline

x

y

NC
1 2 3 4 5 6 7 8 9 10p

1
2
3
4
5
6
7
8
9
10

ND
NE

A pessimistic skyline
D

E

F

G
H

I

upper-envelop

(a) Optimistic skyline Sopt (b) Pessimistic skyline Spes

Figure 5: Skyline approximation with a P -safe col-
lection CP = {N1, N3, N4}

Sopt (Spes) in Figure 5a (5b) with the shaded area in Fig-
ure 4a. It is worth mentioning that Papadias et al. [24]
propose the similar concepts of lower and upper envelops.
While the lower envelop is equivalent to the optimistic sky-
line, the pessimistic skyline is a tighter estimate than the
upper envelop. This is evident in Figure 5b (an upper en-
velop is the skyline of the farthest corners (from p) of a set
of MBRs).

Leveraging Sopt and Spes, we are ready to clarify the pro-
posed heuristics. The first one says that some nodes in the
R-tree of O should be accessed early.

Heuristic 1. Let M be a node in the R-tree of O. Access
M immediately, if (the MBR of) M intersects the ADA of
Sopt. Let o be a customer in O. If o is in the ADA of Sopt,
then report o as a reverse skyline point.

To explain, Figure 6a demonstrates the optimistic sky-
line Sopt in Figure 5a, where the P -safe collection CP =
{N1, N3, N4}. Figure 6a also shows the MBRs M1 and M4

in the R-tree of O (from Figures 4c). As both M1 and M4 in-
tersect the ADA of Sopt, they definitely intersect the ADA
of the final Ssky , and thus, must be visited eventually to
guarantee retrieval of all the reverse skyline points (recall
our discussion in Section 4.1). There are two reasons why
they should be accessed immediately. First, exploring them
leads to the discovery of the reverse skyline points o1, o2,
and o7, which can be output directly (well before the algo-
rithm terminates), since they are also in the ADA of Sopt

(Heuristic 1). Second, the disappearance of M1 and M4 from
the O-safe collection (Definition 5) actually enables pruning
more nodes in the R-tree of P , as explained in Heuristic 3
later.

Unlike the above heuristic, which employs Sopt to decide
nodes to be visited right away, the following heuristics deploy
Spes for pruning.

Heuristic 2. Let M be a node in the R-tree of O. Prune
M , if M is disjoint with the ADA of Spes.

Figure 6b shows the pessimistic skyline Spes in Figure 5b,
and MBR M2 in the R-tree of O (Figure 4c). Since M2 does
not intersect the ADA of Spes, neither can it intersect that
of Ssky . Hence, no customer in M2 can be a reverse skyline
point, and M2 can be eliminated from further consideration.
Similarly, the heuristic also prunes M3.

x

y

1 2 3 4 5 6 7 8 9 10p
1
2
3
4
5
6
7
8
9
10

optimistic skyline

MF MGoF oH
oI x

y

1 2 3 4 5 6 7 8 9 10p
1
2
3
4
5
6
7
8
9
10

pessimistic skyline

MJ
MK

(a) Heuristic 1 (b) Heuristic 2

x

y

1 2 3 4 5 6 7 8 9 10p
1
2
3
4
5
6
7
8
9
10

pessimistic skyline

NL C
(also its exclusivedominance area)

MM
x

y

1 2 3 4 5 6 7 8 9 10p
1
2
3
4
5
6
7
8
9
10 pessimistic skyline

NN
(c) Heuristic 3 (d) Heuristic 4

Figure 6: Illustration of heuristics (P -safe collection
CP = {N1, N3, N4})

The remaining heuristics concern pruning nodes from the
R-tree of P ′. Given Spes and an MBR N from the tree, we
define its exclusive dominance area, as the portion of the
space Ω′ that is dominated by the min-corner of N , but
not by any point in Spes. As an example, consider the Spes

in Figure 6c, and the MBR N4 (a node from the R-tree of
P ′ in Figure 4a). The shaded rectangle cornered at C is the
exclusive dominance area of N4, because any location in this
area is dominated by the min-corner C of N4, but not by
any other point in Spes. Utilizing this concept, we provide a
rule that achieves strong pruning power (on the tree of P ′),
by leveraging information of the R-tree of O.

Heuristic 3. Let CO be an O-safe collection, and N be
a node in the R-tree of P ′. Prune N , if its exclusive domi-
nance area (with respect to Spes) does not intersect any entry
in CO.

For instance, let O be the dot-dataset in Figure 4c. As-
sume that we have already reported the reverse skyline point
o7, and are keeping an O-safe collection CO = {M5} (see
Figure 6c). Then, N4, as shown in Figure 6c, can be elim-
inated, because its exclusive dominance area (the shaded
regions) is disjoint with M5. This is reasonable, because ac-
cessing N4 can reduce the ADA of the pessimistic skyline
Spes at most by the MBR of N4; the reduction is not useful,
as no un-reported reverse skyline point can appear in the
reduced area. Note that this phenomenon justifies Heuris-
tic 1. Specifically, imagine that M4 (the MBR containing
o7; see Figure 6a) has not been explored; thus, it must be in
CO, in which case N4, intersecting M4, cannot be pruned.

Heuristic 4. Let N be a node in the R-tree of P ′. Prune
N , if N is disjoint with the ADA of Spes.

x

y

pO'pP' pQ'
pR'

pS'
pT'NP
NS NT

NR
1 2 3 4 5 6 7 8 9 10p

1
2
3
4
5
6
7
8
9
10

NQ NO
pU' pV'

x

y

oW oX
oY

oZ o[MW
M\

M]
M^

1 2 3 4 5 6 7 8 9 10p
1
2
3
4
5
6
7
8
9
10

o^ o]
o\ MX MY

(a) Dataset P ′ (Figure 4a) (b) Dataset O (Figure 4c)

x

y

1 2 3 4 5 6 7 8 9 10p
1
2
3
4
5
6
7
8
9
10

pessimistic skyline

optimistic skyline

x

y

1 2 3 4 5 6 7 8 9 10p
1
2
3
4
5
6
7
8
9
10

pessimistic skyline
optimistic skyline

exclusive dominancearea of N_
exclusive domi-nance area of N`

x

y

1 2 3 4 5 6 7 8 9 10p
1
2
3
4
5
6
7
8
9
10

pessimistic skyline

optimistic skyline

(c) At the beginning (d) After accessing N6 (e) After accessing N5

Figure 7: Illustration of BRS

By this rule, given the Spes in Figure 6d, N2 (an MBR in
the tree of P ′; see Figure 4a) can be pruned. Apparently, as
N2 does not intersect the ADA of Spes, it must be disjoint
with the ADA of Ssky . Hence, no point in N2 can appear in
the final Ssky.

We close this section by clarifying two fundamental op-
erations. Given a skyline S and a rectangle N , the first
operation checks whether N intersects the ADA of S, as is
needed in Heuristics 1, 2, and 4. The answer is no, if and
only if the min-corner of N is dominated by a point in S,
which can be easily decided in O(|S|) time. Given a skyline
S, a point A, and a rectangle N , the second operation de-
cides whether N intersects the exclusive dominance area of
A (i.e., the portion of the data space dominated by A, but
not by any point in S), as is required in Heuristic 3. This
problem is settled by [37] in O(|S|) time.

4.3 The Algorithm
In this section, we will put all the heuristics together into

a complete algorithm BRS. Let us first provide a general
description, before illustrating the algorithm with an exam-
ple. BRS starts by initializing a P -safe collection CP (O-safe
collection CO) that includes all the entries in the root of the
R-tree of P ′ (O). All the entries in CP are marked as live. At
any time, the algorithm maintains the optimistic and pes-
simistic skylines Sopt and Spes, according to the current CP .
The subsequent execution of BRS is in iterations, until CO

becomes empty. Specifically, each iteration performs four
tasks:

(Task 1) Applying Heuristic 1, as long as any entry e ∈ CO

intersects the ADA of Sopt, BRS removes e, and (i) if e is a
data point in O, reports it directly; (ii) otherwise, accesses
its child node, and adds all the entries there to CO. When

the first task is done, all entries in CO are disjoint with the
ADA of Sopt.

(Task 2) Remove as many entries from CO as possible by
Heuristic 2.

(Task 3) Based on Heuristics 3 and 4, mark all the prunable
entries in CP as dead. Whenever a dead entry is not con-
tributing to Sopt and Spes, it is discarded from CP . (In case
a dead entry still defines part of Sopt or Spes, it is kept in
CP .)

(Task 4) If CP has at least one live entry, BRS removes
the live entry e ∈ CP having the smallest mindist to the
query product p (we use Manhattan distance), breaking ties
arbitrarily. In case e is a leaf point, it is included in Ssky

(the skyline of P ′); otherwise, BRS fetches its child node,
and places all the entries there in CP , which are marked as
live.

Example. We illustrate BRS using the running example in
Figure 4. Since the datasets P and O will be frequently refer-
enced, we duplicate them, as well as the MBRs, in Figures 7a
and 7b respectively. At the beginning, CP = {N5, N6} and
CO = {M5, M6}. Figure 7c demonstrates the optimistic sky-
line Sopt and pessimistic skyline Spes decided by CP .

The algorithm starts the first iteration. In Task 1, since
M5 (see Figure 7b) intersects the ADA of Sopt (Figure 7c),
M5 is accessed (Heuristic 1), and its entries M1, M2 are
added to CO. Similarly, as M1 intersects the ADA of
Sopt, it is also visited, fetching o1, o2, which are output
as reverse skyline points immediately (Heuristic 1). Now,
CO = {M2, M6}, and Task 1 continues. It explores M6, then
M4, and outputs o7, since they intersect or fall in the ADA
of Sopt (Heuristic 1). At this point, Task 1 finishes with
CO = {M2, M3, o8}.

By Heuristic 2, Task 2 evicts o8 and M3 from CO, because
they fall outside the ADA of Spes (Figure 7c); CO has only
a single remaining entry {M2}. Task 3 prunes nothing from
CP , and thus, the current iteration enters Task 4. BRS ac-
cesses N6, as its mindist 6 from the query p is smaller than
the mindist 7 of the other entry N5 in CP (see Figure 7a).
Replacing N6 with N3 and N4 (found in N6) in CP , the first
iteration is completed with CP = {N3, N4, N5}. Accord-
ingly, the updated optimistic and pessimistic skylines Sopt

and Spes are as shown in Figure 7d.
In the second iteration, Task 1 has no effect, because M2

(the only entry in CO) is disjoint with the ADA of Sopt.
Task 2 does nothing, since M2 still intersects the ADA of
Spes. Task 3 marks N3 and N4 dead, because their exclusive
dominance regions (the shaded regions of Figure 7d) do not
intersect M2 (Heuristic 3). BRS permits N3 and N4 to stay
in CP , as they still determine part of Sopt (in fact, also Spes).
Task 4 explores the only live entry N5 in CP , which becomes
{N1, N2, N

∗

3 , N∗

4 }, where the asterisks indicate that N3 and
N4 are dead. Figure 7e gives the current Sopt and Spes.

The third iteration starts. Again, Task 1 has no effect,
but Task 2 eliminates M2 from CO, as it is outside the ADA
of Spes (Heuristic 2). Since CO is empty, the algorithm ter-
minates with {o1, o2, o7} as the final reverse skyline.

So far our discussion concentrates on the first quadrant
of the query p. To tackle all the quadrants, we execute 2d

threads of BRS, each dealing with a quadrant in a symmetric
manner. These threads share a common memory buffer, to
avoid reading the same node from the disk twice. There
is a minor detail worth mentioning. In our presentation of
BRS, we consider that each node N of the R-tree of P falls
entirely in the first quadrant of p. When this is not true,
N is handled as follows. If N is disjoint with the quadrant,
it is simply ignored. In case N partially intersects the first
quadrant, we take its intersection N̂ with the quadrant, and
transform N̂ to an MBR N̂ ′ on P ′ (by the midway conversion

in Section 4.1). Then, BRS processes N̂ ′ normally except

that, in calculating the pessimistic skyline, N̂ ′ is skipped
(i.e., it contributes no minmax-corner).

The next lemma shows that BRS never entails higher I/O
cost than basic:

Lemma 2. If a node (from the tree of P or O) is visited
by BRS, it is also accessed by basic.

Proof: By symmetry, it suffices to discuss the nodes, in
the R-trees of P ′ (obtained from P by midway conversion)
and O, that intersect a quadrant Ωquad of p. First, we prove
that if a node M from the R-tree of O is visited by BRS,
it is also accessed by basic. In fact, due to the way Task 1
works, M must intersect the ADA of Sopt, at the time it is
visited by BRS. Hence, M also intersects the ADA of Ssky

(which always contains the ADA of Sopt), and therefore, is
visited by basic.

Second, we show that any node (from the tree of P ′) vis-
ited by BRS, is also accessed by the P-step of basic, which
is essentially the BBS algorithm. Assume that a node N (in
the tree of P ′) is visited by BRS, but not by BBS, implying
that a point p̂ ∈ Ssky dominates N in Ωquad. Consider the
accessing moment when N is fetched by BRS. At this mo-
ment, by Definition 4, either p̂ or one of its ancestors is in
CP . If p̂ is in CP , however, N should have been marked dead

engine capacity (cc)

price

pa
pb

pc pd
pe
pf

1.5k 2k 2.5k 3k 3.5k

o

10k

15k

20k

25k
price

pg
ph
pi pj

pkpl
0 0.5k 1k 1.5k 2k

capacity difference (cc)
10k

15k

20k

25k

(a) The raw space (b) The transformed space

Figure 8: A dynamic skyline with bi- and uni-
directional dimensions

in Task 3, and cannot have been accessed in Task 4. In the
sequel, we consider that CP includes an ancestor e of p̂.

e is dead at the accessing moment; otherwise, e would
have replaced N as the node visited at Task 4, because it is
closer to p than N . Further, e cannot have been marked dead
by Heuristic 4, as it intersects the ADA of Ssky (and thus
also Spes). Therefore, e is marked as dead by Heuristic 3,
at which moment its exclusive dominance region (EDR) in-
tersects no entry in CO. Since both the EDR of e and CO

monotonically shrink, the EDR of e must still intersect noth-
ing in CO at the accessing moment. The EDR of e encloses
the EDR of N at any time in BRS, because the min-corner
of e dominates that of N . It follows that the EDR of N

does not intersect anything in CO either at the accessing
moment. Hence, N should have been marked dead as well,
contradicting the fact that it is visited.

The opposite of the lemma, however, is not true, namely,
BRS may avoid accessing nodes visited by basic. We have
already seen evidence earlier: while basic explores all the
nodes in the tree of Figure 7a except N2 (explained in Sec-
tion 4.1), BRS fetches only the root, N5, and N6 of that
tree.

5. EXTENSION
Sometimes bichromatic reverse skylines may return awk-

ward results. To illustrate, let us replace the vertical axis of
Figure 1a with price, but still use its horizontal axis capac-
ity. Figure 8a presents the new dataset. As in Figure 1a,
o denotes the profile of a customer, who here prefers a car
with a 2000-cc engine at the price of 15k dollars. To offer
recommendations, the dealer computes the dynamic skyline
of o. If the computation follows the transformation in Fig-
ure 1, the resulting skyline is {p2, p3}, making the dealer
believe that the two vehicles are incomparable, and both of
them attract o. This, however, is unreasonable because p2

is actually better than p3 — p2 more closely matches the
capacity-requirement of o, and yet, is cheaper than p3.

To fix this problem, the dealer converts the vehicles to a
new space in Figure 8b. Similar to Figure 1b, the horizontal
coordinate of a transformed pi (1 ≤ i ≤ 6) equals the differ-
ence between the capacities of pi and o. Unlike Figure 1b,
however, the vertical coordinate of the converted pi captures
the original price of pi directly (as opposed to its difference
from o). The skyline in the transformed space contains a
single vehicle p2, which is indeed the best vehicle for o. The
dynamic skyline of o should be {p2}. Accordingly, o is a
reverse skyline point of p2.

The different treatments on price and capacity (in comput-
ing dynamic skylines) are necessary because, unlike capacity,
a customer always prefers a cheaper vehicle, rather than a
vehicle whose price is closer to her/his preference. In fact,
the price 15k is redundant in the customer profile o. We
should simply minimize the price no matter what the profile
says.

The above observation justifies the classification of dimen-
sions into two categories: bi-directional and uni-directional.
Specifically, a bi-directional attribute, such as engine-
capacity and seat-number, does not have an obvious op-
timization direction. Hence, the dynamic skyline should
minimize the absolute difference between a vehicle and a
customer profile on the attribute. On the other hand, a
uni-directional attribute, e.g., price and mileage, has a clear
preferential direction. Thus, the dynamic skyline should op-
timize that direction as much as possible. The concept of
bichromatic reverse skyline is applicable for any mixture of
dimensions of each category. This is because, reverse sky-
lines are well-defined, as long as the corresponding dynamic
skylines can be properly formulated.

No previous work has addressed the difference between
uni- and bi-directional dimensions before. In the sequel, we
present a neat reduction that converts any bi-directional al-
gorithm to retrieve the reverse skyline in a data space Ω with
any mixture of uni- and bi-direction dimensions. Without
loss of generality, assume that Ω has db bi-directional dimen-
sions A1, ..., Adb

, and du uni-directional dimensions B1, ...,
Bdu

. We use Ωb to denote the db-dimensional bi-directional
space formed by A1, ..., Adb

, and similarly, Ωu to denote
the du-dimensional uni-directional space created by B1, ...,
Bdu

. Given a product (customer) dataset P (O) and a prod-
uct p ∈ P , the objective is to find all the customers in the
reverse skyline of p.

Our reduction first transforms O into an alternative
dataset O∗ as follows. For each customer o ∈ O, we add
a point o∗ to O∗ such that o∗[Ai] = o[Ai] for all i ∈ [1, db],
and o∗[Bj] = 0 for all j ∈ [1, du], namely, o∗ inherits all
the bi-directional attributes of o, but its coordinate on each
uni-directional dimension equals the best value 0. Then, we
deal with a purely bi-directional problem: given a product
set P and customer set O∗, retrieve the reverse skyline of p

in Ω, treating all dimensions (i.e., A1, ..., Adb
, B1, ..., Bdu

)
as bi-directional. This reverse skyline is exactly the reverse
skyline of p in the original problem.

The above reduction enables both basic and BRS (in
Sections 3 and 4.3 respectively) for generic reverse skyline
search, no matter how many dimensions in Ω are bi-/uni-
directional. However, a special feature of O∗ suggests a
further optimization of BRS. Specifically, as all the points
in O∗ have coordinate 0 on the uni-directional dimensions
B1, ..., Bdu

, fewer threads are required in BRS. More pre-
cisely, recall that the query product p divides Ω into 2d quad-
rants, each of which can be represented as a conjunction of
d = db + du clauses: (A1 � p[A1])∧ ...∧ (Adb

� p[Adb
])∧ (B1 �

p[B1])∧ ...∧ (Bdu
� p[Bdu

]), where each � can independently
be either ≤ or ≥ (e.g., A1 ≤ p[A1] means that every A1-
coordinate of the quadrant is at most p[A1]). In fact, we
only need to consider 2db quadrants, where the � is fixed to
≤ on all the du uni-directional axes. Namely, those quad-
rants have the form (A1 �p[A1])∧ ...∧ (Adb

�p[Adb
])∧ (B1 ≤

p[B1])∧...∧(Bdu
≤ p[Bdu

]). This is correct, because none of
the other quadrants can contain any point in O∗. Therefore,

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5

execution time (sec)

output percentage (%)

BRS Basic

 (a) The query with the most reverse
skyline points in Figure 9d

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3

execution time (sec)

output percentage (%)

BRS Basic

 (b) The query with the most reverse
skyline points in Figure 9e

Figure 10: Progressiveness comparison (cardinality
= 100k, dimensionality = 2)

2db threads are sufficient in BRS.

6. EXPERIMENTS
This section experimentally compares the proposed algo-

rithm BRS against the only existing solution basic (discussed
in Section 3). Our objective is to verify that BRS outper-
forms basic in both execution time and progressiveness.

The data space is normalized to have a unit range [0, 1]
on every dimension. We deploy datasets of three typical
distributions in the skyline literature: uniform, correlated,
and anti-correlated. In a uniform dataset, every point is ran-
domly distributed in the data space. In a correlated dataset,
if a point has a low value on a dimension, very likely it also
has a small value on the other dimensions. Conversely, in
an anti-correlated dataset, if a point has a low value on a di-
mension, it tends to have a large value on other dimensions.
Generation of these data follows the description in [3]. Each
dataset is indexed with an R∗-tree [2] with 4k page size. All
the experiments are executed on a machine running an Intel
CPU at 2.13GHz with 1 Giga bytes memory.

The two underlying datasets P and O always have the
same cardinality. The distributions of P and O can indepen-
dently be uniform, correlated, and anti-correlated respec-
tively, resulting in totally 9 combinations.

Each query point p is randomly sampled from the under-
lying P . We examine the efficiency of an algorithm by using
it to answer a workload of 100 queries. Unless specifically
stated, all the dimensions are bi-directional.

Efficiency. The first set of experiments compares the effi-
ciency of basic and BRS under different data distributions.
All the datasets used are two-dimensional and have cardi-
nality 100k. Figure 9a shows the average workload cost of

total CPU cost I/O cost on O I/O cost on P

 execution time (sec)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

Basic BRS

max. query cost
in the workload

avg. RS size = 7

max. RS size = 19

0

1

2

3

4

5

6 execution time (sec)

Basic BRS

avg. RS size = 8
max. RS size = 89

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5 execution time (sec)

Basic BRS

avg. RS size = 7
max. RS size= 52

(a) P = O = uniform (b) P = uniform, O = correlated (c) P = uniform, O = anti-correlated

0
0.5
1

1.5
2

2.5
3

3.5
4 execution time (sec)

Basic BRS

avg. RS size = 8
max. RS size = 349

execution time (sec)

Basic BRS

0
0.5
1

1.5
2

2.5
3

3.5
4

avg. RS size = 13
max. RS size= 710

0
0.5
1

1.5
2

2.5
3

3.5
4 execution time (sec)

Basic BRS

avg. RS size = 5
max. RS size= 13

(d) P = anti-correlated, O = uniform (e) P = anti-correlated, O = correlated (f) P = O = anti-correlated

0
0.5
1

1.5
2

2.5
3

3.5
4

execution time (sec)

Basic BRS

avg. RS size = 3
max. RS size = 61

0
0.5
1

1.5
2

2.5
3

3.5
4 execution time (sec)

Basic BRS

avg. RS size = 6
max. RS size= 16

0
0.5
1

1.5
2

2.5
3

3.5
4 execution time (sec)

Basic BRS

avg. RS size = 5
max. RS size= 76

(g) P = correlated, O = uniform (h) P = O = correlated (i) P = correlated, O = anti-correlated

Figure 9: Efficiency comparison (cardinality 100k, dimensionality 2)

the two methods when the distributions of P and O are both
uniform. Each average cost is further broken down into three
parts, including the CPU time, the I/O overhead incurred in
accessing P , and the I/O overhead on O, respectively. The
bar above a column indicates the total cost of the most ex-
pensive query in the workload. Furthermore, the figure also
provides the average (maximum) number 7 (19) of reverse
skyline points per query.

Evidently, BRS significantly outperforms basic. In partic-
ular, even the most costly query of BRS is much cheaper
than the average overhead of basic. Due to the reason ex-
plained in Section 4.1, the two methods entail the same I/O
cost in accessing the R-tree of O (i.e., the grey boxes of the
two columns in Figure 9a have the same height). The ad-
vantage of BRS is reflected in its considerably smaller I/O
overhead on the R-tree of P , confirming the effectiveness of
our heuristics in Section 4.2. It is worth mentioning that
both algorithms are heavily I/O-bounded. Since this is true
in the rest experiments, we omit the CPU cost for better
clarity.

Figures 9b-9i demonstrate the results of the experiment
when the distributions of P and O take other combinations

(e.g., P = uniform and O = correlated in Figure 9b). These
results confirm the observations mentioned earlier.

Observe that, at each row of Figure 9, basic incurs roughly
same I/O cost on P (e.g., about 2 seconds in Figures 9a, 9b
and 9c). This is expected because this cost depends solely
on the distribution of P , which is identical in all three di-
agrams of each row. Furthermore, in each workload, the
average reverse skyline size is much lower than the maxi-
mum size. This is due to the fact that some queries have no
reverse skyline point. Note that such queries are crucial in
practice because they reveal the bad products in P that do
not attract any customer in O at all.

Progressiveness. We proceed to evaluate the progressive
behavior of basic and BRS in outputting reverse skyline
points. As progressiveness is important only for queries that
return many results, we select the workloads in Figures 9d
and 9e because they have the largest average reverse skyline
sizes. From each workload, the query with the most sizable
reverse skyline set is chosen as the representative.

Figure 10a (10b) demonstrates the progressiveness of the
representative query in Figure 9d (9e), which returns 349

Basic I/O cost on OBasic I/O cost on P
BRS I/O cost on OBRS I/O cost on P

0

0.5

1

1.5

2

2.5

100k 300k 500k

execution time (sec)

cardinality

(a) Vs. cardinality (2D)

0
1
2
3
4
5
6
7
8
9 execution time (sec)

dimensionality
 2 43

(b) Vs. dimensionality (100k cardinality)

Figure 11: Scalability comparison (P = anti-
correlated, O = correlated)

(710) reverse skyline points. The figure plots the percent-
age of reverse skyline points reported as a function of the
elapsed time. BRS achieves significantly better progressive-
ness. In particular, BRS starts producing results soon after
beginning. In contrast, basic does not output anything until
nearly the end of its execution. This is not surprising be-
cause basic cannot report any result until its P-step is com-
pleted — this is why the curve of basic stays at 0% for a long
time. In each figure, the curve of BRS is shorter, because
BRS incurs less total overhead than basic (see Figure 9).

Scalability. The next experiments inspect the scalability
of basic and BRS with the dataset cardinality and dimen-
sionality. We present only the results of the case where the
distributions of P and O are anti-correlated and correlated,
respectively. The other distribution combinations exhibit
similar behavior, and hence, are omitted to avoid redun-
dancy.

To study the influence of cardinality, we use 2D P and O,
and vary their cardinalities from 100k to 500k. Figure 11a
presents the average workload cost as a function of cardi-
nality (each cost is broken into the I/O time on P and O,
respectively). The overhead of both algorithms increases
linearly with cardinality. BRS entails only a fraction of the
cost of basic in all cases. The difference between the two
algorithms is even more obvious for larger datasets.

To explore the effect with dimensionality, we fix the car-
dinalities of P and O to 100k, but vary their dimensional-
ities from 2 to 4. Figure 11b plots the average query cost
as a function of dimensionality. BRS is the clear winner.
Both algorithms are slower in high-dimensional space due
to two reasons. First, the number of skyline points increases
with dimensionality, forcing both algorithms to access more

execution time (sec)

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

Basic BRS

avg. RS size = 57
max. RS size = 3247

(a) Efficiency

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3

execution time (sec)

output percentage (%)

BRS Basic

 (b) Progressiveness of the query with the most reverse
skyline points in (a)

Figure 12: Performance on a dataset with both uni-
and bi-directional dimensions (P = anti-correlated,
O = correlated)

information. Second, the structure of R-trees degrades as
dimensionality grows. It is worth noting that the skyline in
dimensionality higher than 4 may not be meaningful because
it would contain an excessive number of points.

Mixture of Bi- and Uni-directional Dimensions.
Next, we compare BRS against basic when the data space
has both bi- and uni-directional dimensions. For this pur-
pose, we take the P and O in Figure 9e (the other distribu-
tion combinations yield similar results), but change them to
3D datasets by augmenting each point with a new coordi-
nate, which is randomly generated in [0, 1]. The new dimen-
sion is treated as uni-directional, and the other dimensions
bi-directional.

Figure 12a demonstrates the average workload cost of ba-
sic and BRS, together with the largest single-query overhead
in the workload. Apparently, BRS significantly outperforms
its competitor. Next, we take the query in the workload
with the largest reverse skyline size (3247 points), and use
it to compare the progressiveness of the two algorithms. The
results are shown in Figure 12b, clearly demonstrating the
superiority of BRS.

7. CONCLUSIONS
Despite its significant importance in practice, bichromatic

reverse skyline search has not been well studied. The only
existing algorithm, basic, is designed specifically for uncer-
tain data, where the problem is more difficult, and the va-
riety of available heuristics is limited. Therefore, although
basic can also be used to support precise datasets, intuitively
there should be room for enhancing its efficiency by lever-
aging the reduced problem complexity. Motivated by this,
we develop the BRS algorithm, which is tailor-made for pre-

cise datasets, and contains several non-trivial heuristics to
reduce the I/O cost considerably. It can be theoretically
proved that BRS never incurs more I/Os than basic. Exper-
iments show that BRS indeed outperforms basic by a factor
up to an order of magnitude. Finally, we also tackle a general
version of bichromatic reverse skyline retrieval, where the
data space can have any mixture of uni- and bi-directional
attributes.

Our work also initiates numerous promising directions for
future work. Indeed, the concept of bichromatic reverse sky-
line can be applied in all the skyline-related contexts re-
viewed in Section 2. An interesting topic, for example, is to
examine the effectiveness of this operator (in assessing prod-
uct competitiveness) in high-dimensional spaces. A reverse
direction is to explore the power of reverse skylines in dif-
ferent subspaces, and investigate why various subspaces can
have different reverse skylines. Furthermore, it is equally
exciting to study the behavior of reverse skylines on uncer-
tain data [26], spatial databases [30], peer-to-peer networks
[36], and so on.

Acknowledgements
This work was partially supported by CERG grants CUHK
1202/06, 4161/07, 4173/08, and 4182/06 from HKRGC.

REFERENCES
[1] W.-T. Balke, U. Güntzer, and J. X. Zheng. Efficient

distributed skylining for web information systems. In
EDBT, pages 256–273, 2004.

[2] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The
R*-tree: An efficient and robust access method for points
and rectangles. In SIGMOD, pages 322–331, 1990.

[3] S. Borzsonyi, D. Kossmann, and K. Stocker. The skyline
operator. In ICDE, pages 421–430, 2001.

[4] C. Y. Chan, P.-K. Eng, and K.-L. Tan. Stratified
computation of skylines with partially-ordered domains. In
SIGMOD, pages 203–214, 2005.

[5] C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and
Z. Zhang. Finding k-dominant skylines in high dimensional
space. In SIGMOD, pages 503–514, 2006.

[6] C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and
Z. Zhang. On high dimensional skylines. In EDBT, pages
478–495, 2006.

[7] S. Chaudhuri, N. N. Dalvi, and R. Kaushik. Robust
cardinality and cost estimation for skyline operator. In
ICDE, page 64, 2006.

[8] B.-C. Chen, R. Ramakrishnan, and K. LeFevre. Privacy
skyline: Privacy with multidimensional adversarial
knowledge. In VLDB, pages 770–781, 2007.

[9] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline
with presorting. In ICDE, pages 717–719, 2003.

[10] B. Cui, H. Lu, Q. Xu, L. Chen, Y. Dai, and Y. Zhou.
Parallel distributed processing of constrained skyline
queries by filtering. In ICDE, pages 546–555, 2008.

[11] E. Dellis and B. Seeger. Efficient computation of reverse
skyline queries. In VLDB, pages 291–302, 2007.

[12] K. Deng, X. Zhou, and H. T. Shen. Multi-source skyline
query processing in road networks. In ICDE, pages
796–805, 2007.

[13] P. Godfrey, R. Shipley, and J. Gryz. Maximal vector
computation in large data sets. In VLDB, pages 229–240,
2005.

[14] Z. Huang, C. S. Jensen, H. Lu, and B. C. Ooi. Skyline
queries against mobile lightweight devices in manets. In
ICDE, 2006.

[15] W. Jin, M. Ester, Z. Hu, and J. Han. The multi-relational
skyline operator. In ICDE, pages 1276–1280, 2007.

[16] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in
the sky: An online algorithm for skyline queries. In VLDB,
pages 275–286, 2002.

[17] K. Lee, B. Zheng, H. Li, and W.-C. Lee. Approaching the
skyline in z order. In VLDB, pages 279–290, 2007.

[18] C. Li, B. C. Ooi, A. K. H. Tung, and S. Wang. Dada: a
data cube for dominant relationship analysis. In SIGMOD,
pages 659–670, 2006.

[19] X. Lian and L. Chen. Monochromatic and bichromatic
reverse skyline search over uncertain databases. In
SIGMOD, pages 213–226, 2008.

[20] X. Lin, Y. Yuan, W. Wang, and H. Lu. Stabbing the sky:
Efficient skyline computation over sliding windows. In
ICDE, pages 502–513, 2005.

[21] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting stars:
The k most representative skyline operator. In ICDE, pages
86–95, 2007.

[22] M. Morse, J. M. Patel, and H. V. Jagadish. Efficient skyline
computation over low-cardinality domains. In VLDB, pages
267–278, 2007.

[23] M. D. Morse, J. M. Patel, and W. I. Grosky. Efficient
continuous skyline computation. In ICDE, 2006.

[24] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive
skyline computation in database systems. TODS,
30(1):41–82, 2005.

[25] J. Pei, A. W.-C. Fu, X. Lin, and H. Wang. Computing
compressed multidimensional skyline cubes efficiently. In
ICDE, pages 96–105, 2007.

[26] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic skylines
on uncertain data. In VLDB, pages 15–26, 2007.

[27] J. Pei, W. Jin, M. Ester, and Y. Tao. Catching the best
views of skyline: A semantic approach based on decisive
subspaces. In VLDB, pages 253–264, 2005.

[28] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
neighbor queries. In SIGMOD, pages 71–79, 1995.

[29] N. Sarkas, G. Das, N. Koudas, and A. K. H. Tung.
Categorical skylines for streaming data. In SIGMOD, pages
239–250, 2008.

[30] M. Sharifzadeh and C. Shahabi. The spatial skyline queries.
In VLDB, pages 751–762, 2006.

[31] M. A. Soliman, I. F. Ilyas, and N. Koudas. Finding skyline
and top-k bargaining solutions. In ICDE, pages 1263–1267,
2007.

[32] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressive
skyline computation. In VLDB, pages 301–310, 2001.

[33] Y. Tao, X. Xiao, and J. Pei. Subsky: Efficient computation
of skylines in subspaces. In ICDE, 2006.

[34] A. Vlachou, C. Doulkeridis, and Y. Kotidis. Angle-based
space partitioning for efficient parallel skyline computation.
In SIGMOD, pages 227–238, 2008.

[35] A. Vlachou, C. Doulkeridis, Y. Kotidis, and
M. Vazirgiannis. Skypeer: Efficient subspace skyline
computation over distributed data. In ICDE, pages
416–425, 2007.

[36] S. Wang, B. C. Ooi, A. K. H. Tung, and L. Xu. Efficient
skyline query processing on peer-to-peer networks. In
ICDE, pages 1126–1135, 2007.

[37] P. Wu, D. Agrawal, Ö. Egecioglu, and A. E. Abbadi.
Deltasky: Optimal maintenance of skyline deletions
without exclusive dominance region generation. In ICDE,
pages 486–495, 2007.

[38] P. Wu, C. Zhang, Y. Feng, B. Y. Zhao, D. Agrawal, and
A. E. Abbadi. Parallelizing skyline queries for scalable
distribution. In EDBT, pages 112–130, 2006.

[39] T. Xia and D. Zhang. Refreshing the sky: the compressed
skycube with efficient support for frequent updates. In
SIGMOD, pages 491–502, 2006.

[40] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, and
Q. Zhang. Efficient computation of the skyline cube. In
VLDB, pages 241–252, 2005.

