
Attribute-Based Subsequence Matching and Mining
Yu PENG ∗, Raymond Chi-Wing Wong ∗, Liangliang Ye ∗, Philip S. Yu #

∗The Hong Kong University of Science and Technology #University of Illinois at Chicago
{gracepy,raywong,llye}@cse.ust.hk psyu@cs.uic.edu

Abstract—Sequence analysis is very important in our daily
life. Typically, each sequence is associated with an ordered list of
elements. For example, in a movie rental application, a customer’s
movie rental record containing an ordered list of movies is a
sequence example. Most studies about sequence analysis focus
on subsequence matching which finds all sequences stored in
the database such that a given query sequence is a subsequence
of each of these sequences. In many applications, elements
are associated with properties or attributes. For example, each
movie is associated with some attributes like “Director” and
“Actors”. Unfortunately, to the best of our knowledge, all existing
studies about sequence analysis do not consider the attributes of
elements.

In this paper, we propose two problems. The first problem is:
given a query sequence and a set of sequences, considering the
attributes of elements, we want to find all sequences which are
matched by this query sequence. This problem is called attribute-
based subsequence matching (ASM). All existing applications for
the traditional subsequence matching problem can also be applied
to our new problem provided that we are given the attributes of
elements. We propose an efficient algorithm for problem ASM.
The key idea to the efficiency of this algorithm is to compress
each whole sequence with potentially many associated attributes
into just a triplet of numbers. By dealing with these very
compressed representations, we greatly speed up the attribute-
based subsequence matching. The second problem is to find all
frequent attribute-based subsequence. We also adapt an existing
efficient algorithm for this second problem to show we can
use the algorithm developed for the first problem. Empirical
studies show that our algorithms are scalable in large datasets.
In particular, our algorithms run at least an order of magnitude
faster than a straightforward method in most cases. This work
can stimulate a number of existing data mining problems which
are fundamentally based on subsequence matching such as
sequence classification, frequent sequence mining, motif detection
and sequence matching in bioinformatics.

I. INTRODUCTION

Sequences are one of the important data types in our daily
life [1]. A sequence is an ordered list of elements where
each element is drawn from a given element domain set. For
example, in the movie rental application, each movie in the
rental store corresponds to an element and a set of all movies
corresponds to the element domain set. Each customer rents a
list of movies. This (ordered) list corresponds to a sequence.
Table I(a) shows a movie rental record table. Each element in
the element domain set is associated with a set of properties or
attributes. For instance, in the movie rental application, each
movie is associated with some attributes like “Release Year”,
“Director” and “Actors”. The properties of some movies are
shown in Table I(b). This table is called a property table. In
particular, the director of movie “Titanic” is “James Cameron”
and one of the actors is “Leonardo DiCaprio”.

Sequence analysis has received a lot of interest from not
only database and data mining communities but also bioinfor-
matics communities. Database researchers study subsequence
matching [2-6] and similarity search [7] while data mining re-
searchers study frequent subsequence mining [8] and sequence
prediction [9]. On the other hand, bioinformatics researchers
study DNA sequence alignment [10], motif discovery [11, 12]
and sequence classification [13, 14].

All of the above sequence analysis applications depend on a
fundamental operator called subsequence matching. Given two
sequences s and s′, sequence s is said to be a subsequence of
s′ if for any two elements e and e′ in s where e occurs before
e′ in s, both elements e and e′ occurs in s′ and e occurs before
e′ in s′. We also say that s matches s′ (or s′ is matched by
s). For example, if s is “Titanic, Inception” and s′ is “Titanic,
The Aviator, Inception”, then s is a subsequence of s′ and thus
s matches s′. Subsequence matching is formulated as follows:
given a set of sequences and a query sequence q, we want
to find all sequences such that q is a subsequence of each
of these sequences. In our running example, if q is “Titanic,
Inception”, Alice’s sequence in Table I is one of the answers
for subsequence matching.

Unfortunately, the traditional subsequence matching prob-
lem fails to answer a lot of interesting questions related to the
properties of elements. Consider that we want to study how
movie “Titanic” creates a star “Leonardo DiCaprio”. In order
to do this, we want to know how many customers are interested
in watching movies acted by “Leonardo DiCaprio” after they
watch movie “Titanic”. Note that “Leonardo DiCaprio” is not a
movie (or more formally not an element in the element domain
set) but is a property value of a movie. The traditional subse-
quence matching problem cannot achieve this goal because the
original problem is based on the elements but not the property
values. One may adapt the traditional problem and generate
all possible queries in form of “Titanic, x” where x is a movie
acted by “Leonardo DiCaprio”. If there are M movies acted
by “Leonardo DiCaprio”, then this adapted approach will issue
M queries, which is quite inefficient.

Motivated by this, in this paper, we are studying a new
problem called attribute-based subsequence matching (ASM).
Informally speaking, the problem is described as follows:
given a query sequence which contains some elements and
some property values, we want to find all sequences which
are matched by this sequence query. We will give a formal
definition in Section III.

There are a lot of convincing applications for problem ASM.
One application is finding a researcher with a certain back-

TABLE I
AN EXAMPLE SHOWING THE MOVIE RENTAL APPLICATION

Customer List of movies
Alice Titanic, The Aviator, Inception
Bob Titanic, The Aviator

Clement The Departed, The Dark Knight
... ...

Movie Name Release
Year

Director Actor 1 Actor 2 ...

Titanic 1997 James Cameron Leonardo DiCaprio Kate Winslet ...
The Aviator 2004 Martin Scorsese Leonardo DiCaprio Cate Blanchett ...

The Departed 2006 Martin Scorsese Leonardo DiCaprio Matt Damon ...
The Dark Knight 2008 Christopher Nolan Christian Bale Heath Ledger ...

Avatar 2009 James Cameron Sam Worthington Zoe Saldana ...
Inception 2010 Christopher Nolan Leonardo DiCaprio Joseph Gordon-Levitt ...

...
(a) Movie rental record table (b) Movie property table

ground. Suppose that we are given a number of researchers’
background where each sequence of a researcher’s background
is a series of affiliations. Note that affiliations correspond to
elements in our context. Each affiliation can be associated with
some properties like “Place” and “Private/Public”. UCLA is an
example of affiliations and it is a public university located in
LA. Microsoft Research is another example and it is a private
company located in Redmond. One interesting query is to “find
all researchers who graduate in LA and find jobs in Microsoft
Research”. Note that LA is a property value and Microsoft
Research is an affiliation.

Another application can be finding a purchase pattern in
point-of-sale transactions. Each transaction is a sequence of
items (e.g., laptop and mouse). Each item can be associated
with some categories. For example, laptop is under cate-
gory “Electronics” and mouse is under category “Computer
Accessories”. One interesting query is to find all customers
who purchased “laptop” and then purchased some “Computer
Accessories”. Note that “laptop” is an item and “Computer
Accessories” is a category value.

The third application can be finding a biological pattern in
protein sequences. In protein sequences, 20 amino-acids form
an element set. Similarly, each amino acid is associated with
some properties like “side chain polarity”, “side chain charge”
and “hydropathy index”. It is interesting to study the biological
patterns related to these properties in the bioinformatics liter-
ature. One may want to find all protein sequences containing
“glutamic acid”, a polar amino acid, and then another polar
amino acid to study some chemical reactions for generating
medicines and drugs.

It is worth mentioning that problem ASM can be used in a
lot of problems about sequence mining and problems about
bioinformatics. Sequence classification is one example. We
should classify sequences according to not only the elements
in the sequence but also their property values. Motif detection
over sequences is another example. Based on the property
values, we can find some motifs that we have not discovered
before. In conclusion, if we can solve problem ASM, all
existing sequence mining problems can also be extended for
discovering meaningful patterns.

In this paper, we will show that a straightforward imple-
mentation by simply re-using some existing algorithms runs
inefficiently. Motivated by this, we propose an efficient algo-
rithm for the problem based on Chinese Remainder Theorem.
The key idea to the efficiency of this algorithm is using some
mathematical techniques in Chinese Reminder Theorem to

generate concise synopsis of all sequences. Specifically, each
whole sequence with associated attribute values is compressed
into a triplet of numbers using the theorem. All of the triplets
form the concise synopsis. By using the synopsis, we can
find all sequences which are matched by the query sequence
efficiently. In other words, this compressed representation
greatly speeds up the attribute-based subsequence matching.

Note that each number in the triplet for a sequence is a large
number so that it can store the information about a sequence.
One may think that operations over large numbers are costly.
However, one advantage of using large numbers is that we
can make use of efficient bitwise operations over only three
large numbers. Compared with the approaches not using the
large numbers which involves a lot of operations on non-large
numbers, manipulating the large numbers is more efficient
because it involves fewer operations on large numbers and
these bitwise operations are implemented efficiently.

In order to illustrate how ASM can be used in other
important data mining problems, we propose a problem which
finds all frequent subsequences based on ASM. Besides, we
adapt an existing efficient algorithm called SPAM [8].

Our contributions are summarized as follows. Firstly, to the
best of our knowledge, we are the first to propose problem
ASM which considers the property table. This problem has
a lot of convincing applications. This work can stimulate a
number of existing data mining problems which are funda-
mentally based on subsequence matching such as sequence
classification, motif detection and sequence matching. Sec-
ondly, we propose a novel algorithm for problem ASM based
on Chinese Remainder Theorem. Thirdly, we propose a data
mining problem to find all frequent subsequences based on
ASM to illustrate how ASM can be used in other data mining
problems. Fourthly, we conducted some experiments to show
the efficiency of our proposed algorithms.

The rest of the paper is organized as follows. Section II sum-
marizes the related work in the literature. Section III gives the
problem definition. Section IV introduces some fundamental
concepts which are used in our proposed algorithm. Section V
gives our proposed algorithm. Section VI formulates the
problem of finding frequent subsequence based on ASM and
gives our adapted algorithm for this problem. Section VII gives
comprehensive experimental results. Section VIII concludes
this paper.

II. RELATED WORK

Subsequence matching attracted a lot of attention in the
database community, the data mining community and the

bioinformatic community [2-4, 15, 16, 10]. Subsequence
matching can be classified into two types: accurate matching
and approximate matching. Given a query sequence q, accurate
(subsequence) matching [15, 16, 10] is to find all sequences
such that q is a subsequence of each of these sequences. On
the other hand, approximate (subsequence) matching [2-4] is to
find all sequences such that each of these sequences contains
a subsequence s′, and the distance between s′ and a query
sequence q is at most a given tolerance threshold. In this paper,
we focus on accurate matching.

Due to its usefulness in biological sequences, accurate
matching have been studied extensively in the literature of
bioinformatics. Algorithm SW [15] is known as the first
algorithm solving subsequence matching problem in biological
sequences. Besides, [16] and [10] proposed more efficient
algorithms for accurate matching.

There are a lot of studies about approximate matching [2-
4] requiring users to define a distance metric. [2] used the
Euclidean distance as a metric and presented an algorithm
for approximate matching by using some indexing techniques.
[3] adopted the Dynamic Time Warping (DTW) distance as
a metric and proposed an algorithm. [4] proposed to find k
sequences with their smallest distances from a given sequence
q where the distance metric adopted is the DTW distance.

To the best of our knowledge, no existing studies about
sequence matching consider the property table which is studied
in this paper.

Since subsequence matching is very useful, it has been
commonly adopted in many data mining problems such as
frequent subsequence mining [17, 8, 18, 6, 5], sequence
classification [13, 9, 14], sequence clustering [16, 15], motif
detecting [11, 12] and subsequence matching [2, 3, 15, 10].

III. PROBLEM DEFINITION

We are given a set E of elements. E is called an element
domain set. Each element e is associated with a set A of
m properties or attributes, namely A1, A2, ..., Am. The value
of attribute Ai of an element e is denoted by e.Ai where
i = 1, 2, ..., m. In our running example, a set of movies
corresponds to the element domain set E . Attribute “Year
of Release” and attribute “Director” are two examples of
the properties of a movie. For the sake of discussion, we
assume that one of the attributes in A can uniquely identify
an element e. This attribute is called an identifying attribute.
In our example, attribute “Movie Name” is an identifying
attribute. Attribute “Director” and attribute “Release Year” are
non-identifying attributes.

We define the domain of attribute Ai, denoted by Di, to
be the set of all possible values in attribute Ai where i =
1, 2, ..., m. For instance, all directors like “James Cameron”
and “Martin Scorsese” form the domain of attribute “Director”.
We define the value domain set, denoted by V , to be the union
of the domains of all attributes. That is, V = ∪m

i=1Di. Note
that V is a set of all possible values. The table (like Table I(b))
containing all attribute values of each element is called the
property table.

A value v is said to be an identifying value if v is a value
of an identifying attribute. Note that this value v can be used
to uniquely identify an element e. For the sake of clarity, we
simply say that v identifies e (or e is identified by v). For
example, both “Titanic” and “The Aviator” are identifying
values but “James Cameron” and “Leonardo DiCaprio” are
not. We define U to be a set of all identifying values. Note
that U ⊆ V . If value v is an identifying value, we define
the attribute value set of v, denoted by α(v), to be the
set of all possible attribute values of the element identified
by v. For example, if v is “Titanic” (an identifying value),
then α(v) = {“Titanic”, 1997, “James Cameron”, “Leonardio
DiCaprio”, “Kate Winslet”, ...}.

A sequence is an ordered list of values where each value is
drawn from V . Suppose that there are k values in the sequence,
a sequence is represented in form of “v1, v2, ..., vk” where
vi ∈ V for i = 1, 2, ..., k. In this representation, for any two
values vi and vj where i < j, vi appears before vj . “Titanic,
The Aviator, Inception” and “Titanic, Leonardo DiCaprio” are
two examples of sequences. Consider that s is in form of
“u1, u2, ..., ul”. Value ui in s is defined to have the temporal
position equal to i for i ∈ [1, l]. For example, if s = “Titanic,
Leonardo DiCaprio”, then “Titanic” has the temporal position
equal to 1 and “Leonardo DiCaprio” has the temporal position
equal to 2.

A sequence is said to be an identifying sequence if all
values in the sequence are identifying values (i.e., all values in
the sequence are drawn from U). For example, “Titanic, The
Aviator, Inception” is an identifying sequence but “Titanic,
Leonardo DiCaprio” is not.

In a lot of applications, we are given a set S of identifying
sequences. Let n be the total number of identifying sequences
in S. In our running example, we are given a set of identifying
sequences and each identifying sequence corresponds to the
movie rental record of a customer. Table I(a) shows the set
of identifying sequences. In the application of finding a re-
searcher, an identifying sequence corresponds to the academic
research background of a researcher while in the biology
application, it corresponds to a protein sequence.

Let q be a query in form of “v1, v2, ..., vk” where vi ∈ V for
i ∈ [1, k]. Given a value v ∈ V and a value u ∈ U , v is said
to match u if v ∈ α(u). For example, if u is “Titanic” and v
is “Leonardo DiCaprio”, then “Leonardo DiCaprio” matches
“Titanic” since “Leonardo DiCaprio” ∈ α(“Titanic”).

Definition 1 (Match): Consider a query q in form of
“v1, v2, ..., vk” where vi ∈ V for i ∈ [1, k]. Consider an
(identifying) sequence s ∈ S in form of “u1, u2, ..., ul” where
ui ∈ U for i ∈ [1, l]. Query q is said to match s (or s is
matched by q) if there exist k integers, namely j1, j2, ..., jk,
such that (1) for each i ∈ [1, k], vi matches uji , and (2)
1 ≤ j1 < j2 < ... < jk ≤ l

Consider that q is “Titanic, Leonardo DiCaprio” and s is
“Titanic, The Aviator, Inception”. Since “The Aviator” was
acted by “Leonardo DiCaprio” and “Titanic” occurs before
“The Aviator” in s, it is easy to verify that q matches s. In
this example, k = 2 and l = 3. We also have j1 = 1 and

Algorithm 1 Straightforward Algorithm for problem ASM
Input: a query q and a set S of identifying sequences
Output: a set of identifying sequences in S which are

matched by q
1: O ← ∅
2: for each s ∈ S do
3: isMatch ← checkMatch(q, s)
4: if isMatch = true then
5: O ← O ∪ {s}
6: return O

Algorithm 2 Algorithm checkMatch(q, s) (Naive Implemen-
tation)
Input: a query q and an identifying sequence s
Output: whether q matches s

1: let s be a sequence in form of “u1, u2, ..., ul”
2: let q be a query in form of “v1, v2, ..., vk”
3: j ← 1
4: for i = 1 to k do
5: find the smallest integer r ∈ [j, l] such that vi ∈ α(ur)
6: if there exists such a value r then
7: j ← r + 1
8: else
9: return false

10: return true

j2 = 2. Note that the first requirement in the above definition
holds (i.e., “Titanic” matches itself and “Leonardo DiCaprio”
matches “The Aviator”), and the second requirement also holds
(i.e., 1 ≤ j1 < j2 ≤ l).

In this paper, we are studying the following problem called
Attribute-based Subsequence Matching (ASM): Given a query
sequence q, we want to find all sequences in S which are
matched by q.

In our running example, if q is “Titanic, Leonardo Di-
Caprio”, we want to find all sequences in S which are matched
by q. In Table I(a), Alice’s sequence is one of the sequences
which are matched by q.

Note that problem ASM is more general than the traditional
problem without considering the property table. This is be-
cause problem ASM becomes the traditional problem if there
is only one attribute in the property table and this attribute is
an identifying attribute.

A possible approach for problem ASM is shown in Algo-
rithm 1. In this algorithm, method checkMatch(q, s) is to
return a boolean value indicating whether a query q matches
an identifying sequence s. The efficiency of this algorithm
depends on how to implement method checkMatch. One naive
implementation is shown in Algorithm 2 which takes O(lm)
time where l is the maximum length of a sequence in S and m
is the total number of attributes. However, the time complexity
of Algorithm 1 is O(nlm) where n is the total number of
sequences in S. In Section V, we will present an efficient
algorithm based on Chinese Remainder Theorem.

IV. PRELIMINARIES

The remainder for a division of a positive integer N by a
positive integer d is denoted by “N mod d”. Notation “ mod ”
is called a modular operator. Suppose that N is a large number
and can be represented by N 4-byte integers, and d is a small
number and can be represented by a 4-byte integer. The time
complexity of the modular operation is O(N) [19].

Given a positive integer N and a positive integer d, d is said
to be a divisor of N if (N mod d) = 0. Given three positive
integers N, M and d, N and M are said to have a common
divisor d if d is a divisor of both N and M . Two integers N
and M are said to be relatively prime if their greatest common
divisor is equal to 1.

The theorems to be introduced are based on the equation
using this modular operator in form of (N mod d) = r where
N, d and r are three positive integers. This equation is called
a congruence equation.

We introduce Unique Factorization Theorem. Unique Fac-
torization Theorem is a fundamental theorem in number theory
and is widely used in cryptography and security field.

Theorem 1: (Unique Factorization Theorem [19]) Any pos-
itive integer N ≥ 1 can be uniquely expressed as a product
of one or more prime numbers called factors of N .

Property 1 (Factorization Property [19]): Given a positive
integer N and a positive integer f , f is a factor of N if and
only if (N mod f) is equal to 0.

Next, we introduce Chinese Remainder Theorem.
Theorem 2: (Chinese Remainder Theorem [19]) Let m be

the number of congruence equations. Let r1, r2, ..., rm be m
positive integers. Suppose that there are m pairwise relatively
prime numbers: n1, n2, · · · , nm. Let N = n1n2 · · ·nm . There
exists a unique integer x ∈ [0, N − 1] solving the system of
m congruence equations each of which is in form of (x mod
ni) = ri for i ∈ [1, m].

In the literature, we can compute x by Extended Euclidean
algorithm [19] in O(m(log nmax)2) time where nmax =
maxi∈[1,m] ni. Details can be found in [19].

V. MODULAR ALGORITHM

We want to design an algorithm called Modular Algorithm
with two major requirements which are simple to understand
and are used to ease the understanding on how we use Chinese
Remainder Theorem for problem ASM. They are Requirement
Value Matching and Requirement Sequential Order.

Definition 2: Given a value v ∈ V and a sequence s ∈ S,
p(v, s) is defined to be a set of all temporal positions such
that each of the values at these positions in s is matched by
v.

Consider Alice’s sequence s. If v is equal to “Leonardo
DiCaprio”, then p(v, s) = {1, 2, 3}. If v is equal to “Martin
Scorsese”, then p(v, s) = {2}.

Consider query q in form of “v1, v2, ..., vk”.
Definition 3 (Requirement Value Matching): Let s be a se-

quence and q be a query in form of “v1, v2, ..., vk”. If for each

TABLE II
LABELS

Value Label Value Label
Titanic 2 The Aviator 13
1997 3 2004 17

James Cameron 5 Martin Scorsese 19
Leonardo DiCaprio 7 Cate Blanchett 23

Kate Winslet 11
...

i ∈ [1, k], p(vi, s) 	= ∅, then s is said to satisfy Requirement
Value Matching.

Intuitively, Requirement Value Matching requires that each
value in q matches some of the values in a sequence s
(without considering the temporal ordering of values). If this
requirement is satisfied, we proceed to check the second
requirement, Requirement Sequential Order, considering the
temporal ordering of values.

Definition 4 (Requirement Sequential Order): Let s be a
sequence. If there exist k integers, namely j1, j2, ..., jk, such
that ji ∈ p(vi, s) for i ∈ [1, k] and j1 < j2 < ... < jk, then s
is said to satisfy Requirement Sequential Order.

Intuitively, Requirement Sequential Order requires that these
“matched” values in s have the same temporal ordering as the
correspondence values in q.

This algorithm involves two major phases. The first phase
is called Phase Preprocessing and the second phase is called
Phase Query. In Phase Preprocessing, given a set S of
identifying sequences and the property table, we generate not
only some synopsis of sequences but also some data structures
which will be used in Phase Query. In Phase Query, given a
query q, we find all sequences in S which are matched by q
using the information generated in Phase Preprocessing.

Consider a particular sequence s in S and an arbitrary
query q. We want to create a synopsis for s such that we can
determine whether q matches s efficiently using the synopsis.
In order to achieve this goal, we should create this synopsis
which can help to determine whether the two requirements
are satisfied efficiently. In particular, the synopsis contains two
separate components. The first component, denoted by Vs, is
used for Requirement Value Matching and corresponds to the
first number in this triplet (Section V-A). The other, denoted by
Xs, is used for Requirement Sequential Order and corresponds
to the last two numbers in this triplet (Section V-B).

Before we create a synopsis, we first assign each value in
V with a unique prime number called the label of v. The label
of v is denoted by P (v). Table II shows the labels of some
values in V in our running example.

A. Requirement Value Matching

Given a sequence s ∈ S, Vs is the value matching number
of s which is defined as follows.

Definition 5 (Value Matching Number): Given a sequence
s ∈ S where s is in form of “v1, v2, ..., vl”, the value
matching number of s is defined to be the product of the
labels of all the values in s and their property values. Formally,
Vs =

∏l
i=1

∏
v∈α(vi)

P (v).

Algorithm 3 Algorithm valueMatchCheck(q, Vs) for Re-
quirement Value Matching
Input: a query q, Vs

Output: whether the temporal order of the matching values in s is
consistent with the temporal order of all values in q

1: let query q be in the form of “v1, v2, ..., vk”
2: for i = 1 to k do
3: compute (Vs mod P (vi)) and store the answer as ai

4: if ai = 0 for each i ∈ [1, k] then
5: return true
6: else
7: return false

Phase Preprocessing: In Phase Preprocessing, for each se-
quence s ∈ S, we compute Vs.

It is easy to verify that the running time of this phase is
O(nlm) where l is the greatest length of a sequence.
Phase Query: Recall that Requirement Value Matching is that
given a query q and a sequence s, each value in q matches one
of the values in s. By using Vs, we can perform k modular
operations to check whether s satisfies this requirement or not
where k is the length of the query sequence. Algorithm 3
shows the algorithm.

With the following lemma, we know that the algorithm is
correct.

Lemma 1: Let s be a sequence and q be a query in form
of “v1, v2, ..., vk”. If (Vs mod P (vi)) = 0 for each i ∈ [1, k],
then s satisfies Requirement Value Matching.

We know that we can use Vs to check for Requirement Value
Matching. Now, we want to introduce a stronger requirement
called Requirement Duplicate Value Matching. This require-
ment states that given a sequence s and a query sequence q,
for each value v in q, if v appears γ times in q and there exists
γ values in s such that v matches each of these γ values, then
s is said to satisfy Requirement Duplicate Value Matching.
For example, consider Alice’s sequence s. If q = “Titanic,
Titanic”, then s does not satisfy Requirement Duplicate Value
Matching. If q = “Leonardo DiCaprio, Leonardo DiCaprio”,
then s satisfies this requirement.

By using Vs, we can also check for Requirement Duplicate
Value Matching efficiently. By doing this, we modify Algo-
rithm 3 to Algorithm 4.

Now, we analyze the storage size of Vs. Consider a par-
ticular sequence s. According to Definition 5, we need to
multiply ml prime numbers. In all of our experiments, each
prime number can be represented by a 4-byte integer. The
storage size of Vs is at most 4ml bytes. In case that a prime
number needs more bits for storage, we can use some libraries
[20] over large numbers which contain a lot of efficient bitwise
operations.

Let the storage size of Vs be N . In the above analysis,
4ml is a loose upper bound on N . In other words, in most
cases, N << 4ml. In method valueMatchCheck, it invovles
k modular operations where the divisor of each operation is
a prime number. Note that in all our experiments, each prime
number can be represented by a 4-byte integer. It is easy to

Algorithm 4 Algorithm valueMatchCheck(q, Vs) for Re-
quirement (Duplicate) Value Matching
Input: a query q, Vs

Output: whether the temporal order of the matching values in s is
consistent with the temporal order of all values in q

1: let query q be in the form of “v1, v2, ..., vk”
2: V ← Vs

3: for i = 1 to k do
4: compute (V mod P (vi)) and store the answer as ai

5: if ai = 0 then
6: V ← V/P (vi)
7: if ai = 0 for each i ∈ [1, k] then
8: return true
9: else

10: return false

verify that the running time of valueMatchCheck is O(kN).

B. Requirement Sequential Order

In Section V-B1, we first describe a bulky version of com-
ponent Xs. Then, in Section V-B2, we describe a compressed
version of component Xs by just a pair of two numbers based
on Chinese Remainder Theorem.

1) Bulky Version of Xs: Phase Preprocessing: Before we
describe this component, we give some definitions first.

An interval is defined to be in form of (l, u) where l and
u are two positive integers and l ≤ u.

Definition 6 (Appear After/Before): Let
i and
j be two
intervals (li, ui) and (lj , uj), respectively.
i appears before

j (or
j appears after
i) if ui < lj .

Definition 7 (Lifespan): Given a value v ∈ V and a se-
quence s ∈ S where p(v, s) 	= ∅, the lifespan of v in s,
denoted by LSv,s, is defined to be an interval in form of (l, u)
where (1) l = min p(v, s) and (2) u = max p(v, s). We define
LSv,s.l to be l and LSv,s.u to be u.

Consider Bob’s sequence s. If v is “Titanic”, then p(v, s) =
{1} and thus the lifespan of v in s is (1, 1). If v is “Leonardo
DiCaprio”, then p(v, s) = {1, 2} and thus the lifespan of v in
s is (1, 2).

We are ready to describe the bulky version of Xs.
Consider a sequence s in S. Let Y be the set of all values

in s and their property values. Let h be the total number of
possible values in Y . For each value v ∈ Y , we create an
entry in form of (v, LSv,s). The bulky version of Xs is equal
to the table storing all these entries.

Example 1: Consider Bob’s sequence s, “Titanic, The Avi-
ator”. Note that “Titanic” has the temporal position equal to 1
and “The Aviator” has the temporal position equal to 2. The
attribute values of “Titanic” are

• “Titanic” (with label = 2),
• “1997” (with label = 3),
• “James Cameron” (with label = 5),
• “Leonardo DiCaprio” (with label = 7) and
• “Kate Winslet” (with label = 11)

The attribute values of “The Aviator” are
• “The Aviator” (with label = 13),

TABLE III
A TABLE SHOWING THE BULKY VERSION OF Xs

Value v Lifespan of v in s
“Titanic” (1, 1)
“1997” (1, 1)

“James Cameron” (1, 1)
“Leonardo DiCaprio” (1, 2)

“Kate Winslet” (1, 1)
“The Aviator” (2, 2)

“2004” (2, 2)
“Martin Scorsese” (2, 2)
“Cate Blanchett” (2, 2)

• “2004” (with label = 17),
• “Martin Scorsese” (with label = 19),
• “Leonardo DiCaprio” (with label = 7) and
• “Cate Blanchett” (with label = 23)

Thus, we have the set Y equal to {“Titanic”, “1997”, “James
Cameron”, “Leonardo DiCaprio”, “Kate Winslet”, “The Avia-
tor”, “2004”, “Martin Scorsese”, “Cate Blanchett” }. Then, we
calculate the lifespan of each value v ∈ Y in this sequence
as shown in Table III. For example, if v = “Titanic”, then
the lifespan of v in s is (1, 1). Similarly, if v = “Leonardo
DiCaprio”, then the lifespan of v in s is (1, 2). Table III
corresponds to the bulky version of Xs.

Let l be the greatest length of a sequence in S. There
are O(lm) possible values in Y . Thus, the size of the bulky
version of Xs is O(lm). In Section V-B2, we will present a
compressed version of Xs which contains only two positive
numbers. Similarly, we can easily derive that the complexity
of this phase is O(lm).
Phase Query: Suppose that we are given a query sequence q
and a sequence s in S. We want to check whether q matches
s using the bulky version of Xs.

Definition 8 (Query-Aware Lifespan): Let s be a sequence
in S and Xs be the bulky version of Xs for s. Given a query
sequence q in form of (v1, v2, ..., vk), the query-aware lifespan
of s with respect to q, denoted by QA-LS(s, q), is defined to
be (
1,
2, ...,
k) where
i is the lifespan of vi in s for
i ∈ [1, k].

Our strategy is to create the query-aware lifespan of s with
respect to q according to the bulky version of Xs. This can
be done in O(k) time if the bulky version of Xs is indexed
with a hash data structure. Then, according to the query-aware
lifespan, we can determine whether q matches s efficiently,
which will be described next.

Definition 9 (Non-Overlapping): Consider a sequence s
and a query sequence q. Let the query-aware lifespan of s with
respect to q be (
1,
2, ...,
k). The query-aware lifespan is
said to be non-overlapping if and only if for each i, j ∈ [1, k]
where i < j,
i appears before
j .

Definition 10 (Invalid): Consider a sequence s and a query
sequence q. Let the query-aware lifespan of s with respect to
q be (
1,
2, ...,
k). The query-aware lifespan is said to be
invalid if and only if there exist any two integers i, j ∈ [1, k]
such that i < j and
i appears after
j .

With the above definitions, we have the following lemma
about how to determine whether q matches s or not.

Algorithm 5 Algorithm timespanCheck(q, s, QA-LS(s, q))
Input: a query q, s and QA-LS(s, q)
Output: whether s satisfies Requirement Sequential Order

1: if QA-LS(s, q) is non-overlapping then
2: return true
3: else
4: if QA-LS(s, q) is invalid then
5: return false
6: else
7: isMatch ← checkMatch(q, s)
8: return isMatch

Lemma 2: Consider a sequence s and a query sequence q.
If the query-aware lifespan of s with respect to q is non-
overlapping, then q matches s. If the query-aware lifespan of
s with respect to q is invalid, then q does not match s.

Suppose that we are given the query-aware lifespan of s with
respect to q. Algorithm 5 shows the steps of checking whether
q matches s according to the query-aware lifespan only. It
is easy to verify that checking the conditions on whether
the query-aware lifespan is non-overlapping (or invalid) takes
O(k) time. If these conditions are not satisfied, we need to
execute the statements in lines 7-8 involving checkMatch
which takes O(lm) time. In our experiments, on average, there
are about 90% cases that the query-aware lifespan is either
non-overlapping or invalid. Thus, in most cases, the running
time of sequentialOrderCheck is O(k).

Let us analyze the storage complexity of the bulky version
of Xs. Consider a particular sequence s. Let |Y | be the average
size of Y (i.e., the average number of possible values in a
sequence s and their property values). For each value v ∈ Y ,
we need to store entry (v, LSv,s). In our implementation, v
is stored in form of a prime number and LSv,s is stored in
form of two temporal positions. Since in all our experiments,
the greastest possible values of each prime number and each
temporal position can be represented by a 4-byte integer, each
prime number and each temporal position are stored in a 4-
byte integer. Thus, each entry occupies 4×3 = 12 bytes. Since
there are |Y | entries, the storage size of the bulky version of
Xs for a particular sequence s is equal to 12|Y | bytes.

2) Compressed Version of Xs Based on a Pair of Numbers:
Consider a sequence s in S. The bulky version contains h
entries and each entry contains a value and its lifespan in s.
This bulky version occupies a lot of space. Interestingly, the
compressed version of Xs to be described contains only two
positive numbers, which is quite space-efficient.

Specifically, given a sequence s ∈ S, the compressed
version of Xs is defined to be equal to a pair of two numbers.
The first number is called the lower-bound sequential order
number of s, denoted by Ls, and the second number is called
the upper-bound sequential order number of s, denoted by Us.
In Phase Preprocessing, these two numbers are to be found.
Phase Preprocessing: In Phase Preprocessing, for each se-
quence s ∈ S, we compute Ls and Us as follows.

Let Y be the set of all values in s and their property values.
Let h be the total number of possible values in Y . Recall

that in the bulky version, for each value v ∈ Y , we create
an entry in form of (v, LSv,s) where LSv,s is the lifespan
of v in s. Note that LSv,s is in form of (LSv,s.l, LSv,s.u).
However, in the compressed version, for each value v ∈ Y ,
we conceptually create a pair of congruence equations as
follows. The following equations are in the format of Chinese
Remainder Theorem. Note that P (v) is the label of value v.

(Ls mod P (v)) = LSv,s.l (1)
(Us mod P (v)) = LSv,s.u (2)

Since we have h values in Y , we conceptually generate
h congruence equations in form of (1) and h congruence
equations in form of (2).

We first consider the h equations for Ls in form of (1) and
describe how to determine Ls, one of the two numbers stored
in the compressed form of Xs. Specifically, since the labels of
all values in Y are prime numbers, they are pairwise relatively
prime. Note that P (v) and LSv,s.l are given in Equation (1)
where v ∈ Y . This is the equation format of Chinese Remain-
der Theorem. By using the Extended Euclidean algorithm, we
can find a unique integer Ls ∈ [0, N − 1] where N is the
product of the labels of all values in Y .

We can use a similar technique to find Us by considering
the h equations for Us in form of (2).

Thus, we obtain that the final compressed version of Xs are
two numbers, namely Ls and Us.

Example 2: Consider Bob’s sequence again. According to
Example 1, we can obtain the bulky version of Xs (Table III).

In the compressed version, since we have 9 values in Y ,
we can conceptually formulate 9 congruence equations for Ls

and 9 congruence equations for Us. Take v = “Titanic” for
illustration. Since its label is equal to 2 and its LSv,s.l is
equal to 1, according to Equation (1), we create

(Ls mod 2) = 1

The other 8 congruence equations for Ls are:

(Ls mod 3) = 1 (Ls mod 11) = 1 (Ls mod 19) = 2
(Ls mod 5) = 1 (Ls mod 13) = 2 (Ls mod 23) = 2
(Ls mod 7) = 1 (Ls mod 17) = 2

Similarly, we can construct the 9 congruence equations for
Us. By the Extended Euclidean Algorithm, we obtain Ls =
134, 918, 071 and Us = 7, 436, 431.

In Section IV, we know that the time complexity of finding
a solution for Ls (and Us) with m congruence equations is
O(m(log np)2) time where np is the largest prime numbers
we use. Since each sequence s is associated with Ls (and
Us), the running time of this phase considering all sequences
is equal to O(nm(log np)2).
Phase Query: Suppose that sequence s satisfies Requirement
Value Matching. Recall that Requirement Sequential Order is
that the “matched” values in s have the same temporal ordering
as the correspondence values in q. Algorithm 6 shows how we
check whether s satisfies Requirement Sequential Order using

Algorithm 6 Algorithm sequentialOrderCheck(q, Ls, Us) for
Requirement Sequential Order
Input: a query q, Ls and Us

Output: whether s satisfies Requirement Sequential Order
1: let query q be in the form of “v1, v2, ..., vk”
2: for i = 1 to k do
3: li ← (Ls mod P (vi))
4: ui ← (Us mod P (vi))
5: �i ← (li, ui)
6: call timespanCheck(q, s, (�1,�2, ...,�k))

Ls and Us. It is easy to see Algorithm 6 returns a correct
solution with the following lemma.

Lemma 3: Consider a sequence s. Let Ls and Us be the
lower-bound sequential order number and the upper-bound
sequential order, resepectively. Let Y be the set of all values in
s and their property values. Given a value v ∈ Y , the lifespan
of v in s is equal to (l, u) where l = (Ls mod P (v)) and
u = (Us mod P (v)).

Let us analyze the storage complexity of the compressed
version of Xs. Consider a particular sequence s. For this
sequence s, we need to store two numbers, namely Ls and Us.
Consider number Ls which is computed based on |Y | congru-
ence equations. Note that Ls is at most the multiplication of
the divisors of all congruence equations (i.e.,

∏
v∈Y P (v)). In

all of our experiments, each divisor (or each prime number)
can be represented by a 4-byte integer. Thus, Ls can be
represented by |Y | 4-byte integers and thus the size of Ls

is at most 4|Y | bytes. Note that 4|Y | is an upper bound of
the size of Ls. In most cases, the exact size is smaller than
4|Y |. Similarly, we can derive that the size of Us is at most
4|Y | bytes. The storage size of the compressed version of Xs

given a particular sequence is at most 4|Y | + 4|Y | = 8|Y |
bytes. Since |Y | ≤ ml, the storage size is at most 8ml bytes.

Let N ′ be the storage size of Ls (or Us). Similarly, in the
above analysis, 4|Y | is a loose upper bound on N ′. In other
words, N ′ << 4|Y |(< 4ml). It is easy to verify that the
running time of sequentialOrderCheck is O(kN ′) time if
the running time of timespanCheck is O(k) in most cases.

3) Comparison: Let us compare the storage of the com-
pressed version with the storage of the bulky version. Consider
Xs of both versions. The compressed version of Xs occupies
at most 8|Y | bytes and the bulky version of Xs occupies
12|Y | bytes. Thus, the storage size of the compressed version
of Xs is at most 2/3 of the bulky version of Xs. Now, we
consider the storage size of the compressed/bulky synopsis
containing not only Xs but also Vs. Note that Vs is the
common component used by the compressed version and
the bulky version. Note that since the storage size of Xs

is equal to 4ml, the compressed synopsis occupies at most
4ml + 8|Y | ≤ 12ml bytes and the bulky synopsis occupies
4ml+12|Y | ≤ 16ml. Thus, the storage size of the compressed
synopsis is at most 3/4 (= 12/16) of the storage size of
the bulky synopsis. In the experimental results (Section VII),
the real compression effect is more significant. On average,
the storage size of the compressed synopsis is about 1/4 of

Algorithm 7 Modular Algorithm for problem ASM
Input: a query q and a set S of identifying sequences
Output: a set of identifying sequences in S which are matched by

q
1: O ← ∅
2: for each s ∈ C(q) do
3: isMatch ← checkMatch-Synopsis(q, s)
4: if isMatch = true then
5: O ← O ∪ {s}
6: return O

the storage size of the bulky synopsis. The above theoretical
analysis is based on the upper bound of the storage size of
the compressed synopsis (instead of the exact storage size)
and thus the bound of 3/4 is not quite tight.

C. Putting Two Requirements Together

In this section, we present algorithms to combine the two
requirements together in addition to introducing an indexing
technique called inverted list.

1) Phase Preprocessing: In addition to the steps we dis-
cussed previously, we describe an indexing technique called
inverted list.

Suppose that each sequence s ∈ S is given a unique
sequence ID. Given a value v ∈ V , the inverted list of v,
denoted by I(v), is defined to be a set of sequence IDs such
that one of the values in each of these sequences has its
property values equal to v. Given a query q, we define C(q)
to be a set of sequence IDs where each of the sequences with
these IDs satisfies Requirement Value Matching. Thus, C(q)
is equal to ∩k

i=1I(vi).
So, there are two major steps in Phase Preprocessing. The

first step is to generate the inverted list of v for each value
v ∈ V . The second step is to generate the synopsis of
each sequence s (where the synopsis is in form of a triplet
(Vs, Ls, Us)).

Note that both component Vs described in Section V-A and
inverted lists are used for Requirement Value Matching. How-
ever, there are some differences. Firstly, inverted lists are used
to locate sequences satisfying Requirement Value Matching
by sequence IDs. Secondly, Vs can be used for Requirement
Duplicate Value Matching but inverted lists cannot.

Note that the complexity of synopsis generation is O(nlm)
where l is the greatest length of a sequence. Generating
inverted lists also takes O(nlm) time. The overall complexity
of this phase is equal to O(nlm).

2) Phase Query: With the inverted list, we can modify
Algorithm 1 to Algorithm 7. The differences come from
the statements in Line 2 and Line 3. Firstly, in Line 2 of
Algorithm 7, instead of processing all sequences in S, we
process the sequences in C(q) using the inverted list. Secondly,
in Line 3 of Algorithm 7, instead of calling the original method
checkMatch without using any synopsis, we call the new
method checkMatch-Synopsis using the synopsis.

Algorithm 8 shows the algorithm for checkMatch-
Synopsis. With Lemmas 1, 2 and 3, it is easy to verify the
following theorem.

Algorithm 8 Algorithm checkMatch-Synopsis(q, s)
Input: a query q and an identifying sequence s
Output: whether q matches s

1: isValueMatch ← valueMatchCheck(q, Vs)
2: if isValueMatch = true then
3: isSeqOrder ← sequentialOrderCheck(q,Ls, Us)
4: if isSeqOrder = true then
5: return true
6: return false

Theorem 3: Algorithm 7 returns all sequences which are
matched by q.

Consider Algorithm 7. There are O(n) sequences in
C(q). Consider a sequence in C(q). We need to execute
checkMatch-Synopsis (Algorithm 8). In this algorithm, we
know that valueMatchCheck takes O(kN) time and sequen-
tialOrderCheck(q, Ls, Us) takes O(kN ′) time in most cases.
Thus, checkMatch-Synopsis takes O(k(N+N ′)) time. Since
N ≥ N ′, the time complexity of checkMatch-Synopsis
becomes O(kN). In conclusion, the overall time complexity
of Algorithm 7 is O(nkN).

VI. FREQUENT SUBSEQUENCE MINING

In this section, we introduce a data mining problem, frequent
attribute-based subsequence mining, which frequently makes
use of the efficient operator for ASM (i.e., checking whether a
query sequence matches a sequence in the dataset). Traditional
frequent subsequence mining has been studied extensively in
the literature [17, 8, 18, 6, 5]. It is useful to find frequent
patterns in order to study customers’ behaviors and temporal
patterns. In this section, we propose frequent attribute-based
subsequence mining (FASM). It is the same as the traditional
mining except that we consider the property table.

Given a sequence p in form of “v1, v2, ..., vx” where vi ∈ V
for i ∈ [1, x], the frequency of p is defined to be the total
number of sequences in S which are matched by p. Given a
parameter θ which is a positive integer and a user parameter,
a sequence p is said to be frequent if the frequency of p
is at least θ. The problem of finding frequent attribute-based
subsequence mining (FASM) is: given a parameter θ, we want
to find all possible frequent sequences in S.

There are at least two categories of finding frequent subse-
quence mining in the literature. The first category is singleton-
based mining while the second category is set-based mining.

In singleton-based mining, a sequence is represented in
form of “u1, u2, ..., ul” where ui ∈ V for i ∈ [1, l]. At
each timestamp, there is only at most one value ∈ V in the
subsequence [1]. Singleton-based mining is to find all frequent
subsequences in the dataset which have their frequencies at
least a given threshold θ.

In set-based mining, a sequence is represented as a set-
sequence in form of “G1, G2, ..., Gl” where Gi ⊆ V for i ∈
[1, l] [21, 8]. At each timestamp, there can be more than one
value ∈ V in the set-sequence (which is represented by a set
Gi instead of a value in V) [1]. In this category, the concept
of subsequence (or set-subsequence) is defined differently as

follows. Given a set-sequence g in form of “G1, G2, ..., Gl”
where Gi ⊆ V for i ∈ [1, l] and another set-sequence h in form
of “H1, H2, ..., Hl′” where Hi ⊆ V for i ∈ [1, l′], g is said
to be a set-subsequence of h if there exist l integers, namely
j1, j2, ..., jl, such that (1) for each i ∈ [1, l], Gi ⊆ Hji , and
(2) 1 ≤ j1 < j2 < ... < jl ≤ l′. If g is a set-subsequence
of h, then h is said to contain g. In set-based mining, each
set-sequence in the dataset is in form of “G1, G2, ..., Gl”. The
frequency of a set-sequence g is equal to the total number of
set-sequences in the dataset containing g. Set-based mining is
to find all frequent set-subsequences in the dataset which have
their frequencies at least a given threshold θ.

Note that our FASM problem is a special case of the set-
based mining. That is, all sequences found in our FASM
problem can be found in the set of set-sequences found in
the set-based mining.

Since our FASM problem is a special case of the set-based
mining, we adapt an existing algorithm in the literature of set-
based mining for FASM, by using our efficient query operator
in ASM. In the literature, most algorithms for set-based mining
requires to enumerate some potential candidates as the output
and count the total number of sequences in the dataset which
are matched by each candidate (query sequence). Our operator
for ASM can be used in the counting step. Whenever we
need to obtain the count for each candidate, we can perform
our operator. Since these algorithms involves a large set of
candidates and their counting step is not optimized, if their
counting step is replaced by our operator, the efficiency of the
algorithms can be improved a lot. In the experiment, we use
the algorithm in [8] to illustrate how the operator can improve
the performance of the algorithm.

Our operator can also be used to solve a more general
problem, the set-based mining, using the above approach. For
each candidate in form of “G1, G2, ..., Gl” where Gi is a set
of values for i ∈ [1, l], we generate all possible sequences
in form of “v1, v2, ..., vl” where vi ∈ Gi for i ∈ [1, l]. Each
generated sequence can be regarded as a query in ASM.

VII. EMPIRICAL EXPERIMENTS

In order to verify the efficiency of our algorithm, we im-
plemented three algorithms in C/C++, namely Naive, MA and
MAI. In Section III, we described two possible straightforward
approaches for problem ASM. Since the first approach takes
an exponential time with respect to the length of the query
length which is not scalable, we implemented the second
straightforward approach (Algorithm 1) and call it Naive.
MA is Modular Algorithm without inverted list which is
Algorithm 7 where C(q) in line 2 is replaced by S. MAI is
Modular Algorithm with inverted list which is Algorithm 7.
For MA and MAI, we adopt the compressed version of the
synopsis because it occupies less storage and have nearly the
same execution time in Phase Preprocessing and Phase Query
compared with the bulky version.

All the experiments were performed on a 2.4GHz PC with
4.0GB RAM, on a Linux platform. We did experiments on
both synthetic and real datasets. For the synthetic datasets,

TABLE IV
DEFAULT VALUES

Parameters Values
n (Number of sequences) 250k, 500k, 750k, 1M

µ (Average sequence length) 20, 40, 60, 80, 100
k (Query length) 5, 10, 15, 20

d (Domain size of each attribute) 100, 200, 30, 40
m (Number of attributes) 5, 10, 15, 20

we first generate the length of the sequence following a given
Gaussian distribution with its mean equal to μ and its standard
derivation equal to 5 where μ is a user parameter representing
the average length of a sequence. In addition to dataset size
n and the average length of each sequence μ, the synthetic
data generator also simulates the number of attributes m,
the size of each attribute domain d and the length of each
query k. We assume these three values are fixed for all the
sequences in a single dataset. In order to find at least one
matching in the whole dataset, we extract each query sequence
from an arbitrary sequence in the dataset. The values of each
parameter used in the experiments are given in Table IV,
where the default values are in bold. Finally, we generate the
synthetic datasets according to every distinct parameter setting
in Table IV.

In the experiments, we evaluate the algorithms with four
measurements: (1) Preprocessing Time, (2) Execution Time,
(3) Storage and (4) Compression Ratio. (1) Preprocessing
time of MA and MAI corresponds to the time cost in Phase
Preprocessing. Naive has no preprocessing step. So, we do
not consider it. (2) Query time refers to the time an algorithm
takes to answer 100 queries. Since the query time of MA (MAI)
using the compressed synopsis is similar to the query time of
MA (MAI) using the bulky synopsis, we only report MA (MAI)
using the compressed synopsis. (3) Storage is the total memory
consumption used for each data structure and the original
dataset. The storage of Dataset Size is the memory occupied by
the sequence data. The storage of Inverted List is the memory
occupied by the inverted list. The storage of Compressed
Synopsis is the memory occupied by the compressed version of
Xs and Vs, while the storage of Bulky Synopsis is the storage
occupied by the bulky version of Xs and Vs. (4) Compression
Ratio is the ratio of the storage of Compressed Synopsis to
that of Bulky Synopsis.

We study the effects of n, μ, k, d and m as follows.
Effect of database size n: Figure 1(a) shows that the

preprocessing in MAI is slightly larger than that of MA. It is
because that MAI needs to generate the inverted list, but MA
does not. In Figure 1(b), when the execution time of Naive
increased sharply when n increases, the execution time of MA
and MAI increased slightly. As expected, the storage of Bulky
Synopsis is much larger than that of Dataset Size, Inverted
List and Compressed Synopsis in Figure 1(c). The compression
ratio is around 24% as shown in Figure 1(d).

Effect of sequence length μ: Figures 2(a), (b) and (c) have
similar trends as Figures 1(a), (b) and (c). In Figure 2(c),
each data structure increases with μ. Note that the compressed
synopsis also increases. In the compressed synopsis, each
sequence is compressed into a 3-number synopsis which is

independent of the sequence length. So, apparently, it seems
that it should not increase with the sequence length. However,
when the sequence becomes longer, the compressed synopsis
needs much larger prime numbers and thus the synopsis
representation needs more storage. Notice that, in Figure 2(d),
as μ increased, the compression ratio decreased slowly, which
means the longer the sequence is, the smaller storage the com-
pressed synopsis occupies compared with the bulky synopsis.

Effect of k: As expected, the length of the query sequence
does not affect the processing time and the storage of every
data structure, as shown in Figure 3(a), Figure 3(c) and
Figure 3(d). From Figure 3(b), we can see that the execution
time of MA and MAI remained unchanged while that of Naive
increased slightly.

Effect of d: As d increases, the storage of the compressed
synopsis increased slightly, so that the compression ratio also
increased, as shown in Figure 4(c) and Figure 4(d). When
d increased, the diversity of the sequences in the database
also increased sharply, each generated sequence is much more
dissimilar to other sequences. Consequently, the execution
time of MA and MAI decreased in Figure 4(b).

Effect of m: When m increased, the processing time and
storage increased, as shown in Figure 5(a) and Figure 5(c). But
the compression ratio remained around 24% in Figure 5(d).
But in Figure 5(b), the execution time of MAI remained when
m increases. However, the execution time of Naive increased
significantly. It means that MAI can deal with sequences that
have a large number of attributes efficiently.

Besides the synthetic datasets, we also did experiments
on three real datasets: Netflix [22], BookX [23], and Ge-
nealogy [24]. (1) Netflix is a famous movie rental company.
We process the rating record dataset provided by Netflix
to generate a rating sequence dataset through grouping the
ratings by customerID (the identification of a customer) and
sorting them by the rating date. (2) BookX (BookCrossing)
is an online book searching and rating website. We download
the ratings dataset and use a similar method to generate a
sequence for every reader. (3) Genealogy dataset is collected
by ourselves, which contains biographic sequences of 1000
researchers. Some statistics of the three datasets are shown
in Table V. Each query is generated by randomly selecting a
subsequence of a sequence in a real dataset such that the length
of the subsequence is equal to a specified length. generated by
randomly selecting subsequences of sequences in each In this
table, No. of Elements is the number of elements appearing in
this dataset, and Avg. Duplicates is the average proportion of
duplicate attribute values in one sequence.

The first four columns in Table VI shows the execution
time on the three real datasets. The execution time of MAI
is much smaller than that of Naive in every real dataset. The
last column in Table VI shows that the compression ratio of
Netflix and BookX is around 30%, a little higher than that of
the synthetic datasets. We summarize the other statistics of the
experiments on real datasets. The greatest prime numbers used
in encoding the three real datasets is 4,863,427. The greatest
number used in the compressed synopsis contains 2100 digits.

 0

 500

 1000

 1500

 2000

 250 500 750 1000

P
re

p
ro

ce
ss

in
g
 T

im
e
 (

s)

n (in thousand)

MA
MAI

 0

 50

 100

 150

 200

 250 500 750 1000

E
xe

cu
tio

n
 T

im
e
 (

s)

n (in thousand)

Naive
MA
MAI

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 250 500 750 1000

S
to

ra
g
e
 (

M
B

)

n (in thousand)

Dataset Size
Inverted List

Compressed Synopsis
Bulky Synopsis

 0

 5

 10

 15

 20

 25

 30

 250 500 750 1000

C
o
m

p
re

ss
io

n
 R

a
tio

 (
%

)

n (in thousand)

(a) (b) (c) (d)
Fig. 1. Effect of n (Dataset size)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 20 40 60 80 100

P
re

p
ro

ce
ss

in
g
 T

im
e
 (

s)

μ

MA
MAI

 0

 20

 40

 60

 80

 100

 120

 140

 20 40 60 80 100

E
xe

cu
tio

n
 T

im
e
 (

s)

μ

Naive
MA
MAI

 0

 500

 1000

 1500

 2000

 2500

 20 40 60 80 100

S
to

ra
g
e
 (

M
B

)

μ

Dataset Size
Inverted List

Compressed Synopsis
Bulky Synopsis

 0

 5

 10

 15

 20

 25

 30

 20 40 60 80 100

C
o
m

p
re

ss
io

n
 R

a
tio

 (
%

)

μ

(a) (b) (c) (d)
Fig. 2. Effect of µ (Average length of a sequence)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 5 10 15 20

P
re

p
ro

ce
ss

in
g
 T

im
e
 (

s)

k

MA
MAI

 0

 10

 20

 30

 40

 50

 60

 5 10 15 20

E
xe

cu
tio

n
 T

im
e
 (

s)

k

Naive
MA
MAI

 0

 200

 400

 600

 800

 1000

 1200

 5 10 15 20

S
to

ra
g
e
 (

M
B

)

k

Dataset Size
Inverted List

Compressed Synopsis
Bulky Synopsis

 0

 5

 10

 15

 20

 25

 30

 5 10 15 20

C
o
m

p
re

ss
io

n
 R

a
tio

 (
%

)

k

(a) (b) (c) (d)

Fig. 3. Effect of k (Length of a query sequence)

 0

 200

 400

 600

 800

 1000

 100 200 300 400

P
re

p
ro

ce
ss

in
g
 T

im
e
 (

s)

d

MA
MAI

 0

 10

 20

 30

 40

 50

 60

 100 200 300 400

E
xe

cu
tio

n
 T

im
e
 (

s)

d

Naive
MA
MAI

 0

 200

 400

 600

 800

 1000

 1200

 100 200 300 400

S
to

ra
g
e
 (

M
B

)

d

Dataset Size
Inverted List

Compressed Synopsis
Bulky Synopsis

 0

 5

 10

 15

 20

 25

 30

 100 200 300 400

C
o
m

p
re

ss
io

n
 R

a
tio

 (
%

)

d

(a) (b) (c) (d)

Fig. 4. Effect of d (Size of the domain of each attribute)

 0

 5000

 10000

 15000

 20000

 25000

 5 10 15 20

P
re

p
ro

ce
ss

in
g
 T

im
e
 (

s)

m

MA
MAI

 0

 50

 100

 150

 200

 5 10 15 20

E
xe

cu
tio

n
 T

im
e
 (

s)

m

Naive
MA
MAI

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 5 10 15 20

S
to

ra
g
e
 (

M
B

)

m

Dataset Size
Inverted List

Compressed Synopsis
Bulky Synopsis

 0

 5

 10

 15

 20

 25

 30

 5 10 15 20

C
o
m

p
re

ss
io

n
 R

a
tio

 (
%

)

m

(a) (b) (c) (d)
Fig. 5. Effect of m (Number of attributes of each object)

TABLE V
STATISTICS OF REAL DATASETS

Datasets n m µ No. of Elements Avg. Duplicates
Netflix 478905 3 157 7653 11.2%
BookX 91400 3 11.7 262554 4.2%

Genealogy 1000 3 2.5 1553 13.3%

TABLE VI
EXECUTION TIME ON REAL DATASETS

Execution Time (s)
Dataset Naive MA MAI

Compression

Ratio (%)
Netflix 205.939 85.446 6.744 31.382
BookX 2.489 2.034 0.681 30.978

Genealogy 0.011 0.004 0.003 21.699

 0

 500

 1000

 1500

 2000

 0.01 0.02 0.03 0.04

E
xe

cu
tio

n
 T

im
e
 (

s)

θ/n

SPAMMA
ASPAM

 10

 100

 1000

 10000

 100000

 0.01 0.02 0.03 0.04

N
o
.
o
f
fr

e
q
u
e
n
t
su

b
se

q
u
e
n
ce

s

θ/n

SPAMMA

(a) Execution time (b) No. of freq. subsequences
Fig. 6. Result for FASM in BookX by SPAMMA

Although this number is large, the modular operation over this
number can be done efficiently with the GMP library [20].
Result for FASM: We conducted experiments for the FASM
problem on the BookX dataset. We insert MA as an operator
in SPAM [8] for FASM. Due to the bitmap representation of
database, SPAM cannot process attribute-based sequences of
length more than 64, which are common in Netflix and BookX.
The SPAM using our operator MA is denoted by SPAMMA.
We compare SPAMMA with the SPAM algorithm without using
our MA operator, denoted by ASPAM. The experimental results
can be found in Figure 6 where θ/n is the frequency threshold
in fraction.

In Figure 6(a), the execution time of SPAMMA is much
smaller than ASPAM. When θ is larger, fewer subsequences
are checked whether they are frequent according to the given
threshold θ. So, the resulting frequent subsequence set is also
smaller, as shown in Figure 6(b).
Case Study for FASM: By running SPAMMA, we found
some interesting frequent subsequences. For example, when
θ/n is set to 0.01, we can find “<Deutscher Taschenbuch
Verlag>, <Piper>” as a frequent subsequence. “Deutscher
Taschenbuch Verlag” is a publisher, while “Piper” is a book.
Note that “Deutscher Taschenbuch Verlag” and “Piper” belong
to different attributes. Another interesting case is a frequent
subsequence, “<She’s Come Undone>”. It is a book with
two versions published by two different publishers: one is
Washington Square Press, and the other is Pocket Books. In the
result, “<She’s Come Undone, Washington Square Press>”
is also a frequent subsequence, but “<She’s Come Undone,
Pocket Books>” is not. It means that compared with the
Pocket Books version, readers prefer the Washington Square
Press version.
Summary: Compressed Synopsis gives a very low compres-
sion rate. On average, the compression rate is about 25%. In
most cases, the execution time of MAI is an order of magnitude
better than that of Naive . In the real dataset Netflix, the
execution time of MAI is 3% of that of Naive.

VIII. CONCLUSION

In this paper, we propose a new problem called Attribute-
based Subsequence Matching Problem which has many ap-
plications. We propose an efficient algorithm for this problem
using Chinese Remainder Theorem to compress each sequence
into a triplet of numbers. We also illustrate how this problem
can be used for mining frequent subsequences. Finally, we
conducted experiments to show that our algorithm is very

efficient, nearly two orders of magnitude better than the
straightforward method. There are a lot of possible future
directions. One direction is to consider the problem with addi-
tional constraints like gap constraints [6] commonly adopted
in bioinformatics. Another direction is to study how other data
mining problems about subsequence matching can be extended
when the property table is considered.
Acknowledgements: The research of Yu Peng, Raymond Chi-
Wing Wong and Liangliang Ye is supported by HKRGC
GRF 621309 and Direct Allocation Grant DAG11EG05G. The
research of Philip S. Yu is supported by US NSF through
grants DBI-0960443, IIS 0905215, OISE-0968341 and OIA-
0963278, and Google Mobile 2014 Program.

REFERENCES

[1] G. Dong and J. Pei, Sequence Data Mining (Advances in Database
Systems). Springer-Verlag New York, Inc., 2007.

[2] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, “Fast subsequence
matching in time-series databases,” in SIGMOD Rec., 1994.

[3] V. Athitsos, P. Papapetrou, M. Potamias, G. Kollios, and D. Gunopulos,
“Approximate embedding-based subsequence matching of time series,”
in SIGMOD, 2008.

[4] W.-S. Han, J. Lee, Y.-S. Moon, and H. Jiang, “Ranked subsequence
matching in time-series databases,” in VLDB, 2007.

[5] L. Boasson, P. Cegielski, I. Guessarian, and Y. Matiyasevich, “Window-
accumulated subsequence matching problem is linear,” in PODS, 1999.

[6] M. Zhang, B. Kao, D. Cheung, and K. Yip, “Mining periodic patterns
with gap requirement from sequences,” in SIGMOD, 2005.

[7] S. lyong Lee, S. ju Chun, D. hwan Kim, J. hong Lee, and C.-W. Chung,
“Similarity search for multidimensional data sequences,” in ICDE, 2000.

[8] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu, “Sequential pattern mining
using a bitmap representation,” in KDD, 2002.

[9] R. She, F. Chen, K. Wang, M. Ester, J. L. Gardy, and F. S. L. Brinkman,
“Frequent-subsequence-based prediction of outer membrane proteins,” in
KDD, 2003.

[10] A. Pol and T. Kahveci, “Highly scalable and accurate seeds for subse-
quence alignment,” in BIBE: Proceedings of the Fifth IEEE Symposium
on Bioinformatics and Bioengineering, 2005.

[11] G. D. Stormo, “Dna binding sites: representation and discovery.” in
Bioinformatics, 2000.

[12] X. Liu, D. L. Brutlag, and J. S. Liu, “Bioprospector: Discovering
conserved dna motifs in upstream regulatory regions of co-expressed
genes,” in Pac. Symp. Biocomput, 2001.

[13] C. Wu, M. Berry, S. Shivakumar, and J. McLarty, “Neural networks
for full-scale protein sequence classification: Sequence encoding with
singular value decomposition,” in Machine Learning, 1995.

[14] P. Geurts, A. B. Cuesta, and L. Wehenkel, “Segment and combine
approach for biological sequence classification,” in In: Proceedings of
IEEE Symposium on Computational Intelligence in Bioinformatics and
Computational Biology, 2005.

[15] T.F.Smith and M.S.Waterman, “Identification of common molecular
subsequences,” in Journal of Molecular Biology, 1981.

[16] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
“Basic local alignment search tool,” in Journal of molecular biology,
1990.

[17] R. T. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang, “Exploratory
mining and pruning optimizations of constrained associations rules,” in
SIGMOD Rec., 1998.

[18] J. Pei and J. Han, “Can we push more constraints into frequent pattern
mining?” in KDD, 2000.

[19] G. H. Hardy and E. M. Wright, An Introduction to the Theory of
Numbers. Oxford, England: Clarendon Press, 1979.

[20] “http://gmplib.org/.”
[21] R. Srikant and R. Agrawal, “Mining sequential patterns: Generalizations

and performance improvements,” in EDBT, 1996.
[22] Y. Koren, “Collaborative filtering with temporal dynamics,” in KDD.

New York, NY, USA: ACM, 2009, pp. 447–456.
[23] “http://www.informatik.uni-freiburg.de/∼cziegler/bx/.”
[24] “http://www.cse.ust.hk/∼raywong/genealogy/.”

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Helvetica
 /Symbol
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

