
Fair Top-k Query on Alpha-Fairness
Hao Liu1, Zheng Zhang2, Raymond Chi-Wing Wong1, Min Xie3, Bo Tang4

1The Hong Kong University 2Individual 3Shenzhen Institute of 4Southern University of
of Science and Technology Computing Sciences Science and Technology
{hliubs, raywong}@cse.ust.hk, mooooochaa@gmail.com, xiemin@sics.ac.cn, tangb3@sustech.edu.cn

Abstract—The traditional top-k query was proposed to obtain
a small subset from the database according to the user preference,
which is explicitly expressed as a ranking scheme (i.e., utility
function). However, a poorly-designed utility function may create
discrimination, which in turn may cause harm to minority
groups, e.g., women and ethnic minorities, and thus, fairness is
becoming increasingly important in many situations, e.g., hiring
and admission decisions. Motivated by this, we study fair ranking
to alleviate discrimination. We design a fairness model, called α-
fairness, to quantify the fairness of utility functions. We propose
an efficient exact framework with a basic implementation and
an improved implementation to find the fairest utility function
with the minimum modification penalty. We conducted extensive
experiments on both real and synthetic datasets to demonstrate
our effectiveness and efficiency compared with the prior studies.

I. INTRODUCTION

It is often hard for users to find desired tuples from a large
database for decision-making, e.g., hiring. We can use a tradi-
tional top-k query [1], [2], [3], where a user provides a pref-
erence function, called the utility function, and an output size,
k. A larger weight on an attribute in the utility function means
that this attribute is more important. Based on the utility func-
tion, the utilities of tuples can be computed as the weighted
sum of attribute values. Then, the tuples in the database are
ranked based on the utilities and the top-k set (i.e., the set of
k tuples with the highest utilities) is returned. However, it is
hard for users to specify a good utility function in most cases.

A poor ranking scheme may create discrimination, i.e., peo-
ple are treated in a different and especially bad way simply be-
cause of their membership in a group (e.g., women and African
Americans) that is often discriminated against and denoted as
the protected group defined by the protected attribute (e.g.,
gender and race). In ranking problems, discrimination means
people are ranked lower simply because of their membership in
a protected group. For example, women have a lower success
rate for loans than men [4], so women are the protected group
in this case. Men can also be the protected group in some situa-
tions. By DATA USA [5], in 2017, 11.5% of female applicants
are accepted to MIT, as opposite to 5.25% for males. Such un-
fairness is also reflected in other aspects, e.g., race [6]. In this
paper, we aim at helping users design a fair ranking scheme.
In particular, we focus on the fairness in the top-k sets.

Following a typical example [7], [8], we have 9 applicants
for a college in Table I. The admission office needs a ranking
scheme to give each applicant a score and then admits the top-
7 ones. Assume that the original utility function f0 does not
consider any protected attribute (e.g., gender and race) during

TABLE I: Information of Applicants

ID Gender Race TOEFL GRE GPA f0 f1

1 Male Others 110 335 3.5 1 1
2 Male African-American 108 330 4.0 1 1
3 Male Others 115 330 3.2 1 1
4 Female African-American 105 320 3.7 1 1
5 Male Others 87 310 3.9 1 0
6 Female African-American 88 315 2.8 0 1
7 Male Others 87 310 4.0 1 1
8 Female African-American 88 310 2.6 0 1
9 Male Others 87 310 3.8 1 0

its design and it simply ranks applicants by computing the
score of each applicant t as f0(t) = 0.1 × TOEFL + 0.1 ×
GRE + 0.8× GPA, without involving the protected attributes
in the score computation. This scheme may lead to bias, e.g.,
the top-7 set is marked 1 in column “f0” of Table I, including
6 males but only 1 female (where the proportion of females is
14.3% in the top-7 set, much lower than 33.3% in the entire
set). Similarly, while there are 4 out of 9 (i.e., 44.4%) African-
Americans, the number of African-Americans in the top-7 set
is 2 out of 7 (i.e., 28.6%). Clearly, this f0 is unfair to females
and African-Americans. In the worst case, this scheme may
recruit many students from one gender or one race, violating
laws and regulations [9], [10], since it neither considers pro-
tected attributes explicitly in the score computation nor consid-
ers protected attributes implicitly during the design of the rank-
ing scheme. Consider the top-7 set of another function f1(t) =
0.6×TOEFL+0.1×GRE+0.3×GPA in column “f1”. As will
be shown later, f1 is designed by considering proportions of fe-
males and African-Americans in the resulting top-7 set, which
now become 42.9% and 57.1%, respectively, closer to their
proportions in the entire dataset. Thus, f1 is considered fairer
than f0 by involving protected attributes in its formulation.

Top-k queries can also be used in other data analytics
tasks in information retrieval [11] and machine learning [12].
For instance, the admission office might train a model, using
the top-k students in previous years as positive examples, to
predict the academic performance of the current students. If
the top-k sets used for training are biased, the model can
easily create discrimination [13], e.g., if the top-7 set w.r.t.
function f0 is labeled with “good performance”, the model
trained will tend to predict females or African-Americans as
“bad performance”, which further worsens the fairness.

This illustrates our problem which helps users design new
utility functions that give fair top-k sets for its increasing im-
portance [14]. Moreover, we do not want the new utility func-
tion to deviate much from the original (user-specified) one.

Related studies on fair top-k queries (or ranking) can be
classified into two branches, i.e., intervention with the ranking
result and intervention with the ranking scheme. Studies on the
former [4], [15] assume that the utilities of all tuples have been
computed by a pre-existing ranking scheme. Then, they focus
on designing a procedure to select top-k tuples that are fair and
have as high utilities as possible. However, these methods may
select some tuples with lower utilities to ensure fairness, which
causes individual discrimination to higher-utility tuples. In our
problem, we always return the top-k tuples under a fair utility
function, which could alleviate such individual discrimination.

Studies on the latter branch [7], followed by this paper,
focus on finding a ranking scheme (i.e., a utility function)
that is both fair and close to the user input utility function
f0 (so that it is easily accepted by the user). The only prior
work [7] in this branch returns a feasible utility function that
is the closest to f0, where a utility function is feasible if its
top-k set satisfies a fairness constraint, specified by the user
under an arbitrary (group) fairness model, e.g., the proportion
of the protected group in the returned top-k set must be at least
a given threshold. However, returning only a feasible utility
function may not suffice, and the fairest top-k set could be
more interesting to the user. Worse still, if the constraint is set
too hard, leading to no feasible utility function, the user needs
to repeatedly try some looser constraints to obtain the result.
Another issue of [7] is its inefficiency when handling a large
number of hyperplanes, for testing all feasible utility functions,
since for each pair of tuples, a hyperplane has to be inserted
and processed with time-consuming geometric operations.

Motivated by the deficiency of fairness constraints like [7],
we focus on the (group) fairness measurement in this paper
so that if a top-k set is fair, its fairness value is large by the
measurement. In particular, we aim to find a utility function,
whose top-k set maximizes the fairness measurement (i.e., it
gives the fairest top-k set). Along this line, there are also some
existing studies in fair ranking that explore how to measure
the group fairness of the ranking result (i.e., a top-k set). [16]
proposes the proportional model which considers one “binary”
protected attribute (e.g., gender defining two groups, females
and males). This model yields better fairness if one group (e.g.,
females) has closer proportions between the top-k set and the
entire dataset. [17] extends the proportional model when the
protected attribute defines more than two groups or the pro-
tected groups are defined by multiple attributes, by considering
the KL-divergence between the proportions of all concerned
groups in the top-k set and in the entire dataset. However, the
KL-divergence only works well when any two groups are not
overlapping (i.e., non-intersectional) and all groups form the
entire dataset (i.e., complete), while the recent studies [18] also
raise the importance of intersectional and incomplete groups.

In light of this, we propose a group fairness model called
α-fairness to measure the fairness of a top-k set for arbitrarily
defined groups (e.g., intersectional or incomplete groups). As
will be formalized in Section III, we extend the proportional
model [16], to quantify the fairness of a top-k set via the Lp
distance between the proportions of all groups (e.g., males

and females) in the top-k set and their counterpart in the entire
dataset in a latent space called proportion space, where each
dimension of this space corresponds to a user-specified group.

Based on the above fairness measurement, we want to return
a utility function that not only gives the fairest top-k set,
but is also close to the input utility function f0 (i.e., it has
small modification penalty). We achieve a trade-off between
the fairness and the penalty via a parameter α that controls
the strictness of the fairness measurement. If α is larger, the
measurement is less strict and more top-k sets are considered
as the fairest, so that the returned utility function can be closer
to f0. Note that our parameter α is different from the threshold
of a fairness constraint in [7] (even though our fairness model
can also be used as the criterion for setting fairness constraints
in [7]). This is because for a strict α and a strict constraint, we
always return the fairest utility function, but [7] might return
no result satisfying the strict constraint. For a loose α and a
loose constraint, we can still give sufficiently fair results since
we always return the fairest top-k set, but [7] could return a
result of poor fairness due to the loose constraint.

To help users find the fairest top-k set under our α-fairness
model, we propose an efficient exact framework and its basic
implementation called FairTQ-Exact (Fair Top-k Query).
The main idea is to enumerate all top-k sets, and then check
(a) their fairness in terms of our α-fairness model and (b) the
modification penalty (computed via quadratic programming).

We also propose a fast algorithm called FairTQ-Exact-BnB
to reduce the top-k sets to be checked via branch-and-bound.
To achieve this, we explore an effective and efficient upper
bound of α-fairness for all possible top-k sets in a branch, by
leveraging geometric properties of the α-fairness model in the
proportion space. Based on the upper bounds, some branches
could be pruned during an effective best-first search scheme.
In our experiments, FairTQ-Exact-BnB only needs to process
less than 5% of the total number of hyperplanes handled in [7],
which uses an inefficient hyperplane-based approach.

The major contributions of this work are listed as follows.
• We design a fairness model called α-fairness to measure the

fairness of top-k sets, inspired by the proportional model.
• We use a parameter α to effectively trade-off the fairness

with modification penalty for the returned utility function.
• We design an efficient exact framework and its basic im-

plementation called FairTQ-Exact to find the fairest utility
function with the minimum modification penalty.

• We propose another fast exact algorithm FairTQ-Exact-
BnB based on branch-and-bound to improve the basic one.

• Extensive experiments on real and synthetic datasets demon-
strate our effectiveness and efficiency. Our algorithms beat
the baselines by one to two orders of magnitude in response
time and return fairer results. Our case study showcases that
we provide fairer results compared with baselines.
The remainder of this paper is organized as follows. Sec-

tion II reviews related work. Section III gives the problem def-
inition. Section IV presents our framework and its basic imple-
mentation. Section V describes our fast algorithm. Section VI
shows the experiments and Section VII gives our conclusion.

2

II. RELATED WORK

Fairness Models in Ranking. Recent fairness models are
commonly classified into group fairness [19], [20] and in-
dividual fairness [21], where group fairness requires treating
different groups equally and individual fairness ensures equal
treatment for similar individuals. We follow the mainstream
studies and design a fair ranking scheme under group fairness.
Nonetheless, we return a top-k set w.r.t. a concrete utility
function, which can also alleviate individual discrimination
compared to other approaches that could favor smaller-utility
tuples in one group over larger-utility tuples in another group.

In recent studies of fair ranking, various fairness models
have been applied [22], [23], [24], [16], [25], [15]. They
include pairwise fairness, maxmin fairness, exposure-based
fairness, proportion-based model and diversity constraints.

Pairwise fairness [22] quantifies fairness by counting the
tuple-pairs (ti, tj) where ti (scoring higher than tj) ranks
lower than tj in the result. Maxmin fairness [23] prioritizes
treatment for the most unfairly treated individual while satisfy-
ing some group fairness constraints. Although these models at-
tempt to grant individual-level fairness, they assume the rank-
ing scheme and the tuple scores are known and fixed, while our
problem is to find the fairest ranking scheme. Exposure-based
fairness [24] measures group fairness by comparing the sum
of exposure of two groups, where the exposure of a tuple in
position p represents its “position bias” (i.e., higher-ranked po-
sitions have higher exposure, since users favor top positions).
Since we focus on the top-k query, we consider the set-based
fairness which only considers the representation of different
groups in the top-k set, without considering their ranks.

To measure the set-based group fairness in a top-k set T , the
widely-applied proportional model [16] quantifies how close
the representational proportion of the protected group (i.e.,
the proportion of the protected tuples among all top-k tuples)
and its populational proportion (i.e., the proportion of the
protected tuples among the entire dataset) are. However, [16]
only considers two groups (i.e., a binary protected attribute)
while recent studies have raised the importance of multinary
protected attribute, multiple protected attributes and even in-
tersectional groups [26], [18]. The KL-divergence-based mea-
surement compares the distributions of all groups (which could
be defined by multinary and multiple protected attributes) in
the top-k tuples and in the entire dataset. Given m groups,
we denote by P iD (resp. RiT) for i ∈ [1,m] the populational
proportion (resp. representational proportion) of the i-th group.
Then, the fairness measurement is the KL-divergence between
the two distributions, i.e.,

∑
i P

i
D log

P i
D

Ri
T

. However, the KL-
divergence measurement only works well on non-intersectional
and complete groups (i.e.,

∑
i P

i
D = 1 and

∑
iR

i
T = 1 [17]).

Diversity constraints [25], [15] can be defined on arbitrary
groups so that the number of tuples in T from each concerned
group satisfy a range constraint. As mentioned in Section I,
selecting suitable constraints is tricky. In this work, we aim to
design set-based group fairness measurements for arbitrarily
defined groups by adapting the proportional model.

Algorithms on Fair Ranking. Major algorithms on fair
ranking can be classified into the following two categories.
(1) Intervention with the ranking result [4], [15], where the
score for each tuple is fixed and the ranking result with these
scores lead to systematic bias. FA*IR [4] ensures the minimal
proportion for a single protected group, by iteratively selecting
tuples into the top-k set satisfying the fairness constraint and
the “in-group” utility monotonicity. However, FA*IR could
discriminate unprotected groups and could not guarantee the
utility monotonicity across groups. [15] selects the top-k set by
maximizing the total “worthiness” (where a value is assigned
to each tuple t and each rank r, representing the worthiness of
the r-th rank tuple t), subject to a fairness constraint, which
sets bounds on the proportion of each group in the top-k set to
grant fairness to all groups. However, both [4] and [15] could
out-rank lower-utility tuples to satisfy group fairness, leading
to ranking violation, where a tuple t ranks higher than t′ but t
is dominated by t′ (i.e., t′ is better than t on every attribute).
In this case, no utility function can give such a top-k set.
(2) Intervention with the ranking scheme [7], which is followed
in this paper. [7] aims to find the utility function closest to
the input utility function f0 such that some group fairness
constraints are satisfied. It proposes an exact algorithm called
SATREGIONS, which adopts an inefficient hyperplane-based
approach. Specifically, their hyperplanes are constructed in an
angle coordinate system, which split the space into regions.
For each region, they check whether there is a feasible utility
function satisfying the fairness constraint, and the feasible
utility function closest to f0 is returned. The geometric rela-
tionships between hyperplanes and regions are determined by
time-consuming linear programming (LP) in SATREGIONS.
Algorithms on Related Problems. Supervised learning ap-
proaches are widely applied in fair learn-to-rank [27], [24],
and in decision-making tasks like fair classification [28], [29],
[30], [31], [32], [19]. However, they need well-labeled data for
training. Besides, recent studies also explore fairness in other
decision-making problems similar to ranking [33], [34], [18].

III. PRELIMINARY AND PROBLEM DEFINITION

Preliminary: Top-k Set. Given a set D with n tuples, each
tuple t ∈ D has d scoring attributes, denoted by t[1], . . . , t[d],
each of which is a non-negative real value. For example in
Table I, each tuple has 3 scoring attributes (i.e., TOEFL,
GRE and GPA). Following typical settings in [35], [3], given
a d-dimensional utility vector w = (w[1], . . . , w[d]), the user
preference on t is captured by a linear utility function w.r.t. w,
denoted by fw, where fw(t) =

∑d
i=1 w[i] · t[i]. For simplicity,

we also denote fw by w. We define the utility of tuple t w.r.t.
w to be fw(t). In particular, we can rank all tuples in D in a
descending order of their utilities (ties broken arbitrarily). The
top-k set in D w.r.t. w, denoted by top-kw(D), is defined
to be the set of k tuples in D with the highest utilities w.r.t.
w. A top-k query w.r.t. w thus returns top-kw(D). When D
and w are clear in the context, we also denote top-kw(D) by
top-kw or T for simplicity. Consider our running example in
Table I. Given w = (0.1, 0.1, 0.8) and k = 7, the top-k query

3

w.r.t. w returns a top-k set containing applicants of ID 1-5,
7 and 9, since they have the highest utilities w.r.t. w.

We assume w.l.o.g. that
∑d
i=1 w[i] = 1 where w[i] ∈ [0, 1],

since the norm of w does not affect the top-k results [36].
Note that w[d] = 1 −

∑d−1
i=1 w[i]. Thus, we could reduce the

last dimension from the domain of w (i.e., from d-dimension
to (d − 1)-dimension) for more efficient processing [36]. We
define the utility space, denoted by Ω, to be the (d − 1)-
dimensional subspace containing all utility functions after the
dimension reduction. In our example in Table I, the utility
space is a subspace in a 2-dimensional space, as shown in the
shaded triangular region of Figure 1(a), bounded by the two
axis and the straight line, represented by w[1] + w[2] = 1.

We summarize the frequently used notations in [37].
Fairness Model. Following prior studies [7], [4], we focus
on group fairness, which requires that each group (e.g., the
female group) receives equal treatment when its members are
considered for the top-k set [35]. Specifically, we adapted the
widely-used “proportional” model [16], which requires that
the representational proportion of each group in the top-k
set is close to its populational proportion in the dataset D.

We differ from the group fairness models of existing fair
ranking studies in the following aspects. (1) We form fairness
measurement to grant group fairness (based on the propor-
tional model) instead of taking a constraint which is difficult to
select suitably. (2) We consider not only the groups defined by
a single protected attribute, but also more generalized groups
that could be incomplete or intersectional (including groups
defined by multiple protected attributes), while existing group
fairness measurements [16] only focus on two disjoint groups
defined by one protected attribute. (3) We use a parameter to
control the strictness of the fairness measurement so that there
is a trading-off between fairness and penalty (i.e., how close
the returned utility function is to the input utility function).

Consider our dataset D. Each tuple t ∈ D is associated
with one or multiple protected attributes (e.g., gender or race),
each of which uses categorical values to define the group
membership of t (e.g., females or African-American). The
group membership could also be defined by multiple protected
attributes (e.g., African-American females). We are given a list
G of m group memberships with which the user is concerned.
For instance, when the user only desires equal treatment to
different genders, G could be {Male, Female}; when the user
wants to consider multiple protected attributes, G might be
{Female, African-American}. In some cases, the user might
require a set G including all combinations of groups with
multiple protected attributes, e.g., {African-American female,
African-American male, Other-race female, Other-race male}.
In this work, we adopt the group fairness measurement to
accommodate all the above cases with the proportional model.

Let Gj denote the j-th group membership in list G, and let
Dj (for j ∈ [1,m]) denote the set of all tuples in D with the
group membership Gj . We define the populational proportion
of Gj in D, denoted by PD(Gj), to be the proportion of Dj

among D, i.e., PD(Gj) = |Dj |/|D|. We define the overall
population of G in D, denoted by PD(G), to be an m-tuple

whose j-th value is defined to be the populational proportion
of Gj in D, i.e., PD(G) = (PD(G1), . . . , PD(Gm)).

Given a top-k set T , we also denote the set of tuples in T
with group membership Gj by Tj . Then, the representational
proportion of Gj in T , denoted by RT (Gj), is the proportion
of Tj among T (i.e., RT (Gj) = |Tj |/|T |). We also define the
overall representation of G in T , denoted by RT (G), to be an
m-tuple whose j-th value is the representational proportion of
Gj in T , i.e., RT (G) = (RT (G1), . . . , RT (Gm)).

Consider the set D in Table I. The populational proportions
of group memberships Female and African-American are
0.333 and 0.444, respectively. For the top-7 set w.r.t. f0 (i.e.,
applicants of ID 1-5, 7 and 9) denoting T , the representational
proportions of Female and African-American in T are 0.143
and 0.286, respectively. If G is {Female,African-American},
the overall population of G in D is (0.333, 0.444), while the
overall representation of G in T is (0.143, 0.286).

Note that both PD(G) and RT (G) can be regarded as points
in the m-dimensional space. To better formalize the geometric
properties, we introduce a concept called the proportion space.
Consider an m-dimensional space. We define the proportion
space, denoted by Θ, to be the region in the m-dimensional
space containing all m-dimensional points whose value of
each dimension is in [0, 1]. In Figure 3(a), we show an
example of Θ in the 2-dimensional space (as marked in light
gray) when G = {Female,African-American} (following our
running example). Note that Θ is different from the utility
space Ω, since each dimension of Ω corresponds to a value in
a utility function, while here each dimension of Θ corresponds
to the proportion of a group membership in G (see Gj in
Figure 3(a)). Both RT (G) = (0.333, 0.444) and PD(G) =
(0.143, 0.286) are the points in Θ (as plotted in Figure 3(a)).

According to the proportional group fairness model which
requires that the populational proportion of each group is
equal (or close) to its representational proportion, we form
our fairness measurement of a top-k set T which returns
a small value for good fairness based on the closeness of
the overall population of D and the overall representation
of T . Specifically, we measure the fairness of T by the Lp
distance between RT (G) and PD(G) in the m-dimensional
space where p is a real value at least 1, since it could cover the
commonly applied measurements. For instance, when p = 2, it
is the Euclidean distance which is the most common distance
metric; when p = 1, it is similar to the absolute difference form
of group fairness as defined in [16]. Formally, following the
common definition, we define the Lp distance between RT (G)
and PD(G), denoted by Lp〈RT (G), PD(G)〉, as follows.

Lp〈RT (G), PD(G)〉 = (

m∑
j=1

|RT (Gj)− PD(Gj)|p)1/p

Continuing our example of G = {Female,African-American}.
If p = 2, the Lp distance between RT (G) and PD(G) is 0.247.
In Figure 3(a), this distance is illustrated geometrically as the
length of the line segment connecting RT (G) and PD(G).

Moreover, we control the strictness of the fairness mea-
surement with parameter α, a real number in [0, 1]. Intuitively,

4

w1

w2
1

1

Ω

w1

w2

w3

t

ht,t’
t ’

ht,t’+

ht,t’
−

w1

w2
1

1 ht,t’+

ht,t’
−

ht,t’

(a) Utility Space (b) 3D Hyperplane (c) 2D Hyperplane
Fig. 1: Examples of Utility Space and Hyperplane

when two proportions, says r1 and r2, are close (i.e., the differ-
ence of r1 and r2 is no more than a threshold), r1 and r2 could
be regarded as being equal. We thus introduce a real number
α ∈ [0, 1] as this threshold, and we define the diminished
difference of r1 and r2 on α, denoted by difα〈r1, r2〉, to be
difα〈r1, r2〉 = max{0, |r1−r2|−α}. Intuitively, if |r1−r2| <
α, the diminished difference is 0. Otherwise, it is |r1−r2|−α.

Combining the Lp distance with the strictness parameter
α, we define the α-Lp distance between RT (G) and PD(G),
denoted by α-Lp〈RT (G), PD(G)〉, as follows.

α-Lp〈RT (G), PD(G)〉 = [

m∑
j=1

(difα〈RT (Gj), PD(Gj)〉)p]1/p

For example, if α = 0.2, the diminished difference of
RT (Female) and PD(Female) is 0 (|RT (Gj) − PD(Gj)| <
0.2). It can be verified that when G = {African-American,
Female}, the α-Lp distance between RT (G) and PD(G) is 0.

Note that when α = 0, difα〈RT (Gj), PD(Gj)〉 = |RT (Gj)
−PD(Gj)| and thus, α-Lp〈RT (G), PD(G)〉 is exactly the Lp
distance between RT (G) and PD(G). In this case, the fairness
measurement is the strictest since α-Lp〈RT (G), PD(G)〉 = 0
only if the overall representation in T are exactly the same as
the overall population in D. A larger value of α results in a
less strict measurement, since it is more likely for T to have
representation proportions of some groups “rounded” to 0.
Note that setting α too large (e.g., close to 1) could lead to a
case where all top-k sets T satisfy α-Lp〈RT (G), PD(G)〉 = 0,
which indicates the same fairness for all top-k sets.

Finally, given a top-k set T in dataset D, a list G of m group
memberships, a real number α in [0, 1] and a real number p
with value at least 1, we define the α-fairness of T in D w.r.t.
G and p, denoted by α-FNG,p(T |D), as follows.

α-FNG,p(T |D) = 1− 1

m1/p
· α-Lp〈RT (G), PD(G)〉

The above formation first normalizes the α-Lp distance into
[0, 1] by being divided by a factor of m1/p (the maximum
possible α-Lp distance). Then, since a smaller α-Lp distance
means T is fairer, we use 1 minus the α-Lp distance such that
larger α-fairness (e.g., closer to 1) indicates better fairness.
Fair Ranking Problem. The goal of this work is to design a
fair ranking scheme for the top-k query. Recall that the core
of a ranking scheme is a utility function in the utility space Ω.
Given a user-input utility function w0 ∈ Ω, we want to return
a new utility function w ∈ Ω such that w does not deviate too
much from w0 and the set top-kw is fair based on our fairness
model. To quantify how far w deviates from w0, we define the
modification penalty of w from w0, denoted by m(w,w0) to
be the L2 distance (a widely applied metric) between w and

w0, i.e., m(w,w0) =
√∑d

i=1(w[i]− w0[i])2.

Problem 1 (Fair Ranking). Given a dataset D, a real number
α, a positive integer k, a list G of group memberships, a real
number p and a utility function w0, our goal is to find a utility
function w∗ in the utility space Ω such that the α-fairness of
top-kw∗ in D w.r.t. G (i.e., α-FNG,p(top-kw∗ |D)) is maxi-
mized, while under the maximized α-fairness, the modification
penalty of w∗ from w0 is minimized. Mathematically,

w∗ = arg min
w′∈Ω

m(w′, w0)

s.t. α-FNG,p(top-kw∗ |D) = max
w∈Ω

α-FNG,p(top-kw|D).

In our running example in Table I, assume that α = 0.1,
k = 7, G = {Female,African-American}, p = 2 and w0 =
(0.1, 0.1, 0.8). We want to find a utility function w∗ such that
α-FNG,p(top-kw∗ |D) is maximized, while the modification
penalty of w∗ from w0 is minimized. It can be verified that the
utility function w∗ returned for this problem instance is (0.33,
0.51, 0.16) which gives the fairest top-k set containing appli-
cants ID 1-7 with the maximum α-fairness and the minimum
modification penalty equal to 1 and 0.79, respectively.

IV. EXACT ALGORITHM

In this section, we present our framework for our fair rank-
ing problem and a basic implementation called FairTQ-Exact,
which guarantees to find the fairest set with minimum penalty.

A. Framework

We begin with the framework overview. Note that there are
an infinite number of utility functions in Ω. It is infeasible
to enumerate all to compute the top-k sets. Alternatively, we
adapt the hyperplane-based approach (a standard approach in
the literature) to obtain the top-k sets [36], [3], which is more
efficient than the naive way of checking all

(|D|
k

)
subsets of D.

It works in the following three steps.
• Step 1 (Feasible Top-k Sets Enumeration): We enumerate

all feasible top-k sets in D (which is much smaller than
the set of all possible

(|D|
k

)
subsets of D) using an efficient

hyperplane-based approach with effective optimizations.
• Step 2 (α-fairness Computation): For each feasible top-k

set T , we compute its α-fairness in D w.r.t. G and p (i.e.,
α-FNG,p(T |D)) according to our definition of α-fairness.

• Step 3 (Best Utility Function): For those top-k sets with
the maximized α-fairness (possibly many), we find the best
utility function w∗ with the minimum modification penalty
(among all those top-k sets) using quadratic programming.
Below we present how these are done in FairTQ-Exact.

B. Step 1 (Feasible Top-k Sets Enumeration)

We enumerate all top-k sets in D with a hyperplane-based
approach. The intuition is to divide Ω into a number of small
regions by the arrangement of a set H of hyperplanes, where
each cell of the arrangement is a region bounded by some
hyperplanes in H and it corresponds to a unique top-k set.
Thus, to enumerate all top-k sets, we can enumerate all cells
in this arrangement and find the top-k set for each cell.

5

We first formalize some geometric concepts. For each tuple
t in D, it can be represented as a point in the d-dimensional
space. Given two tuples t and t′, we define the hyperplane
between t and t′, denoted by ht,t′ , to be the hyperplane in the
d-dimensional space passing through the origin with t′ − t as
its normal vector, i.e., ht,t′ = {w ∈ Rd|(t′ − t) · w = 0}. In
Figure 1(b), we give an example of hyperplane ht,t′ (shown as
a shaded plane) between tuple t and t′ in the 3-dimensional
space, where the normal of ht,t′ is t′ − t (shown as a blue
arrow). Recall that we reduced one dimension and consider the
(d−1)-dimensional space for simplicity. We thus represent the
hyperplane ht,t′ in the (d−1)-dimensional space, by discarding
the last dimension, e.g., in Figure 1(c), ht,t′ is represented as
a straight line in the (reduced) 2-dimensional space.

It can be observed that ht,t′ divides the (d−1)-dimensional
space into two halfspaces [3]. The halfspace containing
all utility functions w such that fw(t) ≥ fw(t′) (resp.
fw(t) < fw(t′)) is denoted by h+

t,t′ (resp. h−t,t′), i.e., h+
t,t′ =

{w ∈ Rd|(t′−t)·w ≤ 0} and h−t,t′ = {w ∈ Rd|(t′−t)·w > 0}.
In Figures 1(b) and (c), we indicate h+

t,t′ and h−t,t′ with solid
and hollow arrows, respectively, in both the (original)
3-dimensional space and the (reduced) 2-dimensional space.

A simple hyperplane-based approach can be implemented as
follows. Firstly, for each pair of tuples t and t′ in D, we create
a hyperplane ht,t′ and insert it to a set H. Secondly, we com-
pute an arrangement in the (d−1)-dimensional space of all hy-
perplanes in H, bounded by the utility space Ω. We denote this
arrangement by A(H,Ω). Thirdly, for each cell of A(H,Ω)
(i.e., a region in Ω, say ρ), we randomly pick a utility function
w in ρ and compute the top-k set w.r.t. w (i.e., top-kw) and in-
sert it into the result set. The correctness of this simple imple-
mentation is guaranteed by the following lemma, which says
that the top-k set w.r.t. any utility function in ρ is the same;
in this case (i.e., the top-k set is unique), we simply call it the
top-k set w.r.t. ρ, denoted by top-kρ. For the sake of space,
the detailed proof can be found in our technical report [37].

Lemma IV.1. If w and w′ are two utility functions in the same
cell of arrangement A(H,Ω), then top-kw = top-kw′ .

Unfortunately, this implementation is inefficient since there
are O(|D|2) hyperplanes in H and computing the arrangement
of H takes O(|H|d−1) time [36]. Below we present a more
efficient approach for computing the top-k sets. It is mainly
inspired by [36], but we explore effective optimizations.

Efficient Hyperplane-based Approach. Our approach mainly
has two steps. The first step is a filtering step, which extracts a
subset D′ of D, such that |D′| is significantly smaller than |D|
and only tuples in D′ can appear in a top-k set. The second
step is a refinement step which enumerates all feasible top-k
sets in much smaller D′ rather than D, which is very efficient.

The filtering step is handled by the k-skyband query [38].
Specifically, given tuples t and t′, t is said to dominate t′ if
t[i] ≥ t′[i] for each i ∈ [1, d] and there exists i ∈ [1, d] such
that t[i] > t′[i]. Clearly, if t dominates t′, t has a higher utility
and thus, a higher rank than t′ w.r.t. any utility function in Ω.

A tuple t ∈ D is called a k-skyband [38] of D if t is dominated
by fewer than k tuples in D. A k-skyband query returns the
set D′ of all k-skybands in D. It is easy to verify that if a tuple
t is not a k-skyband of D (i.e., t is dominated by at least k
tuples), then t cannot appear in any top-k set, since its rank is
lower than at least k tuples in D w.r.t. any utility function in Ω.
In the remaining steps, we merely focus on D′ instead of D.

Example IV.1. Consider D in Table I where k = 3. For better
illustration, we denote tuple ti to be the applicant of ID i. Con-
sider t9, which is dominated by 3 tuples in D (i.e., t2, t5 and
t7), and thus, t9 is not a k-skyband of D. After other tuples are
processed, the set D′ of all k-skybands of D is {t1, . . . , t7}.

In the refinement step, the core idea is to select an anchor
from a set of candidate tuples (which is initially D′). Then,
a region (which is initially set to Ω) is decomposed into sub-
regions based on a “local” arrangement (i.e., an arrangement
bounded by this region) of a set of hyperplanes each of which
is a hyperplane between a competitor in the candidate set and
the anchor. This above process is recursively executed for all
sub-regions until we decompose the whole utility space Ω
into desired regions where the top-k set w.r.t. each region is
determined. Intuitively, by processing a region with an anchor,
we can prune many candidates for sub-regions inside this
region and reduce the number of hyperplanes to be processed.

The refinement step is recursively done via partitioning. Ini-
tially, the region we consider is the whole utility space Ω and
the candidate set, denoted by CΩ, is initialized to be the set D′

of all k-skybands of D. To perform partitioning, we choose a
tuple in CΩ, says tA, to be the anchor (the strategy of selecting
an anchors presented later). Our goal is to determine the rank
of the anchor among all tuples in CΩ. We then perform the
following steps to accomplish this goal. For the ease of under-
standing, we will explain each step using concrete examples.

Firstly, we find all competitors of anchor tA from CΩ, where
a tuple tC ∈ CΩ is a competitor of tA if neither tA is dominated
by tC nor tA dominates tC . Note that for a non-competitor
of tA, we already know whether it ranks higher/lower than
tA based on the dominance relation. Secondly, for each
competitor tC of tA, we create the hyperplane htC ,tA and
insert it into a set H which is initialized to an empty set.
We then compute the arrangement of all hyperplanes in H
bounded by Ω, denoted by A(H,Ω). Thirdly, for each cell of
A(H,Ω) (which is a region, say ρ), we find all the dominating
competitors of tA w.r.t. ρ where a competitor tC is said to
be a dominating competitor of tA w.r.t. ρ if ρ is completely
contained inside h+

tC ,tA . Intuitively, by the definition of h+
tC ,tA ,

fw(tC) > fw(tA) for any utility function w in ρ. In other
words, the rank of tC is higher than tA w.r.t. any utility
function w in ρ and thus, tC is a “dominating” competitor.

Example IV.2. Assume that we select t1 in D′ = {t1, . . . , t7}
to be the anchor. The competitors of t1 are t2, t3, t4, t5 and
t7 (but not t6 since t1 dominates t6). We insert 5 hyperplanes,
namely ht2,t1 , ht3,t1 , ht4,t1 , ht5,t1 and ht7,t1 , to H, which are
shown as line segments in Figure 2(a). For each hyperplane,

6

w1

w2

1

1

ρ1

ρ2

ρ3

ρ4 ρ5 ρ6 ρ7

ht2,t1
ht3,t1
ht4,t1
ht5,t1
ht7,t1

w1

w2

1

1

ρ8

ρ9

ht7,t4

(a) Initial Partitioning (b) Recursive Partitioning
Fig. 2: Examples of Partition

we also use the solid and hollow arrows to differentiate its two
halfspaces (e.g., the solid arrow for ht3,t1 represents h+

t3,t1).
Clearly, we form an arrangementA(H,Ω) with 7 cells, namely
regions ρ1, . . . , ρ7. Here, t3 is a dominating competitor of t1
w.r.t. ρ1, since ρ1 lies completely inside h+

t3,t1 . Similarly, we
can find the dominating competitors w.r.t. other regions.

Then, for a given region ρ, we can obtain the rank of tA
w.r.t. any w in ρ, denoted by k′. Intuitively, k′ is equal to 1 plus
the number of tuples that rank higher than tA w.r.t. w. Let C be
the set of tuples in CΩ dominating tA (and thus, they are non-
competitors) and Comp be the set of all dominating competitors
of tA w.r.t. ρ. Then, k′ is computed to be 1+|C|+|Comp|, since
only tuples in C ∪Comp rank higher than tA w.r.t. w. As a by-
product, this gives the top-k′ set w.r.t. ρ in CΩ: top-k′ρ(CΩ) =

{tA} ∪ C ∪ C
omp

, where the k′-th rank tuple is exactly tA.
Based on the relationship between k′ and k, we classify the

region ρ into 3 types, namely equal-to region, less-than region
and greater-than region, which are defined to be a region (re-
sulting from tA) in which the rank of tA w.r.t. any w in ρ (i.e.,
k′) is equal to k, less than k and greater than k, respectively.
• Equal-to region (i.e., k′ = k): If ρ is an equal-to region, the

top-k set w.r.t. ρ (i.e., top-k′ρ(CΩ)) is found, which is {tA}∪
C ∪ Comp. Thus, we do not need further processing for ρ.

• Less-than region (i.e., k′ < k): If ρ is a less-than region, the
top-k′ set w.r.t. ρ is found similarly. Moreover, since k′ < k,
we only need to know the remaining k− k′ tuples to return
the top-k sets. To achieve this, we recursively partition ρ in
a similar way as Ω, with the following modifications: (a)
the region now we consider is ρ rather than Ω (i.e., future
arrangement is bounded “locally” by ρ); (b) since the top-k′

w.r.t. ρ is found, we exclude them and form a new candidate
set Cρ, i.e., Cρ = CΩ \ ({tA}∪C ∪C

omp
); and (c) instead of

finding the top-k sets, we only need to find the top-(k− k′)
sets w.r.t. the utility functions in ρ in Cρ. Here, the number
k − k′ is called the rank quota for this partitioning.

• Greater-than region (i.e., k′ > k): If ρ is a greater-than re-
gion, we cannot find the top-k sets in ρ. However, we know
that tA and tuples ranked lower than tA cannot be in any top-
k set in ρ. Thus, we recursively partition ρ where the candi-
date set Cρ is set to be C∪Comp, with the same rank quota k.

Example IV.3. In Figure 2(a), ρ3 and ρ5 are two equal-to
regions, and their corresponding top-k sets are {t1, t2, t3}
and {t1, t2, t4}, respectively, which can be directly returned.

Region ρ1 is a less-than region with its top-2 set {t1, t3}
identified, where the rank of anchor t1 is k′ = 2. Then, ρ1

will be further processed with rank quota 1 (= 3 − 2) and
the candidate set Cρ1 = {t2, t4, t5, t6, t7}. Note that t1 and t3

are not in Cρ1 , since their ranks are already known. Our goal
becomes finding the top-1 set in Cρ1 . To do this, we select t2 to
be the new anchor, which dominates all other tuples in Cρ1 , in-
dicating that t2 is exactly the top-1 set w.r.t. ρ1 and ρ1 will not
be further partitioned. Combining {t2} with the previous top-2
set {t1, t3}, the final top-3 set returned for ρ1 is {t1, t2, t3}.

Region ρ7 is a greater-than region since the rank k′ of
anchor t1 is 5 > k(= 3), shown in shaded in Figure 2(b).
Thus, ρ7 is also recursively partitioned, with same rank quota
k = 3. The new candidate set Cρ7 is {t2, t4, t5, t7}, with 3
tuples excluded: (a) anchor t1 with rank k′ > k, (b) t6, which
is dominated by t1 and thus, ranks lower than t1, and (c) t3,
which has a lower rank than t1 since ρ7 lies in h−t3,t1 (i.e., t3
is not a dominating competitor t1 w.r.t. ρ7). Assume that we
select t4 as the new anchor for ρ7. Since t4 is dominated by t2
and t4 dominates t5, the only competitor of t4 is t7. We thus in-
sert ht7,t4 (shown as a blue line segment), resulting in two sub-
regions, namely ρ8 and ρ9. By the definition of ht7,t4 , ρ8 (resp.
ρ9) contains all functions w such that t7 ranks higher (resp.
lower) than t4 w.r.t. w. As a result, ρ8 is an equal-to region
with the top-3 set {t2, t4, t7}, while ρ9 is a less-than region
with the top-2 set {t2, t4} and it will be further partitioned.

For each recursive partitioning of region ρ, we need to
choose a new anchor from the candidate set Cρ. To avoid
the case where all sub-regions are less-than or greater-than
regions (i.e., all of them need further processing), we select an
anchor for each partitioning, so that there is at least one equal-
to region. Specifically, we randomly pick a utility function w
from ρ and find the top-k set w.r.t. w (i.e., top-kw(Cρ)). Then,
we pick the k-th rank tuple in top-kw(Cρ) as the new anchor.

Finally, the utility space Ω is partitioned into multiple
equal-to regions. For each region ρ, we obtain the (unique)
top-k set w.r.t. ρ, say top-kρ. All these top-k sets are returned.

Remark. We differ from [36] in the optimizations adopted
below. (1) After obtaining the competitors of an anchor tA for
a region ρ, only part of competitors are processed in [36]. In
contrast, we process all competitors, by creating a hyperplane
for each competitor. Thus, we can deduce the dominance
relationships between tA and all its competitors. This allows
us to apply our speedup technique (Section V-B) early. (2)
When conducting recursive partitioning for a sub-region ρ′

of region ρ, we consider not only the static relationships that
hold globally in the dataset, but also the dynamic relationships
(which varies for different sub-regions) deduced during pre-
vious partitioning, to reduce the candidates for consideration.
In [36], only static relationships are used. (3) We represent a
region ρ by its vertices (corner points) instead of its bounding
hyperplanes. Given a hyperplane h′, we determine the geo-
metric relationship between ρ and h′ efficiently by checking
which halfspace the vertices of ρ reside. In [36], [7], similar
checking is done by time-consuming linear programming.

C. Step 2 (α-fairness Computation)

For each feasible top-k set T obtained, we then compute its
α-fairness in D w.r.t. G and p (i.e., α-FNG,p(T |D)). Specifi-

7

cally, we find the group membership of each top-k tuple in T ,
and then we obtain the overall representation of G in T . The
α-fairness of T in D w.r.t. G and p is then computed according
to the α-Lp distance between RT (G) and PD(G). After com-
puting the α-fairness of each feasible top-k set, we can easily
obtain a set Tmax of top-k sets with the maximum α-fairness.

D. Step 3 (Best Utility Function Finding)

After obtaining the set Tmax of all top-k sets with maximum
α-fairness, we find the best function w∗ ∈ Ω with the
minimum modification penalty m(w∗, w0) from the given w0.

Recall that for each set T in Tmax, T = top-kρ where
ρ is a region in Ω. The problem is thus to find the nearest
utility function of w0 in ρ under the L2 distance, which can
be solved by Quadratic Programming (QP). Denote by wρ the
best utility function in region ρ, computed as follow.

wρ = arg min
w

m(w,w0)

s.t. (t′ − t) · w ≤ 0, ∀ht,t′ ∈ H+ (1)

(t′ − t) · w > 0, ∀ht,t′ ∈ H− (2)∑d

i=1
w[i] = 1 and 0 ≤ w[i] ≤ 1,∀i ∈ [1, d] (3)

where H+ (resp. H−) is the set of hyperplanes such that for
each ht,t′ ∈ H+ (resp.H−), ρ is bounded by ht,t′ and ρ lies in
h+
t,t′ (resp. h−t,t′). Here Constraints (1)-(2) ensure that w is in

targeted region ρ and Constraint (3) specifies the utility space
Ω. To solve this QP, we adopt the interior-point algorithm [39].

We solve the above QP for each top-k set in Tmax. Finally,
the best utility function w∗ with the minimum penalty is
returned and we obtain the optimal top-k set T ∗ = top-kw∗ .

V. FAST ALGORITHM

Although the basic implementation FairTQ-Exact adopts
an efficient approach to obtain all the top-k sets, it is possible
that there are still many top-k sets to process. In this section,
we propose a fast exact algorithm under the same framework.

Our intuition is as follows. In Step 1 of feasible top-k sets
enumeration (as introduced in Section IV-B), we may obtain
a less-than region ρ during partitioning. Although we do not
know the complete top-k set at this point for region ρ, we
have determined a subset of the top-k set T from any utility
function in ρ. With such subset, the α-fairness of T can be
upper-bounded, and we can terminate the processing for ρ if
ρ does not contain the fairest utility function based on this
upper bound. Similarly, for a greater-than region ρ, the top-k
set T of any utility function in ρ is selected from a smaller
candidate set (i.e., the candidate set is a super-set of T). Thus,
the α-fairness of T could also be upper-bounded.

In the following, we first formulate the upper bounds on the
α-fairness of the top-k sets from less-than/greater-than regions,
and then describe our fast algorithm utilizing these bounds.

A. Upper Bound of α-fairness

We first discuss the less-than regions, in which the resulting
top-k sets could have their α-fairness upper-bounded based on
a determined subset. Consider a top-k set T (= top-kw where

G1

G2

1

1
Θ

0

PD(G)

RT(G) G1

G21
Θ

0

PD(G)

k-sub-R(T’|G) 1

Rc

R’ G1

G21
Θ

0

PD(G)

k-sup-R(T’|G) 1
(a) (b) (c)

Fig. 3: Examples of (a) Proportion Space, (b) k-subset-
extended Region and (c) k-superset-extended Region
w lies in a less-than region). Let T ′ be the subset of T that
has been determined. We know the group membership of each
tuple in T ′. Although the remaining tuples in T \ T ′ are not
decided yet, the remaining number of tuples in each group is
at most k − |T ′|. Thus, for the “partially” determined top-k
set T (containing subset T ′), the representational proportion
of each group Gj (for j ∈ [1,m]) in T (i.e., RT (Gj)) satisfies

|T ′j |
k
≤ RT (Gj) ≤

|T ′j |+ k − |T ′|
k

. (1)

We then explore from a geometric perspective to form the
upper bound of the α-fairness of T . Recall that RT (G) and
PD(G) are two points inside the proportion space Θ in the
m-dimensional space. Equation 1 bounds a possible region
containing RT (G) in Θ. Specifically, we define the k-subset-
extended region of T ′ w.r.t. G, denoted by k-sub-R(T ′|G), to
be the region in Θ containing all m-dimensional points, whose
j-th value (for j ∈ [1,m]) is in [

|T ′j |
k ,
|T ′j |+k−|T

′|
k].

Consider the less-than region ρ2 in Figure 2(b) where k =
3. The top-2 set T ′ for this region is {t1, t3} as identified in
Example IV.3. For G = {Female, African-American}, it is
easy to find that |T ′1| = |T ′2| = 0. Thus, k-sub-R(T ′|G) is a
square region whose side length is 0.333 (both dimensions
range from 0 to 0.333), as shown dark gray in Figure 3(b).
In general, all k-subset-extended regions are m-dimensional
boxes and thus we call each k-sub-R(T ′|G) as a box region.

With the k-subset-extended region, we can obtain the upper
bound of the α-fairness of T , given that T has a subset T ′

determined. By the definition of α-fairness, finding the upper
bound of the α-fairness of T is equivalent to finding the lower
bound of the α-Lp distance between RT (G) and PD(G). Since
RT (G) is in k-sub-R(T ′|G), one may want to find the exact
α-Lp distance between PD(G) and a point in k-sub-R(T ′|G).
This, however, is costly, especially for α > 0 and arbitrary p.

In the following, we propose an efficient way to find an
approximate lower bound of α-Lp〈RT (G), PD(G)〉. We first
connect the α-Lp distance and the Lp distance as follows.

Lemma V.1. Give a top-k set T of D,

α-Lp〈RT (G), PD(G)〉 ≥ Lp〈RT (G), PD(G)〉 −m1/p · α.
By Lemma V.1, to approximate the lower bound of the

α-Lp distance, it suffices to compute a lower bound on the
Lp distance. To do this, we leverage the triangle inequality
of the Lp distance (for p ≥ 1) [40]. We first choose the
center point of the box in k-sub-R(T ′|G), says Rc. By triangle
inequality, the Lp distance between PD(G) and any point
R′ in k-sub-R(T ′|G) is lower bounded by the difference

8

between Lp〈Rc, PD(G)〉 and Lp〈R′, Rc〉, i.e., Lp〈R′, PD(G)〉
≥ Lp〈Rc, PD(G)〉 − Lp〈R′, Rc〉 (see Figure 2(b) for an
example of Euclidean distance (i.e., p = 2)), where Lp〈R′, Rc〉
can be upper bounded by half the diagonal distance of the box,
i.e., Lp〈R′, Rc〉 ≤ m1/p · k−|T

′|
2k (see details in [37]).

Putting these together, we have α-Lp〈RT (G), PD(G)〉 ≥
Lp〈Rc, PD(G)〉 − m1/p · k−|T

′|
2k − m1/p · α and the subset-

extended upper bound of a less-than region ρ with a subset
T ′ determined, denoted by sub-UB(ρ, T ′), is defined to be

1− 1

m1/p
·max{0, Lp〈Rc, PD(G)〉)−m1/p·k − |T

′|
2k

−m1/p·α}.

Clearly, given any top-k set T that has a subset T ′ deter-
mined, the α-fairness of T is at most sub-UB(ρ, T ′).

We can also form the similar upper bounds for greater-
than regions, which are based on the super-set determined.
Consider a top-k set T (= top-kw where w lies in a greater-
than region). With a slight abuse of notation, also denote T ′

by the super-set of T that has been determined. Although it
is unclear which k tuples in T ′ are eventually selected into
T , the number of tuples in T with group membership Gj
is at most |T ′j |, i.e., |Tj | ≤ |T ′j |. Thus, the (representational)

proportion of each group Gj in T is at least 0 and at most
|T ′j |
k .

Similarly, the region containing RT (G) in the proportion
space Θ can be bounded. We define the k-superset-extended
region of T ′ w.r.t. G, denoted by k-sup-R(T ′|G), to be the
region in the proportion space Θ containing all m-dimensional
points, whose j-th value (for j ∈ [1,m]) is in [0,min{1, |T

′
j |
k }],

where the minimum ensures that k-sup-R(T ′|G) is inside Θ.
Consider the greater-than region ρ7 in Figure 2(b). As

discussed in Example IV.3, the determined super-set T ′ =
{t2, t4, t5, t7}, and thus |T ′1| = 1 for group Female and |T ′2| =
2 for group African-American. The region k-sup-R(T ′|G)
has ranges [0, 0.333] and [0, 0.667] for the two dimensions,
respectively, as also shown in dark gray in Figure 3(c).

Below we present the lower bound of α-Lp〈RT (G),
PD(G)〉 for a top-k set T that has a super-set T ′ determined,
based similarly on triangle inequality and the α-relationship.

Lemma V.2. Given a top-k set T of D and its super-set T ′,

α-Lp〈RT (G), PD(G)〉 ≥ Lp〈Rc, PD(G)〉−Lp〈Rc, Ro〉−m
1
p ·α.

where Rc is the center of k-sup-R(T ′|G), Ro is origin of Θ.

Slightly different from the less-than regions, there is a term
Lp〈Rc, Ro〉 in Lemma V.2. This is because the maximum Lp
distance between Rc and a point in k-sup-R(T ′|G) is also
bounded by half the diagonal distance of the box, which now
is exactly Lp〈Rc, Ro〉 since Ro is a vertex of the box.

Based on Lemma V.2, we define the superset-extended
upper bound of a greater-than region ρ with a super-set T ′

determined, denoted by sup-UB(ρ, T ′), to be

1− 1

m1/p
·max{0, Lp〈Rc, PD(G)〉−Lp〈Rc, Ro〉−m1/p ·α}.

For any w in a greater-than region ρ, the α-fairness of top-kw
is at most sup-UB(ρ, T ′). Note that the upper bounds in both
greater/less-than regions could be computed in O(m) time.

B. Fast Algorithm with BnB

In this section, we leverage the upper bounds formed in pre-
vious section and propose a fast algorithm based on the same
framework as FairTQ-Exact. It follows the idea of branch-
and-bound [41], and thus we call it FairTQ-Exact-BnB.

The main difference of FairTQ-Exact-BnB compared to
basic implementation FairTQ-Exact is that it applies effective
speedup techniques, by combining Step 2 (top-k set enumera-
tion) with Step 3 (α-fairness computation), so as to terminate
the processing for more regions than just equal-to regions.

In FairTQ-Exact-BnB, we maintain the currently best
α-fairness, denoted by F ∗, and terminate the processing for a
greater/less-than region if it cannot contain a utility function
w.r.t. which the top-k set has higher α-fairness than F ∗. To
achieve that, we maintain greater-than and less-than regions
with an efficient structure. We adopt the priority queue in our
implementation so as to support the best-first search strategy.

We present the details of FairTQ-Exact-BnB. Firstly, we
follow the same filtering step to obtain a subset D′ of candidate
top-k tuples. Then, we maintain the following structures: (1)
the current best α-fairness F ∗ (initialized to∞), (2) the current
best utility function w∗ (whose fairness is F ∗) with the small-
est modification penalty, and (3) a priority queue Q of regions
(initialized to an empty queue). Each region ρ in Q is associ-
ated with (a) a fairness upper bound Uρ, (b) a rank quota r, (c)
a candidate set Cρ, and (d) a top-(k−r) set Tρ w.r.t. ρ. In other
words, we only need to determine the remaining r tuples for ρ,
to decide the desired top-k sets. Here part (a) is computed in
Section V-A and parts (b)(c)(d) are computed as in Section IV.

For the refinement step, we first add the utility space Ω into
Q. Initially, we set UΩ = 1, r = k, CΩ = D′ and TΩ = ∅.
Then we repeat the following sub-steps until Q is empty:
(1) We first pop a region, says ρ, that has the best (i.e., largest)
fairness upper bound Uρ from the priority queue Q.
(2) We choose an anchor, says tA, from Cρ. According to tA,
we split region ρ into a set of sub-regions. This step follows
the same procedure as FairTQ-Exact in Section IV.
(3) For each sub-region, says ρ′, we process it by its types.
• If ρ′ is an equal-to region, we have determined the exact

top-k set w.r.t. ρ′, says T . Then, we compute the α-fairness
of T (i.e., α-FNG,p(T |D)). There are three cases: (a) If the
α-fairness of T is larger than the current best F ∗, we update
F ∗ and compute w∗ accordingly. (b) If the α-fairness of T
is equal to F ∗, we find the best utility function in ρ′ and
update w∗ if it incurs smaller penalty. (c) If the α-fairness
of T is less than F ∗, we do not make any updates.

• If ρ′ is a less-than or greater-than region, we compute the
upper bound of α-fairness of any top-k set T w.r.t. a utility
function in this region (Section V-A). Specifically, for a
less-than (resp. greater-than) region ρ′, we can find a subset
(resp. super-set) of the top-k set, says T ′, with which we
can compute the subset-extended (resp. superset-extended)
upper bound of ρ′. If this upper bound is smaller than the
current best α-fairness F ∗, we terminate the processing for
ρ′; otherwise, we add ρ′ into queue Q for further processing.

9

Correctness. The following theorem proves our correctness.

Theorem V.1 (Correctness). Given a dataset D, a real number
α, a positive integer k, a list G of group memberships, a
real number p and a utility function w0, both FairTQ-Exact
and FairTQ-Exact-BnB return the utility function w∗ such
that α-FNG,p(top-kw∗ |D), is maximized and meanwhile,
m(w∗, w0) is minimized under the maximized α-fairness.

VI. EXPERIMENT

We conducted extensive experiments1 on synthetic and
real datasets to evaluate our effectiveness and efficiency on a
Linux PC with a 2.66 GHz CPU and 48 GB main memory.
Datasets. We used 3 real datasets, XING, COMPAS, and DOT,
and 2 synthetic datasets, Independent and Anti-correlated.

XING [4] has 2,280 user profiles in a job finding web-
site [42]. We used two indicators work experience and edu-
cation experience as scoring attributes and gender as the pro-
tected attribute to prevent unfair treatment of women in hiring.

COMPAS [43] has the criminal offense information of 6,889
individuals for finding those are likely to recidivate. We set
race as one protected attribute to prevent discrimination to
African-Americans. To test multiple (and intersectional) pro-
tected attributes, we set gender as another protected attribute.
We consider three groups, namely African-Americans, males
and African-American males, using three scoring attributes,
namely c days from compas, juv other count and start [7].

DOT [44] is a flight on-time dataset with over 1M flights
conducted by 12 US carriers in the first three months of 2016.
Following [7], we set op unique carrier as the protected at-
tribute (with 12 groups each corresponding to a carrier) and set
three scoring attributes to be dep delay, taxi in and arr delay.

For synthetic datasets, attribute values in Independent are
generated independently, while in Anti-correlated, tuples with
a large value in one attribute tend to have small values on other
attributes. The protected attribute is randomly generated.

For each dataset, we normalized the values of each scoring
attribute into range [0, 1] via the min-max normalization.
Baselines. We compared FairTQ-Exact and FairTQ-Exact-
BnB with four baselines: (1) SR-Adapt: We adapted SATRE-
GIONS in [7] using their approach of handling hyperplanes
to get the exact fairest top-k set. (2) Greedy: We adapted the
idea of [15], which iteratively selects a tuple t from D such
that t is not dominated by any remaining tuples in D (thus,
no ranking violation) and meanwhile, t belongs to the group
that contributes the least in the top-k set. A utility function
with minimum penalty can be returned from a region, by
intersecting the halfspaces formed by the top-k tuples (if any).
(3) Prop, which preserves the proportion of each group in the
top-k set, by first sorting tuples by their utilities w.r.t. w0 and
then forming the top-k set by selecting the top ki tuples from
the i-th group where ki/k equals the populational proportion
of the i-th group. (4) FA*IR: The original algorithm of [4].
Algorithm FA*IR was implemented in Python (using its orig-
inal implementation) and others were implemented in C++.

1Code available at: https://github.com/satansin/FairTQ

Note that we implemented FairTQ-Exact, FairTQ-Exact-
BnB and SR-Adapt with a simple trick (see details in [37]).
Since the fairness is bounded by 1, if we find a utility function
w with the maximum fairness (i.e., 1), its penalty is an upper
bound of the optimal penalty. All regions (regardless of types)
that do not contain any utility function with penalty smaller
than that of w are pruned, without computing its exact fairness.

Parameter Settings. We studied the following parameters: (1)
the dimensionality d (i.e., the number of scoring attributes), (2)
the dataset size |D|, (3) the number of groups m(= |G|), (4)
the parameter k in the top-k query, (5) the fairness parameter
α and (6) the parameter p in the α-Lp distance formation.

Our parameter settings mainly follow [7]. In real datasets,
we used the original dataset by default. In synthetic datasets,
d = 3, |D| = 100k and m = 2 by default. The default values
of k, α and p are 10, 0.1 and 2, respectively, for all datasets.

Measurements. We adopted four measurements: (1) the re-
sponse time, (2) the α-fairness, (3) the penalty of the returned
utility function from w0, (4) violation count: the sum of
ranking violations occurred within the top-k set and between
the top-k tuples and the remaining tuples (see Section II). We
ran each experiment 10 times, with 10 random utility functions
w0, and report the average here. For the lack of space, we only
report the results on some datasets; other results are consistent.

A. Results on Real Datasets

Effect of α. We first studied the effect of parameter α in
our fairness model on fairness and modification penalty, by
varying it from 0 to 0.2 on dataset XING; Greedy, FA*IR
and Prop are excluded since they do not rely on α. Note
that the α-fairness under different α values cannot be directly
compared. We picked a reference value α0 and compared the
α0-fairness of the returned top-k sets, where we set α0 to be
0.1. Figure 4(a) give the results (note that all exact algorithms
give the same results). It could be seen that when α increases,
the returned set is less fair (since the α0-fairness decreases),
while the returned utility function has smaller modification
penalty. This verifies the effect of parameter α to achieve the
trade-off between fairness and modification penalty.

We showcase a typical case study of this result. In dataset
XING, the populational proportions of males and females are
26.4% and 73.6%, respectively, and k is set to 23 (i.e., 1%|D|).
Consider the input utility function w0 = (0.32, 0.68). When
α = 0 (the strictest fairness measurement), the returned utility
function w is (0.45, 0.55), leading to a top-k set T with 17
males and 6 females (with representational proportions 26.1%
and 73.9%, respectively). Although T is nearly perfectly fair,
w deviates much from w0. When α = 0.1 instead, the returned
function becomes (0.34, 0.66), much closer to w0, while the
returned set has 16 males and 7 females (with representational
proportions 30.4% and 69.6%, respectively), which is still fair.

Moreover, Figure 4(b) shows that when α increases, all
algorithms run faster. Since larger α indicates a less strict fair-
ness measurement, more top-k sets could reach the maximum
fairness (i.e., 1), triggering the implementation trick. In this

10

α-Fairness Penalty FairTQ-Exact FairTQ-Exact-BnB SR-Adapt

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2
 0

 0.2

 0.4

 0.6

 0.8
α

0
-F

a
ir
n

e
s
s

P
e

n
a

lt
y

α

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.05 0.1 0.15 0.2

R
e
s
p
o
n
s
e
 T

im
e
 (

s
)

α

 0.6

 0.8

 1

 1 2 3 4 5
 0.6

 0.7

 0.8

α
-F

a
ir
n

e
s
s

P
e

n
a

lt
y

p

(a) (b) (c)
Fig. 4: Effect of α, p on XING

10
-1

10
1

10
3

10
2

10
3

10
4

10
5

FairTQ-Exact
FairTQ-Exact-BnB

SR-Adapt

P
ro

c
e
s
s
in

g
 T

im
e
 (

s
)

Hyperplanes Processed

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4

FairTQ-Exact
SR-β-Constraint

FairTQ-Exact-KL

α
0
-F

a
ir
n
e
s
s

α or β

(a) (b)
Fig. 5: # Hyperplanes & Fairness on COMPAS

FairTQ-Exact FairTQ-Exact-BnB SR-Adapt Greedy FA*IR Prop

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1k 2k 3k 4k 5k

α
-F

a
ir
n

e
s
s

Size of Dataset

10
-3

10
-1

10
1

10
3

1k 2k 3k 4k 5k

R
e

s
p

o
n

s
e

 T
im

e
 (

s
)

Size of Dataset

(a) (b)
Fig. 6: Effect of |D| on COMPAS

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50

α
-F

a
ir
n

e
s
s

k

 0.4

 0.5

 0.6

 0.7

 0.8

 10 20 30 40 50

P
e

n
a

lt
y

k

10
-1

10
1

10
3

 10 20 30 40 50

R
e

s
p

o
n

s
e

 T
im

e
 (

s
)

k

(a) (b) (c)
Fig. 7: Effect of k on COMPAS

FairTQ-Exact
FairTQ-Exact-BnB

SR-Adapt
Greedy

FA*IR
Prop

 0

 30

 60

 90

 120

10k 50k 100k 500k 1M

V
io

la
ti
o

n
 C

o
u

n
t

Size of Dataset

10
-3

10
-1

10
1

10
3

10k 50k 100k 500k 1M

R
e

s
p

o
n

s
e

 T
im

e
 (

s
)

Size of Dataset

(a) (b)
Fig. 8: Effect of |D| on DOT

case, many regions are pruned without computing the exact
fairness, leading to shorter time. Given many regions with the
maximum fairness, the current best utility function is close to
w0, leading to a tight penalty bound and more regions pruned.

Effect of p in α-Lp distance. We also studied the effect of
parameter p (Greedy, FA*IR and Prop are also excluded since
they do not rely on p). Apart from the most commonly used p
values of 1 and 2, we also tested some other values (note that
p ≥ 1). For a consistent comparison, we picked a reference
value p0 and compared the α-fairness under the α-Lp0 distance
for different settings of p. Here, we set p0 = 2. As shown in
Figure 4(c), when p increases, the fairness of the returned re-
sult slightly decreases, which indicates that setting p = 1 leads
to the strictest α-fairness measurement, while the response
time is almost indifferent to the values of p (not shown).

Effectiveness of the fairness model. We studied the effec-
tiveness of our problem setting that returns the fairest top-k
set under our fairness model (i.e., α-fairness using the Lp dis-
tance). For comparison, we consider two additional baselines.
The first baseline is the original SATREGIONS that aims to
satisfy a fairness constraint. We set this constraint using our
fairness model as the criterion, i.e., the α-fairness of the top-k
set must be at least a threshold (1 − β) (so that smaller β
indicates a stricter constraint, consistent with our parameter
α). We denote this baseline as SR-β-Constraint. The second
baseline is to replace the Lp distance in our fairness model
with the KL-divergence, denoted by FairTQ-Exact-KL.

As shown in Figure 5(b), we varied α/β from 0 to 0.4 on
dataset COMPAS and compared the α0-fairness (α0 = 0.1).
Note that FairTQ-Exact-KL does not rely on α/β, and it

has weaker fairness due to the intersectional and incomplete
groups on this dataset. For SR-β-Constraint, when the con-
straint is set the strictest (i.e., β = 0), there is no top-k set in
the dataset satisfying this constraint, and thus there is no out-
put, while if the constraint is set too loose (i.e., β > 0.3), the
returned result is unfair (i.e., the α0-fairness lower than 0.6). In
contrast, FairTQ-Exact consistently has the highest fairness.

Effect of |D|. We studied the effect of dataset size |D| by
randomly selecting a subset of 1k to 5k tuples (resp. 10k to
1M tuples) from dataset COMPAS (resp. DOT) in Figure 6
(resp. Figure 8). As shown in Figures 6(b) and 8(b), when |D|
increases, the response time for all algorithms increases, as
expected. Nevertheless, FairTQ-Exact and FairTQ-Exact-
BnB outperform the exact baseline SR-Adapt by 1-2 orders
of magnitude. Due to the effective branch-and-bound pruning,
FairTQ-Exact-BnB further shortens the response time by
around 40-50% compared with FairTQ-Exact on large
datasets. However, on small datasets (e.g., 1k-2k tuples from
COMPAS), FairTQ-Exact is slightly faster than FairTQ-
Exact-BnB, which indicates that when the hyperplanes to be
processed are not too many, FairTQ-Exact is still efficient.
Although baseline Greedy has shorter response time than our
algorithms, the top-k sets it returns are poor in fairness (e.g.,
around 0.6 in Figure 6(a)). Baseline FA*IR and Prop are also
fast, but they incur ranking violations in Figure 8(a). In other
words, FA*IR and Prop do not return a valid utility function
(even though Prop always gives the theoretically highest
fairness since it directly forms the top-k according to the
populational proportion of each group), and their response time
does not include the time for finding such utility function.
Finally, we observe that the α-fairness of all algorithms
slightly decreases when |D| increases. This is because that in
real datasets, the data distribution is imbalanced. Some tuples
that have high attribute values will always be included in the
result, even there are more candidate tuples to be selected,
leading to discrimination to other tuples and smaller fairness.

More closely, we show how our algorithms outperform the
most relevant baseline SR-Adapt. In Figure 5(a), we report
the accumulated processing time under different numbers of

11

FairTQ-Exact FairTQ-Exact-BnB SR-Adapt Greedy FA*IR Prop

10
-3

10
-1

10
1

10
3

10k 50k 100k 500k 1M

R
e

s
p

o
n

s
e

 T
im

e
 (

s
)

Size of Dataset

10
-3

10
-1

10
1

10
3

 2 3 4 5

R
e

s
p

o
n

s
e

 T
im

e
 (

s
)

d

(a) (b)
Fig. 9: Effect of |D| and d on Independent

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4 5

α
-F

a
ir
n

e
s
s

m

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 2 3 4 5

P
e

n
a

lt
y

m

10
-3

10
-1

10
1

10
3

 2 3 4 5

R
e

s
p

o
n

s
e

 T
im

e
 (

s
)

m

(a) (b) (c)
Fig. 10: Effect of m on Anti-correlated

hyperplanes processed. As shown there, FairTQ-Exact and
FairTQ-Exact-BnB not only process fewer hyperplanes than
SR-Adapt (e.g., < 104 hyperplanes for FairTQ-Exact), due
to our efficient top-k set enumeration, their average processing
time of each hyperplane (i.e., the accumulated time divided
by the number of hyperplanes) is also shorter. This is because
we check the geometric relationship between hyperplanes and
regions efficiently, without using the expensive linear program-
ming as in SR-Adapt. Although FairTQ-Exact-BnB takes
extra time of computing fairness bounds, it can prune more hy-
perplanes than FairTQ-Exact and thus, has the best efficiency.
Effect of k. When k is varied from 10 to 50 on dataset COM-
PAS, the response time of all algorithms increases, as shown
in Figure 7(c). Similarly, FairTQ-Exact-BnB is 10-100 times
faster than the exact baseline SR-Adapt, and outperforms
FairTQ-Exact by 40% on large k values. Moreover, as shown
in Figures 7(a) and (b), when k increases, it is also harder to
achieve larger fairness in a given dataset, and thus, the fairness
of returned results is smaller and fewer candidate sets can
achieve the best fairness, leading the increased modification
penalty to get the fairest top-k set. Nevertheless, baseline
Greedy has large penalty and poor fairness although its re-
sponse time is small, and the fastest baselines FA*IR and Prop
do not return a valid utility function due to ranking violation.
Case Studies of Fairness. Setting G as {African-American,
Male,African-American male}, dataset COMPAS has overall
population PD(G) = (0.34, 0.72, 0.21). Our exact algorithm
finds the fairest top-k set T with overall population RT (G) =
(0.3, 0.7, 0.2), which is close to PD(G) and thus fair to
all groups. Baseline Greedy returns a top-k set T ′ with
RT (G) = (0.8, 0.7, 0.6), indicating its insufficiency of achiev-
ing fairness. Baseline FA*IR returns a top-k set where 90%
of them are non-African Americans, since FA*IR controls the
fairness by adding more non-African Americans into the top-
k set. This, however, creates obvious discrimination to other
races (since they are identified as the individuals who are likely
to recidivate) while the African Americans are protected.

B. Results on Synthetic Datasets
Effect of |D| and d. We also tested the effect of |D| for the re-
sponse time in synthetic dataset Independent, varying |D| from
10k to 1M. As shown in Figure 9(a), the time efficiency of our
algorithms are consistently superior as before. In particular, we
are around 100 times faster than SR-Adapt. On the largest
dataset of 1M tuples, FairTQ-Exact-BnB returns an exact
result reasonably in 210s, while SR-Adapt cannot process
more than 100k tuples in reasonable time (i.e., < 1000s).

We tested the effect of d in Figure 9(b). Due to the nature
of computational geometry, the complexity of our problem
rises with larger d, and all algorithms are slower. Nonetheless,
FairTQ-Exact runs in more practical time than SR-Adapt
(which fails to handle more than 3 scoring attributes in 1000s).
Effect of m. We varied the number of groups (i.e., m) from 2
to 5 in Figure 10 on dataset Anti-correlated. Since more groups
lead to a harder condition of fairness, the α-fairness tends to
decrease (Figure 10(a)), while the penalty increases slightly
(Figure 10(b)), consistent as previous results. The harder
condition also makes us more difficult to find a top-k set with
the optimal fairness. Thus, the response time slightly increases
(Figure 10(c)). Still, our algorithms (esp. FairTQ-Exact-BnB)
is consistently faster than SR-Adapt and scales well w.r.t. m.

C. Summary
The experiments on real and synthetic datasets demonstrated

the superiority of our algorithms. Specifically, our exact al-
gorithms (which guarantees to return the fairest top-k set)
achieves one to two orders of magnitude shorter response time
compared with the exact baseline. When the dataset size scales
to 1M, our algorithms have reasonable response time (i.e.,
around 210s), while the response time of the exact baseline
is unacceptable (e.g., > 1000s). With our case study, we also
demonstrate the effectiveness of our fairness model, which
strikes a balance between fairness and modification penalty.

VII. CONCLUSION

In this paper, we design a fairness model called α-fairness to
measure the fairness of top-k results, and propose a framework
to find a fair utility function. We propose two algorithms under
this framework with speedup techniques to improve efficiency.
We conducted experiments on real and synthetic datasets to
demonstrate the effectiveness and efficiency of our algorithms.

As for future research, we would extend our fairness prob-
lem to different scenarios. For example, we could consider
relative ranking among tuples into our fairness model. We
could also explore other fairness measurements (e.g., some
KL-divergence variants) to handle unknown protected groups.

ACKNOWLEDGMENT

Dr. Min Xie is supported in part by China NSFC 62202313,
Guangdong Basic and Applied Basic Research Foundation
2022A1515010120. Dr. Bo Tang was partially supported
by Shenzhen Fundamental Research Program (Grant No.
20220815112848002). He is also affiliated with the Research
Institute of Trustworthy Autonomous Systems, Southern
University of Science and Technology, Shenzhen, China.

12

REFERENCES

[1] M. Goncalves and M.-E. Vidal, “Top-k skyline: A unified approach,”
in OTM Confederated International Conferences” On the Move to
Meaningful Internet Systems”. Springer, 2005, pp. 790–799.

[2] J. Lee, G.-w. You, and S.-w. Hwang, “Personalized top-k skyline queries
in high-dimensional space,” Information Systems, vol. 34, no. 1, pp. 45–
61, 2009.

[3] W. Wang, R. C.-W. Wong, and M. Xie, “Interactive search for one
of the top-k,” in Proceedings of the 2021 International Conference on
Management of Data, 2021, pp. 1920–1932.

[4] M. Zehlike, F. Bonchi, C. Castillo, S. Hajian, M. Megahed, and
R. Baeza-Yates, “Fa* ir: A fair top-k ranking algorithm,” in Proceed-
ings of the 2017 ACM on Conference on Information and Knowledge
Management, 2017, pp. 1569–1578.

[5] “Data usa: Massachusetts institute of technology,” 2023.
[Online]. Available: https://datausa.io/profile/university/massachusetts-
institute-of-technology#admissions

[6] S. N. Bleich, M. G. Findling, L. S. Casey, R. J. Blendon, J. M. Benson,
G. K. SteelFisher, J. M. Sayde, and C. Miller, “Discrimination in the
united states: experiences of black americans,” Health services research,
vol. 54, pp. 1399–1408, 2019.

[7] A. Asudeh, H. Jagadish, J. Stoyanovich, and G. Das, “Designing fair
ranking schemes,” in Proceedings of the 2019 international conference
on management of data, 2019, pp. 1259–1276.

[8] M. Zehlike, K. Yang, and J. Stoyanovich, “Fairness in ranking, part i:
Score-based ranking,” ACM Computing Surveys, vol. 55, no. 6, pp. 1–36,
2022.

[9] P. Jacobs, “Legacy admissions policies were originally created to keep
jewish students out of elite colleges,” Business Insider, 2013.

[10] J. Karabel, The chosen: The hidden history of admission and exclusion
at Harvard, Yale, and Princeton. Houghton Mifflin Harcourt, 2005.

[11] Y. Hong, J. Vaidya, and H. Lu, “Search engine query clustering using
top-k search results,” in 2011 IEEE/WIC/ACM International Conferences
on Web Intelligence and Intelligent Agent Technology, vol. 1. IEEE,
2011, pp. 112–119.

[12] S. Niu, J. Guo, Y. Lan, and X. Cheng, “Top-k learning to rank: labeling,
ranking and evaluation,” in Proceedings of the 35th international ACM
SIGIR conference on Research and development in information retrieval,
2012, pp. 751–760.

[13] M. Hardt, E. Price, and N. Srebro, “Equality of opportunity in supervised
learning,” Advances in neural information processing systems, vol. 29,
2016.

[14] R. Courtland, “Bias detectives: the researchers striving to make algo-
rithms fair,” Nature, vol. 558, pp. 357–360, 2018.

[15] L. E. Celis, D. Straszak, and N. K. Vishnoi, “Ranking with fairness
constraints,” arXiv preprint arXiv:1704.06840, 2017.

[16] K. Yang and J. Stoyanovich, “Measuring fairness in ranked outputs,”
in Proceedings of the 29th international conference on scientific and
statistical database management, 2017, pp. 1–6.

[17] S. C. Geyik, S. Ambler, and K. Kenthapadi, “Fairness-aware ranking in
search & recommendation systems with application to linkedin talent
search,” in Proceedings of the 25th acm sigkdd international conference
on knowledge discovery & data mining, 2019, pp. 2221–2231.

[18] K. Cachel, E. Rundensteiner, and L. Harrison, “Mani-rank: Multiple
attribute and intersectional group fairness for consensus ranking,” in
2022 IEEE 38th International Conference on Data Engineering (ICDE),
2022, pp. 1124–1137.

[19] M. Hardt, E. Price, and N. Srebro, “Equality of opportunity in supervised
learning,” Advances in neural information processing systems, vol. 29,
2016.

[20] F. Kamiran and T. Calders, “Data preprocessing techniques for classifi-
cation without discrimination,” in Knowledge and Information Systems,
vol. 33, 2011, pp. 1–33.

[21] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel, “Fairness
through awareness,” in Proceedings of the 3rd innovations in theoretical
computer science conference, 2012, pp. 214–226.

[22] A. Fabris, G. Silvello, G. A. Susto, and A. J. Biega, “Pairwise fairness
in ranking as a dissatisfaction measure,” in Proceedings of the Sixteenth

ACM International Conference on Web Search and Data Mining, 2023,
pp. 931–939.

[23] D. Garcı́a-Soriano and F. Bonchi, “Maxmin-fair ranking: individual
fairness under group-fairness constraints,” in Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
2021, pp. 436–446.

[24] A. Singh and T. Joachims, “Fairness of exposure in rankings,” in
Proceedings of the 24th ACM SIGKDD international conference on
knowledge discovery & data mining, 2018, pp. 2219–2228.

[25] K. Yang, V. Gkatzelis, and J. Stoyanovich, “Balanced ranking with
diversity constraints,” arXiv preprint arXiv:1906.01747, 2019.

[26] J. Li, Y. Moskovitch, and H. Jagadish, “Detection of groups with biased
representation in ranking,” in 2023 IEEE 39th International Conference
on Data Engineering (ICDE), 2023, pp. 2167–2179.

[27] A. Singh and T. Joachims, “Policy learning for fairness in ranking,”
Advances in neural information processing systems, vol. 32, 2019.

[28] B. Salimi, L. Rodriguez, B. Howe, and D. Suciu, “Interventional
fairness: Causal database repair for algorithmic fairness,” in Proceedings
of the 2019 International Conference on Management of Data, 2019, pp.
793–810.

[29] P. Lahoti, K. P. Gummadi, and G. Weikum, “Operationalizing in-
dividual fairness with pairwise fair representations,” arXiv preprint
arXiv:1907.01439, 2019.

[30] C. Karako and P. Manggala, “Using image fairness representations in
diversity-based re-ranking for recommendations,” in Adjunct Publication
of the 26th Conference on User Modeling, Adaptation and Personaliza-
tion, 2018, pp. 23–28.

[31] E. Chzhen, C. Denis, M. Hebiri, L. Oneto, and M. Pontil, “Leveraging
labeled and unlabeled data for consistent fair binary classification,”
Advances in Neural Information Processing Systems, vol. 32, 2019.

[32] A. Cotter, M. Gupta, H. Jiang, N. Srebro, K. Sridharan, S. Wang,
B. Woodworth, and S. You, “Training well-generalizing classifiers for
fairness metrics and other data-dependent constraints,” in International
Conference on Machine Learning. PMLR, 2019, pp. 1397–1405.

[33] J. Zheng, Y. Ma, W. Ma, Y. Wang, and X. Wang, “Happiness maxi-
mizing sets under group fairness constraints,” Proceedings of the VLDB
Endowment, vol. 16, no. 2, pp. 291–303, 2022.

[34] M. M. Islam, D. Wei, B. Schieber, and S. B. Roy, “Satisfying complex
top-k fairness constraints by preference substitutions,” Proceedings of
the VLDB Endowment, vol. 16, no. 2, pp. 317–329, 2022.

[35] J. Lee, G.-w. You, and S.-w. Hwang, “Personalized top-k skyline queries
in high-dimensional space,” Information Systems, vol. 34, pp. 45–61,
2009.

[36] K. Mouratidis and B. Tang, “Exact processing of uncertain top-k queries
in multi-criteria settings,” Proceedings of the VLDB Endowment, vol. 11,
no. 8, pp. 866–879, 2018.

[37] A. Author(s), “Fair top-k query on alpha-fairness (technical report),”
2023. [Online]. Available: https://github.com/satansin/FairTQ/FairTopK-
TechnicalReport.pdf

[38] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive skyline com-
putation in database systems,” ACM Transactions on Database Systems
(TODS), vol. 30, no. 1, pp. 41–82, 2005.

[39] R. D. Monteiro and I. Adler, “Interior path following primal-dual
algorithms. part ii: Convex quadratic programming,” Mathematical Pro-
gramming, vol. 44, no. 1-3, pp. 43–66, 1989.

[40] M. A. Khamsi and W. A. Kirk, An introduction to metric spaces and
fixed point theory. John Wiley & Sons, 2011.

[41] J. Clausen, “Branch and bound algorithms-principles and examples,”
Department of Computer Science, University of Copenhagen, pp. 1–30,
1999.

[42] “Find the right job for you,” 2023. [Online]. Available:
https://www.xing.com/

[43] J. Angwin, J. Larson, S. Mattu, and L. Kirchner. (2023)
Machine bias: Risk assessments in criminal sentencing. ProPublica.
[Online]. Available: https://www.propublica.org/article/machine-bias-
risk-assessments-in-criminal-sentencing

[44] U. S. D. of Transportation. (2023) Bu-
reau of transportation statistics. [Online]. Avail-
able: https://www.transtats.bts.gov/Tables.asp?QO VQ=EFD&QO

anzr=Nv4yv0r%20b0-gvzr%20cr4s14zn0pr%20Qn6n0

13

