
Interactive Learning for Diverse Top-k Set
Weicheng Wang1, Raymond Chi-Wing Wong1, Jinyang Li2, H.V. Jagadish2

1Hong Kong University of Science and Technology 2University of Michigan
wwangby@connect.ust.hk raywong@cse.ust.hk jinyli@umich.edu jag@umich.edu

Abstract—The top-k query is a representative multi-criteria
decision-making operator that assists users in finding the best k
tuples based on their criteria. However, it has certain limitations
in the query process and the final output. First, the query process
requires users to specify their criteria explicitly and accurately
in advance, which may be difficult for some users. Second, the
final output often lacks diversity, which potentially leads to user
dissatisfaction. To address these limitations, in this paper, we
propose an enhanced top-k query by incorporating an interactive
learning framework and a diversity mechanism, expecting to
return a diverse output that aligns with the user’s criterion, even
if the criterion is not specified in advance.

We study our problem progressively. Initially, we examine a
special case where tuples are described by two scoring attributes.
We present the TDIA algorithm that is asymptotically optimal
regarding the user effort needed for interaction. Then, we move
on to the general case where tuples are described by multiple
scoring attributes. We propose the HDIA algorithm which is
asymptotically optimal w.r.t. the number of questions asked in
expectation. Experiments were conducted on synthetic and real
datasets. The results show that our algorithms can return a
diverse output while requiring less user effort than existing ones.

Index Terms—top-k query, interactive query, diversity

I. INTRODUCTION

One major task of database systems is to help users search
for tuples in the database that align with their criteria, such as
purchasing clothes, admitting college students, and selecting
job candidates [1]–[4]. Take the scenario of purchasing clothes
for illustration. Consider a clothes database in Table I. Each
clothes tuple is described by some attributes, e.g., quality,
recyclability, and brand. Suppose that a user named Alice
wants to buy some clothes. It can be a daunting task for her
to manually review each tuple in the database. If the database
system could recommend personalized candidates for Alice, it
would significantly streamline her search process. This would
not only save her valuable time by filtering out unsuitable
clothes but also assist her in making a well-informed decision.

In the literature, various operators [5]–[8], referred to as the
multi-criteria decision-making operators, have been proposed
for this scenario. They characterize each user’s criterion by a
utility function fu. Each tuple p in the database is then asso-
ciated with a utility fu(p) (i.e., a function score), reflecting
how well the tuple aligns with the user’s criterion. Guided by
these utilities, the operators find tuples as the output.

There are two critical limitations of these operators. First,
they assume that users’ utility functions are known in advance.
However, in real-world scenarios, users often face difficulty in
precisely quantifying their individual criteria. For instance, Al-
ice might struggle to articulate her exact trade-off between the

Table I: The Clothes Database (u = (0.7, 0.3))

Clothes Quality Recyclability Brand fu(·)
p1 4.0 5.0 Nike 4.30
p2 4.7 4.8 H&M 4.73
p3 4.8 4.3 H&M 4.65
p4 5.0 4.0 H&M 4.70

quality and recyclability attributes. This uncertainty presents a
significant challenge for these operators in returning accurate
recommendations. Second, these operators tend to overlook
the importance of diversity in the output. In Table I, tuples
p2, p3, and p4 have the highest utilities but belong to the
same brand. If they are recommended to Alice, she might feel
dissatisfied due to the lack of variety. In market research, this
is commonly known as brand fatigue [9], [10], where repeated
exposure to the same brand diminishes user interest, even if the
tuples meet users’ criteria. The need for diversity is pervasive
in many real-life scenarios. For example, fellowship programs
might demand diverse nominees to ensure representation from
underrepresented demographic groups in a particular field [11].

Given these limitations, it is desirable if the database system
can search for a diverse set of tuples with high utilities, even
if the user’s criterion is not known in advance.

In this paper, we study how a well-established interactive
learning framework [4], [12], [13] and a widely used diversity
mechanism [14], [15] could help to address these limitations.
In line with prior work [16], [17], we distinguish the attributes
of tuples into two types: (1) scoring attributes which are used
by the utility function in the interactive learning framework
(e.g., quality and recyclability) and (2) sensitive attributes
which are used by the diversity mechanism (e.g., brand).

The interactive learning framework engages users through
a series of questions. Each question presents two tuples (with
scoring attributes only) and asks the user to pick the one s/he
prefers, where the two tuples are selected from the database
based on the user’s answers to previous questions. Following
the user’s answers, the user’s utility function is learned.

The diversity mechanism operates by grouping tuples based
on their sensitive attributes and restricting the number of tuples
from each group in the output. For example, consider Table I.
The clothes can be divided into two groups: one with the Nike
brand and the other with the H&M brand. Let us restrict the
output to include at least one clothes from each group. Then,
set {p1,p2} is considered diverse with respect to brand since
it contains one clothes p1 from the Nike group and one clothes
p2 from the H&M group. Note that diversity can be assessed
in various ways [18], [19]. In this paper, we primarily follow

the popular method of restricting the number of returned tuples
from each group. However, our algorithms proposed later can
be adapted to different diversity methods (see Section VII-A).

By incorporating the interactive learning framework and
the diversity mechanism, we propose problem Interactive
Learning for Diverse Top-k Set (Problem IDT). The goal is to
interact with a user to find a diverse top-k set while minimizing
the number of questions asked to the user. The diverse top-k
set, following [14], [20], is defined as a set of k tuples that (1)
have the highest utilities and (2) meet the diversity constraints,
i.e., the number of tuples from each group satisfies the given
restrictions. Besides, it is crucial that the questions should be
as few as possible since excessive questioning can overwhelm
users, leading to frustration and negatively impacting the
interaction results, as shown in marketing research [21], [22].

Our proposed algorithms are built upon two phases: explo-
ration and interaction. In the exploration phase, they process
the database to gather relevant information for interaction.
Subsequently, in the interaction phase, they select tuples based
on this information to interact with the user and then implicitly
learn the user’s utility function. Once the utility function is suf-
ficiently learned, they derive the top-ranked tuples and identify
the user’s diverse top-k set based on the diversity constraints.

A key insight behind our algorithms is that we can construct
hyper-planes based on any two tuples in the database (details
are postponed in Section III-B). These hyper-planes divide the
domain of all possible utility functions, guiding the selection
of tuples for interaction. Moreover, the hyper-planes based on
the tuples presented in each question progressively narrow the
domain of the utility function. When the narrowed domain is
sufficiently small, the diverse top-k set can be determined.

To the best of our knowledge, we are the first to study prob-
lem IDT. While some closely related studies [12]–[14], [16],
[23]–[25] involve interactive learning or consider the diversity
issue, they differ significantly from us. [23] aims to rank tuples
by interacting with users, and [24] proposes to learn the user’s
utility function via interaction. [12], [13] target to find a single
tuple such that the regret ratio, evaluating user dissatisfaction
with the tuple, is minimized by user interaction. These studies
learn the user criteria through interactive learning but do not
incorporate a diversity constraint. As a result, some questions
they ask might be redundant in our setting due to diversity
considerations. For example, we do not need to ask Alice to
compare two clothes if they are known to be excluded from
the diverse output set, but this comparison might be needed by
[23], [24]. Other studies such as [14], [16], [25] concentrate
on providing a diverse tuple set to users. However, [16], [25]
assume the users’ criteria are known in advance, which is often
impractical. [14] considers all possible users’ criteria collec-
tively to recommend tuples, leading to less personalized rec-
ommendations since they aim at accommodating a broad range
of user criteria rather than being tailored to individual users.

Contributions. Our contributions are listed as follows.

• To the best of our knowledge, we are the first to propose
the problem of returning the diverse top-k set by interacting

with the user (problem IDT). We prove a lower bound
Ω(log2 n) on the number of questions asked to a user.

• We propose algorithm TDIA for a special case of problem
IDT where tuples are described by two scoring attributes. It
asks an asymptotically optimal number of questions.

• We propose algorithm HDIA for the general case of prob-
lem IDT where tuples are described by multiple scoring
attributes. It is asymptotically optimal w.r.t. the number of
questions asked in expectation.

• We conducted experiments to demonstrate the superiority of
our algorithms. The results show that our algorithms are able
to return the diverse top-k set by asking approximately 30%
fewer questions than existing ones under typical settings.
In the following, we discuss the related work in Section II

and formally define our problem in Section III. In Section IV,
we propose an asymptotically optimal algorithm TDIA for a
special case. In Section V, we propose an algorithm HDIA
for the general case that performs well theoretically and
empirically. Section VII presents our experimental results and
Section VIII concludes this paper.

II. RELATED WORK

Utility-based Query. The regret-minimizing query [26]–[29]
does not require prior knowledge of the user’s utility function.
It considers all possible utility functions and returns a small set
of tuples, expecting that each user can find at least one tuple
that aligns with his/her criterion. Specifically, it minimizes a
criterion called regret ratio that evaluates the user’s dissatis-
faction when comparing the returned set to the entire database.
However, it is hard to achieve a small output size and a small
regret ratio simultaneously. When the output size is small, the
regret ratio is typically large [12], [28], [30]. Besides, since
the query considers all possible utility functions, it returns the
same tuples to all users. In contrast, our problem IDT requires
the returned tuples to align with each user individually.

To overcome the deficiencies, several existing studies [12],
[13] incorporate user interaction. [13] proposes the interactive
regret-minimizing query, which aims to reduce the regret ratio
while maintaining a small size of output by interacting with
the user. However, this query displays fake tuples during the
interaction, which are artificially constructed (not selected
from the database). This might produce unrealistic tuples (e.g.,
a car priced at 10 dollars with 50, 000 horsepower), leading to
potential user disappointment [12]. To resolve this issue, [12]
proposes the strongly truthful interactive regret-minimizing
query, which utilizes real tuples (selected from the database).
However, this query requires heavy user effort during the
interaction, i.e., asking many questions. Besides, since both
[13] and [12] focus on finding the user’s (close to) best tuple,
to some extent, their studied problems can be seen as a special
case of our problem IDT when k = 1.

To reduce user effort, [31] reduces the quality of the output.
Instead of finding the (close to) best tuple, it only searches
for one of the user’s top-k tuples. This lessens the precision
required to learn the user’s criterion, and thus, reduces the
number of questions asked to the user. Further developments

2

can be seen in [3], [4], which explore the integration of differ-
ent types of attributes into the interactive learning framework.
Nevertheless, none of these studies [3], [4], [12], [13], [31]
consider the diversity in the output.

In the field of machine learning, the problem of learning to
rank [23] and preference learning [24] are similar to our prob-
lem IDT. However, they either learn the full ranking of tuples
or approximate the user’s criterion, which may require asking
some questions that are unnecessary to our problem. For in-
stance, if Alice prefers tuple p1 to both p2 and p3, her criterion
between p2 and p3 is less interesting in our problem IDT, but
this additional comparison might be needed in [23], [24].

Compared to existing studies, our problem IDT offers sev-
eral advantages. (1) We use real tuples during the interaction,
unlike [13] which incorporates fake tuples. (2) We require low
user effort during the interaction. Contrary to existing studies
that ask many questions to learn either a full ranking [23] or an
exact user criterion [24], we only search for a set of k tuples.
(3) We consider the diversity of output, addressing potential
biases overlooked in other studies [3], [4], [12], [31].
Diversity-based Query. Query result diversification [32]–[35]
is a line of study in information retrieval, aiming to provide a
diverse output that covers different aspects or interpretations
of the query, rather than returning multiple similar tuples [36]–
[45]. There are two widely considered categories [33], [46]–
[48] of diversity definitions in query result diversification:
content-based, to include dissimilar tuples in the output; and
coverage-based, to retrieve tuples of different categories or
from different interpretations of the query [49].

Content-based diversity [18], [19] focuses on minimizing
the similarity between tuples in the output. This is achieved
through pairwise similarity measures, with the goal of ensuring
that the aggregated similarity among the tuples in the output
is as low as possible. There are multiple algorithms proposed,
ranging from heuristics to dynamic programming.

For coverage-based query, a representative one is the group
diversity query [14]–[16], which is closely related to our
problem IDT. It groups tuples in the database based on the
sensitive attributes. For example, the students with the same
gender are in the same group. The goal is to ensure that (1) the
proportion of each group in the output is identical or similar
to that in the whole database (e.g., if there are 40% female
students in the database, the output should contain about 40%
female students), or (2) the number of tuples of each group
in the output should be in a given range (e.g., the number of
female students in the output should be within a given range
of 10-20). Our problem IDT utilizes the second type since the
first one can be seen as a special case of the second type.

There are many algorithms proposed to enhance the diver-
sity of output while maintaining relevance [47], [48], [50]. The
algorithms in [47], [48] are designed in a greedy manner. In
each round, they extract the tuple with the highest score. Ini-
tially, the score is determined by the query only (e.g., the user’s
criterion). Subsequently, the score involves both the query and
the diversity conditioned on the selected tuples. [14], [50]
propose dynamic programming-based algorithms. Some recent

studies [25], [51], [52] aim to minimally refine the query to
satisfy constraints on the size of specific groups in the output.

This line of study differs from our problem IDT since they
return tuples relevant to a pre-specified query (e.g., the user’s
criterion). If the query is unknown or not explicitly defined,
the proposed algorithms are not applicable. In contrast, our
problem IDT can learn the query via user interaction, making
it adaptable to cases where the query is initially unspecified.

III. PROBLEM DEFINITION

A. Problem IDT

Data. The input dataset D contains n tuples, i.e., |D| = n.
Each tuple p is described by d non-negative scoring attributes.
We denote the value of p in the i-th scoring attribute by p[i],
where i ∈ [1, d]. Without loss of generality, following [3], [12],
[53], we assume that each scoring attribute is normalized to
(0, 1] and a larger attribute value is preferred.

Utility Function. Following [12], [31], [54], we model the
user’s criterion by a linear scoring function, called the utility
function, which is a popular and effective representation for
modeling users’ criteria [55], [56]. As verified in [3], [24], it
can effectively capture how real users assess the multi-attribute
tuples. Formally, the utility function is defined as follows.

fu(p) = u · p =
∑d

i=1 u[i]p[i]

Here, u = (u[1], u[2], ..., u[d]) is a d-dimensional vector,
called the utility vector. Each u[i] denotes the importance of
the i-th scoring attribute to the user, where i ∈ [1, d]. Without
loss of generality, following [12], [13], [31], we assume that∑d

i=1 u[i] = 1 and each u[i] ≥ 0. Function score fu(p) is
called the utility of p w.r.t. u. It represents to what extent a user
prefers tuple p. A higher utility means that p is more preferred.

Consider Table I. Suppose that fu(p) = 0.7p[1] + 0.3p[2],
i.e., u = (0.7, 0.3). The utility of p3 w.r.t. u is fu(p3) =
0.7× 4.8 + 0.3× 4.3 = 4.65. Similarly for the other tuples.

Diversity Model. We adopt a well-established diversity model
in the existing literature [14], [20], [57]. Except for the scoring
attributes, each tuple p is also described by several sensitive
attributes. Table I shows an example. It contains four tuples
with two scoring attributes and one sensitive attribute. In the
diversity model, a group is a set of tuples in D with the
same value in at least one sensitive attribute. For instance,
{p2,p3,p4} is a group in Table I since the tuples in it have
the same value H&M. Note that if the sensitive attributes are
continuous, we can handle them by discretizing their values
through established methods [52], [58]. For example, consider
attribute age as a sensitive attribute. It can be discretized into
three values: Young (< 30), Middle (30-60), and Old (> 60).

Given a dataset D and c groups G = {G1,G2, ...,Gc}, the
diversity constraint in the diversity model [14], [20], [57] is
established by specifying a lower bound lj and an upper bound
bj for each group Gj , where j ∈ [1, c]. Formally, a subset
S ⊆ D is considered diverse in terms of G if and only if

lj ≤ |S ∩ Gj | ≤ bj

3

for each group Gj ∈ G. For example, consider Table I. Assume
that G = {G1,G2}, where the tuples in G1 have the same value
Nike and the tuples in G2 have the same value H&M. Let
l1 = l2 = 1 and b1 = b2 = 5. Set S = {p1,p3} is a diverse
set since |S ∩ G1| = |{p1}| ≥ 1 and |S ∩ G2| = |{p3}| ≥ 1.

Given groups G, we define the diverse top-k set of a utility
function fu(·) to be a set S∗ ⊆ D of k tuples that have the
highest utilities and satisfy the diversity constraint, i.e.,

S∗ = argmax
S⊆D:|S|=k

∑
p∈S

fu(p) s.t. lj ≤ |S ∩ Gj | ≤ bj ,∀Gj ∈ G

Given a utility vector u, there are existing algorithms [20],
[48], [50] finding set S∗. We apply the one discussed in [20]
to our work. Let us denote it by ∇·(·), i.e., S∗ = ∇u(D).
Note that there are various ways to define the diverse top-k
set. Our definition follows [14], [20], which has gained wide
acceptance in the literature. We also adapted our algorithms to
accommodate different diversity models. The comparison can
be found in Section VII-A.

Problem Definition. Our objective is to find the user’s diverse
top-k set with the help of user interaction. Specifically, our
interactive learning framework follows [3], [12], [31]. The sys-
tem interacts with a user for rounds. In each interactive round,
(1) (Tuple Selection) it adaptively selects two tuples and asks
the user to pick the one s/he prefers; (2) (Information Mainte-
nance) based on the user feedback, the information maintained
for finding the user’s diverse top-k set is updated; (3) (Stopping
Condition) it checks if the stopping condition is satisfied. If it
is satisfied, the interaction process ends, and the diverse top-k
set is returned to the user. Otherwise, another interactive round
begins. Formally, we are interested in the problem below.

Problem 1. (Interactive Learning for Diverse Top-k Set
(IDT)) Given a dataset D, a diversity constraint (i.e., a lower
bound l and an upper bound b for each group), and an integer
k, we want to interact with a user in as few rounds as possible
to find the user’s diverse top-k set.

B. Problem Characteristics

We formalize our problem IDT from a geometric perspec-
tive. With a slight abuse of notations, we use p to represent the
scoring-attribute part of tuple p, i.e., p = (p[1], p[2], ..., p[d]).
In a d-dimensional geometric space Rd, p can be regarded as
a point. Each dimension corresponds to a scoring attribute.
Consider any pair of tuples pi,pj ∈ D, based on the scoring
attributes, we can build a hyper-plane as shown in Figure 1.

hi,j = {r ∈ Rd
+ | r · (pi − pj) = 0}

Hyper-plane hi,j passes through the origin with its unit normal
in the same direction as vector pi−pj . It divides space Rd into
two half-spaces. The positive half-space h+

i,j (resp. negative
half-space h−

i,j) contains all utility vectors u ∈ Rd such that
u · (pi − pj) > 0 (resp. u · (pi − pj) < 0).

A polyhedron P is defined to be the intersection of a finite
number of hyper-planes and half-spaces [59]. In space Rd,

each utility vector can be seen as a point. Recall that we as-
sume that (1) u[i] ≥ 0 for each dimension and (2)

∑d
i=1 u[i] =

1. The domain of the utility vector, called the utility space and
denoted by U , is a polyhedron in space Rd, e.g., a shaded trian-
gle when d = 3 as shown in Figure 1 or a bolded line segment
when d = 2 as shown in Figure 2. If a hyper-plane hi,j inter-
sects with the utility space U , we denote the intersection by
∧i,j . The lemma below establishes our foundation for learning
the user’s utility function, more specifically, the user’s utility
vector. Due to the lack of space, the proofs for some theorems
and lemmas can be found in our technical report [60].
Lemma 1. ([31]) Given U and tuples pi,pj ∈ D, if and only
if a user prefers pi to pj , the user’s utility vector is in h+

i,j∩U .
Based on Lemma 1, our idea is to interact with a user to

narrow down the utility space. When the narrowed utility space
is sufficiently small, the diverse top-k set can be determined.

IV. SPECIAL CASE OF IDT

We consider a special case of problem IDT, where tuples are
described by two scoring attributes. In this case, the utility vec-
tor u = (u[1], u[2]) is a two-dimensional vector, and the utility
space U is a line segment in space R2 (since u[1], u[2] ≥ 0 and
u[1] + u[2] = 1). We propose a two-dimensional interactive
algorithm TDIA that finds the user’s diverse top-k set within
an asymptotically optimal number of interactive rounds.

Algorithm TDIA consists of two phases: exploration and
interaction. In the exploration phase, it scans all utility vectors
u along the utility space from one side to another, and records
the diverse top-k sets w.r.t. u in a list C based on the scanning
sequence. Note that if adjacent utility vectors correspond to
the same diverse top-k set, we only record that set once in C.
Subsequently, in the interaction phase, it interacts with a user
to identify which one in C is the user’s diverse top-k set.
Exploration. Since there are infinite utility vectors in utility
space U , when scanning utility vectors, it is impractical to
check the diverse top-k set w.r.t. each utility vector one by one.
The following lemma provides a theoretical foundation that
makes it feasible to consider multiple utility vectors together.
Lemma 2. Given a line segment [u1,u2], where u1,u2 ∈ U ,
if ∄pi,pj ∈ D such that hyper-plane hi,j intersects [u1,u2],
the diverse top-k sets w.r.t. any u ∈ [u1,u2] are the same.

Following Lemma 2, during the scanning process, we main-
tain the diverse top-k set w.r.t. the currently scanned utility
vector. The set may change only if the scanned utility vector
u is the intersection of a hyper-plane hi,j and the utility space,
i.e., u = ∧i,j , where pi,pj ∈ D.

The exploration phase works as follows. Initially, we rank
all the intersections ∧i,j , where pi,pj ∈ D, along the utility
space from one endpoint (0, 1) to the other (1, 0). The scan
begins at utility vector (0, 1). We find the diverse top-k set
w.r.t. this utility vector by ∇(0,1)(D) and insert it into C.
Note that the latest inserted set in C also denotes the diverse
top-k set w.r.t. the currently scanned utility vector. Then, we
scan the ranked intersections sequentially. Suppose that we
reach an intersection ∧i,j and line segment [∧i,j , (1, 0)] ⊆ h−

i,j

4

𝑢[2]

𝑢[3]

𝑢[1]

ℎ𝑖,𝑗

ℎ𝑖,𝑗
−

𝑝𝑖 − 𝑝𝑗 Utility space

ℎ𝑖,𝑗
+

Figure 1: Hyper-plane
1

1

𝑢[1]0

ℎ1,4𝑢
[2
]

𝐶1

𝐶2

ℎ2,4
∧2,4

ℎ1,3

ℎ3,4

ℎ1,2

ℎ2,3

Utility space

Figure 2: Algorithm TDIA

Table II: The Car Database

p
HP

(×102)
MPG
(×10)

Torque
(×102) Brand

p1 2.6 2.4 2.3 Tesla
p2 3.4 1.6 2.3 Ford
p3 2.8 1.8 2.3 Ford

𝑋2

𝑋3

𝑋1

ℎ1,2

Θ1 Θ2 Θ3 Θ4

ℎ2,3 ℎ1,3

Figure 3: Partitions in Rd

(similarly for [∧i,j , (1, 0)] ⊆ h−
j,i). Since [∧i,j , (1, 0)] ⊆ h−

i,j ,
we have fu(pi) < fu(pj) w.r.t. any u ∈ [∧i,j , (1, 0)]. Let C
be the latest diverse top-k set inserted into C. If pi ∈ C and
pj /∈ C, we check whether set C′ = C ∪ {pj} \ {pi} satisfies
the diversity constraint. If it satisfies, set C′ is a new diverse
top-k set. We append C′ to C. This process terminates when
all the intersections have been scanned.

Consider Table I. For each pair of clothes tuples in it, we
build a hyper-plane, as shown in Figure 2. The norms of the
hyper-planes are towards their positive half-spaces. Assume
G = {G1,G2}, where the tuples in G1 (resp. G2) have the same
brand Nike (resp. H&M). Let k = 2, l1 = l2 = 1 (i.e., each
brand should have at least one tuple), and b1 = b2 = 2 (i.e.,
each brand should have at most two tuples). Initially, we find
the diverse top-k set C1 = {p1,p2} w.r.t. utility vector (0, 1)
and insert it into C. Then, we reach the first intersection ∧1,2.
Since p1 and p2 are in set C1, we directly move to the second
intersection ∧1,3. Here, given that p1 ∈ C1 and p3 /∈ C1, we
build set C′ = {p2,p3}. However, |C′ ∩ G1| < l1 makes C′
unable to meet the diversity constraint. We do not insert C′ into
C. For the other interactions, we perform similar steps. For
∧1,4, we build set C′′ = {p2,p4}. Since C′′ does not meet the
diversity constraint, it is not inserted into C. For ∧3,4, since
p3,p4 /∈ C1, there is no set built. For ∧2,4, since p2 ∈ C1 and
p4 /∈ C1, set C2 = {p1,p4} is built and inserted into C. For
∧2,3, since p2,p3 /∈ C2, there is no set built. The final result
is C =< C1, C2 >, where C1 = {p1,p2} and C2 = {p1,p4}.
Remark. Although there exist a few scan algorithms [31], [54],
they pursue entirely different objectives and cannot be easily
adapted to our problem. Note that the exploration phase can
be precomputed before the interaction phase. It does not affect
the real-time interaction experience.

Interaction. Let C =< C1, C2, C3, ... > be all diverse top-
k sets found in the exploration phase. They are listed based
on the scanning sequence. The interaction phase determines
which one is the user’s diverse top-k set by a binary search.
In each interactive round, (1) (Tuple Selection) it finds the
median sets Cx, Cx+1 ∈ C and presents a user with two tuples
pi and pj , where pi is in Cx but not in Cx+1, and pj is
in Cx+1 but not in Cx. (2) (Information Maintenance) If the
user prefers pi to pj , based on Lemma 3, half of the sets
< Cx+1, Cx+2, Cx+3, ... > in C can be deleted. Otherwise, the
other half can be deleted from C. (3) (Stopping Condition)
The interaction process stops when |C| = 1 and the diverse
top-k set finally left in C is returned as the output.

Lemma 3. If a user prefers pi to pj , the user’s diverse top-k
set cannot be the one among < Cx+1, Cx+2, Cx+3, ... >.

Algorithm 1: Algorithm TDIA
1 Input: Dataset D, set G, parameters k, l1, l2, ..., b1, b2, ...
2 Output: The user’s diverse top-k set
3 Initialize C = ∅ and rank all the intersections;
4 Insert the diverse top-k set w.r.t. vector (0, 1) into C;
5 foreach intersection ∧i,j do
6 if pi ∈ C and pj /∈ C or pi /∈ C and pj ∈ C then
7 Build set C′ based on set C, pi, and pj ;
8 if set C′ satisfies the diversity constraint then
9 Append C′ to list C;

10 while |C| > 1 do
11 Find the median sets Cx and Cx+1 in C;
12 Display pi and pj to the user;
13 if the user prefers pi to pj then
14 C←< ..., Cx−2, Cx−1, Cx >;

15 else
16 C←< Cx+1, Cx+2, Cx+3... >;

17 return The set finally left in C

In Figure 2, initially, set C =< {p1,p2}, {p1,p4} >.
We present a user with p2 and p4 (because Cx = {p1,p2},
Cx+1 = {p1,p4}, p2 ∈ Cx (not Cx+1) and p4 ∈ Cx+1 (not
Cx)). Assume that the user’s utility vector is u = (0.7, 0, 3).
The user will tell that p2 is preferred. Following the feedback,
set C is updated to be < {p1,p2} >. Since |C| = 1, we stop
the interaction process and return set {p1,p2}.
Summary. The pseudocode of TDIA is shown in Algorithm 1.
Initially, set C is empty and all intersections are ranked (line
3). Based on these intersections, we scan the utility space to
obtain all diverse top-k sets C = {C1, C2, ...} (lines 4-9). Then,
we interact with a user to delete half of the sets in C in each
interactive round (lines 11-16). When there is only one set left
in C (line 10), we stop the interaction and return this set as out-
put (line 17). The theoretical analysis is shown in Section VI.

V. GENERAL CASE OF IDT

We consider the general case of problem IDT, where each
tuple is described by d scoring attributes (d ≥ 2). In this
case, the utility vector is a high-dimensional vector, and the
utility space is a polyhedron in a high-dimensional space Rd,
e.g., a triangle when d = 3 as shown in Figure 1. We propose
a high-dimensional interactive algorithm HDIA that finds
the user’s diverse top-k set within an asymptotically optimal
number of interactive rounds in expectation.

At a high level, our algorithm HDIA follows and extends
the framework of algorithm TDIA. It maintains a polyhedron
R ⊆ U , called utility range, which contains the user’s utility

5

vector. Initially, R is set to be the entire utility space, i.e.,
R = {u ∈ Rd

+ |
∑d

i=1 u[i] = 1}. Algorithm HDIA repeats
two phases in iterations: exploration and interaction. In the ex-
ploration phase, it divides utility range R into several smaller
polyhedrons, termed partitions. Then, in the interaction phase,
it interacts with the user to delete the partitions that cannot
contain the user’s utility vector. Utility range R is the union
of the left partitions. If there is only one partition left in R,
another iteration proceeds. Algorithm HDIA terminates if all
utility vectors in R correspond to the same diverse top-k set C.

There are several challenges. The first challenge lies in how
to divide utility range R into partitions; the second challenge
involves how to strategically select tuples for user interaction;
and the third challenge concerns how to determine whether all
utility vectors in R correspond to the same diverse top-k set.
In the following, we address these challenges respectively.

Challenge 1. We randomly sequence all hyper-planes hi,j and
separate them into batches, where pi,pj ∈ D. Each batch con-
tains γ hyper-planes. In each iteration, a single batch of hyper-
planes is utilized to divide utility range R into partitions. Each
partition, denoted by Θ, is an intersection of O(γ) positive
or negative half-spaces. The randomized strategy ensures that
each batch contains a balanced distribution of hyper-planes,
leading to a more uniform division of the utility range.

For example, Table II contains three cars that are described
by three scoring and one sensitive attribute. Suppose that the
current utility range R is the whole utility space, and there
are three hyper-planes in the current batch based on the car
tuples in Table II. As shown in Figure 3, utility range R is
divided into four partitions by these three hyper-planes whose
norms are towards their positive half-spaces. Partition Θ4 is
the intersection of one positive and two negative half-spaces,
i.e., Θ4 = h−

1,2∩h
−
1,3∩h

+
2,3. Similarly for the other partitions.

To learn if a partition is in either positive or negative half-
spaces (i.e., Θ ⊆ h+ or Θ ⊆ h−), it suffices to check the
relationship of a utility vector u ∈ Θ and hyper-plane h. If
u ∈ h+ (resp. u ∈ h−), then Θ ⊆ h+ (resp. Θ ⊆ h−).

For the batch size γ, a small one might necessitate more
iterations (i.e., repeating more times the exploration and inter-
action phases), prolonging the whole process, while a large one
could lead to a large number of partitions, causing a high com-
putational cost. We will discuss the setting of γ in Section VII.

Challenge 2. In the exploration phase, utility range R is
divided into partitions by the hyper-planes in the current batch.
Then, in the interaction phase, we expect to delete partitions
until there is only one left with a minimal number of interac-
tive rounds. Let us formalize the interaction phase by a binary
tree, called decision tree or D-Tree for short. In the D-Tree,
• Each internal node N contains i) two tuples pi,pj ∈ D,

ii) a partition set Θ(N), and iii) two children Npos and
Nneg . If N is the root node, Θ(N) contains all the partitions
divided by the hyper-planes in the current batch. The hyper-
plane hi,j of pi and pj decides the partition sets in children
Npos and Nneg . The partition set Θ(Npos) (resp. Θ(Nneg))
in child Npos (resp. Nneg) contains all the partitions in

Θ(N) that are in positive half-space h+
i,j (resp. negative

half-space h−
i,j), i.e., Θ(Npos) = {Θ ∈ Θ(N)|Θ ⊆ h+

i,j}
(resp. Θ(Nneg) = {Θ ∈ Θ(N)|Θ ⊆ h−

i,j}).
• Each leaf N has a partition set Θ(N), where |Θ(N)| = 1.

Figure 4 shows a D-Tree that is based on the partitions and
hyper-planes in Figure 3 (setH(N) in the internal node is used
for construction only, which will be introduced later). Each
leaf node contains a partition set Θ(N) with |Θ(N)| = 1.
For the root node N , it contains two tuples p1 and p2 and
its partition set Θ(N) includes all the partitions Θ1, Θ2, Θ3,
and Θ4. Based on the hyper-plane h1,2 of p1 and p2, the
partitions can be separated into two sets Θ1,Θ2 ⊆ h+

1,2 and
Θ3,Θ4 ⊆ h−

1,2. Thus, for child N1, Θ(N1) = {Θ1,Θ2}; for
child N2, Θ(N2) = {Θ3,Θ4}. Similarly, for the other nodes.

The interaction phase can proceed with the D-Tree in a
top-down manner by starting from the root node. In each
interactive round, we interact with the user by using the two
tuples pi and pj that are contained in the current node N .
Following the user feedback, based on Lemma 1, we learn
that the user’s utility vector is in one of the half-spaces, i.e.,
either h+

i,j or h−
i,j . Then, we move to the child of N , where

the partitions contained in the child are in the inferred half-
space. For example, in the first interactive round (i.e., at the
root node), if the user prefers p1 to p2, the user’s utility vector
must be in h+

1,2, and thus, we move to node N1. The interaction
process stops when we reach a leaf. The partition contained
in the leaf must include the user’s utility vector.

It is easy to see that the number of interactive rounds de-
pends on the height of the D-Tree. To achieve the best tuple se-
lection strategy, i.e., the minimal number of interactive rounds,
we need to ensure that the height of the D-Tree is the smallest.

We employ a recursive method to construct the shortest D-
tree. Specifically, for each node N , we add two data structures
for construction: a number LN and a hyper-plane set H(N).
LN denotes the length of the longest path from node N to
any of its reachable leaves. H(N) contains the hyper-planes
that can be used to separate the partitions in Θ(N).

The construction starts at the root node and gradually builds
nodes downwards. Initially, the root node contains all hyper-
planes in the current batch and all partitions divided by these
hyper-planes. Suppose that the construction process reaches a
node N . If |Θ(N)| = 1, LN is set to 0. Otherwise, we derive
LN based on the hyper-planes in H(N). Specifically, for each
hyper-plane h ∈ H(N), we build two children Npos and Nneg

such that (1) the partition sets Θ(Npos) and Θ(Nneg) contain
the partitions Θ ∈ Θ(N) in h+ and h−, respectively, and (2)
H(Npos) = H(Nneg) = H(N) \ {h}. Then, we set

LN = min
h∈H(N)

max{LNpos , LNneg}+ 1.

Intuitively, max{LNpos
, LNneg

} represents the length of the
longest path (from node N to any of its reachable leaves) if
we choose a hyper-plane h to separate the partitions in node
N . minh∈H(N) means that we want to find the hyper-plane in
H(N) so that the longest path can be the shortest. Node N
only remains the two children which lead to the smallest LN .

6

Θ 𝑁2 = Θ3, Θ4
ℋ 𝑁2 = {ℎ1,3, ℎ2,3}

{𝒑1, 𝒑3}

Θ 𝑁1 = Θ1, Θ2
ℋ 𝑁1 = {ℎ1,3, ℎ2,3}

{𝒑2, 𝒑3}

ℎ𝟏,𝟐
+

Θ 𝑁 = Θ1, Θ2, Θ3, Θ4
ℋ 𝑁 = {ℎ1,2, ℎ1,3, ℎ2,3}

{𝒑1, 𝒑2}

N3

𝑁

Θ 𝑁3 = Θ2 Θ 𝑁4 = Θ1 Θ 𝑁5 = Θ3 Θ 𝑁6 = Θ4

ℎ𝟏,𝟐
−

N4 N5 N6

N1 N2

ℎ𝟐,𝟑
+ ℎ𝟐,𝟑

− ℎ𝟏,𝟑
+ ℎ𝟏,𝟑

−

Figure 4: D-Tree

Since building D-Trees recursively can be time-consuming,
we propose several strategies in the following to accelerate.
Our first focus is to reduce the construction of the D-Tree. To
illustrate, consider Figure 4. Let us only build nodes N , N1,
and N2 of the D-Tree. Utilizing the incomplete D-Tree, we
can interact with the user. Without loss of generality, suppose
that we move to a node, say N1, based on the user feedback.
Then, we can use node N1 as a root to construct a new D-
Tree, which only includes nodes N3 and N4 (without N5 and
N6). Based on this idea, we do not wait for the complete D-
Tree before starting the interaction. Let us relax the second
requirement in the definition of the D-Tree.
• Each leaf N contains a partition set Θ(N), where |Θ(N)|

is smaller than or equal to a given threshold (threshold ≥ 1).
Our strategy is to construct several small D-Trees in loops,

each of which is part of the complete D-Tree. Every time a
small D-Tree is constructed, we interact with the user based
on it. Specifically, in each loop, assume that the root node has
m partitions. We construct a D-Tree by allowing each leaf to
contain at most m/β partitions (instead of one partition) where
β is a user parameter and is a positive integer. The setting of β
is discussed in Section VII. Then, we follow the D-Tree to in-
teract with the user, leading to a leaf node N . If Θ(N) = 1, we
stop. Otherwise, we proceed with another loop by using node
N as a root to build a new D-Tree and interacting with the user.

Our second focus is to reduce the number of hyper-planes in
H(N) that are considered to derive LN for each node N . We
limit our consideration to a few hyper-planes that divide the
partitions in Θ(N) the most evenly. The idea behind this is
that if each half-space of the hyper-plane contains half of the
partitions in Θ(N), the number of partitions in each child of
N can be reduced by half, potentially leading to a significant
reduction in the height of the D-tree. To implement, we define
Mh to be min{M(h+),M(h−)}, where M(h+) and M(h−)
represents the number of partitions in half-space h+ and h−,
respectively. Then, we only consider α hyper-planes with the
largest Mh, where α is a user parameter and is a positive
integer. The setting of α will be discussed in Section VII.

We also propose a lower bound for LN . Suppose that we
find a hyper-plane h. If using h to divide the partitions in N
results in LN reaching the lower bound, we can skip checking
the remaining hyper-planes. This is because using other hyper-
planes to divide the partitions in N will not make LN smaller.

Lemma 4. For any node N , we have LN ≥ ⌈log2
β|Θ(N)|

m ⌉,
where m is the number of partitions in the root node and β

Algorithm 2: Algorithm HDIA
1 Input: Dataset D, set G, parameters k, l1, l2, ..., b1, b2, ...
2 Output: The user’s diverse top-k set
3 Randomly sequence all hi,j , where pi,pj ∈ D;
4 Separate the hyper-planes into batches; R← U ;
5 foreach batch Hi do
6 Divide R into partitions Θi = {Θ1, ...} based on Hi;
7 Set root node N with LN ←∞, H(N)← Hi, and

Θ(N)← Θi;
8 while Θ(N) > 1 do
9 SearchLN(N , |Θ(N)|/β);

10 N ′ ← the root of the D-Tree;
11 while N ′ is not a leaf do
12 Use pi and pj in N ′ to interact with a user;
13 if the user prefers pi to pj then
14 R← R∩ h+

i,j ; N ′ ← Npos;

15 else
16 R← R∩ h−

i,j ; N ′ ← Nneg;

17 if the stopping condition is satisfied then
18 return The diverse top-k set;

19 N ← N ′;

SearchLN(node N , β∗)
20 if |Θ(N)| ≤ β∗ then
21 LN ← 0; return;

22 Select α hyper-planes h ∈ H(N) with the largest Mh.
23 foreach selected hyper-plane hi,j do
24 if hi,j separates the partitions in Θ into two sets then
25 Build two children Npos and Nneg for N ;
26 Θ(Npos)← {Θ ∈ Θ(N) | Θ ⊆ h+

i,j};
27 LNpos ←∞;
28 H(Npos)← H(N) \ {hi,j}
29 SearchLN(Npos, β∗);
30 Θ(Nneg)← {Θ ∈ Θ(N) | Θ ⊆ h−

i,j};
31 LNneg ←∞;
32 H(Nneg)← H(N) \ {hi,j};
33 SearchLN(Nneg , β∗);
34 if LN > max{LNpos , LNneg}+ 1 then
35 LN = max{LNpos , LNneg}+ 1;
36 Remove children except Npos and Nneg;
37 if LN ≤ ⌈log2 |Θ(N)|/β∗⌉ then
38 break;

39 else
40 Remove the two children Npos and Nneg;

is a parameter (which is a positive integer). Note that m/β
indicates the number of partitions allowed in leaves.

Proof. Let us build an optimal sub-tree that is rooted at node
N . For each internal node N ′ in the optimal sub-tree, there is
a hyper-plane that separates the partitions in |Θ(N ′)| into two
equal sets of partitions, i.e., the numbers of partitions in the
positive and negative half-spaces are the same. In this case,
the height of the optimal sub-tree is ⌈log2

β|Θ(N)|
m ⌉.

Challenge 3. We verify if the diverse top-k sets w.r.t. any
utility vectors in utility range R are the same based on the

7

extreme utility vectors of R. The extreme utility vectors are
the corner points of a polyhedron. For example, in Figure 2,
the extreme utility vectors of the utility space are (0, 1) and
(1, 0). The diverse top-k set w.r.t. each extreme utility vector
e of R can be obtained by ∇e(D).
Lemma 5. If the diverse top-k sets w.r.t. any extreme utility
vectors of utility range R are the same, all utility vectors in
R correspond to the same diverse top-k set.

Summary. We summarize our algorithm HDIA by combining
the strategies presented. The pseudocode is shown in Algo-
rithm 2. In the beginning, utility range R is set to be the entire
utility space. All hyper-planes are randomly sequenced and
separated into batches (lines 3-4). For each batch Hi (i ≥ 1),
we conduct two phases: exploration and interaction. In the
exploration phase, the hyper-planes in Hi divide utility range
R into partitions Θi = {Θ1,Θ2, ...} (line 6). Then, in the in-
teraction phase, we build D-Trees and use them for interaction.

For the first D-Tree, we initialize the root node to contain all
hyper-planes in Hi and all partitions in Θi (line 7). Assume
that the construction process reaches a node N . If |Θ(N)| ≤
β∗ (β∗ represents the number of partitions allowed in the leaf),
we set N to be a leaf and LN = 0 (lines 20-21). Otherwise,
we select α hyper-planes in H(N) (line 22). Based on the
selected hyper-planes, we build children for N and derive LN

(lines 23-40). Note that we can skip the checking of some
hyper-planes based on Lemma 4 (lines 37-38).

After constructing the D-Tree, we interact with the user by
conducting a top-down traverse on the D-Tree. Suppose that
we are at a node N ′. (1) If it is a leaf and Θ(N ′) = 1, we
turn to the next batch of hyper-planes. (2) If it is a leaf and
Θ(N ′) > 1, we turn to build a new D-Tree by using node
N ′ as the root node (line 8). (3) If N ′ is an internal node, we
use the two tuples pi and pj contained in N ′ to interact with
the user (Tuple Selection). When obtaining the user feedback,
following Lemma 1, we build a hyper-plane hi,j and update
R (either R ← R ∩ h+

i,j or R ← R ∩ h−
i,j). In this way,

R becomes smaller (Information Maintenance). We move to
the child N ′′ of N ′, where the partitions contained in Θ(N ′′)
are in R (lines 11-16). If all the extreme utility vectors in R
correspond to the same diverse top-k set, the algorithm stops
and the diverse top-k set is returned (lines 17-18) (Stopping
Condition). The theoretical analysis is presented in Section VI.

Consider Figures 3 and 4. Suppose that there is only one
batch of hyper-planes H = {h1,2, h1,3, h2,3} based on the car
tuples in Table II. In the exploration phase, the utility range is
divided into four partitions Θ = {Θ1,Θ2,Θ3,Θ4} by these
hyper-planes. Then, in the interaction phase, we set the root
node N of the D-Tree by Θ(N) = {Θ1,Θ2,Θ3,Θ4} and
H(N) = {h1,2, h1,3, h2,3}. Assume that the number of parti-
tions allowed in the leaf node is 2. Consider hyper-plane h1,2.
It can separate the partitions in Θ(N) into two sets. We build
two children N1 and N2 for N , where Θ(N1) = {Θ1,Θ2},
Θ(N2) = {Θ3,Θ4}, and H(N1) = H(N2) = {h1,3, h2,3}.
Since |Θ(N1)| ≤ 2 and |Θ(N2)| ≤ 2, nodes N1 and N2 are
set to be leaves. We have LN1

= LN2
= 0. Consequently,

LN = 1. Because |Θ(N)| = 4, LN achieves lower bound
⌈log2 |Θ(N)|/2⌉ = 1. We do not need to consider other hyper-
planes to derive LN for N . The D-Tree construction stops.

Then, we interact with the user based on the D-Tree. Let
k = 2, l1 = l2 = 1 (i.e., each brand should have at least
one car), and b1 = b2 = 2 (i.e., each brand should have at
most two cars). The root node contains car tuples p1 and p2.
We present them to the user as a question. Assume that the
user’s utility vector is u = (0.6, 0, 2, 0.2). The user will tell
that p2 is preferred. We move to node N2 and update R to
be R∩h−

1,2, i.e., Θ3 ∪Θ4. Since any extreme utility vector in
Θ3 ∪Θ4 corresponds to the same diverse top-k set {p1,p3},
we stop the interaction and return the set as the output.

VI. THEORETICAL ANALYSIS

We analyze the complexity of the problem IDT and establish
theoretical guarantees for our proposed algorithms.

Problem IDT. We provide a lower bound on the number of
interactive rounds needed to find the user’s diverse top-k set.

Theorem 1. There exists a dataset D of size n such that any
algorithm needs to interact with a user in Ω(log2 n) rounds to
find the user’s diverse top-k set.

TDIA. The theoretical analysis of TDIA is shown as follows.

Theorem 2. The exploration phase of TDIA runs in
O(n2 log n+Y1+Y2n

2) time, where Y1 is the time complexity
of ∇·(·) [20] and Y2 is the time complexity of checking if a
set satisfies the diversity constraint [16].

Theorem 3. Algorithm TDIA solves the special case of prob-
lem IDT by interacting with a user within O(log2 n) rounds.

Corollary 1. Algorithm TDIA is asymptotically optimal in
terms of the number of interactive rounds for the special case
of problem IDT.

HDIA. The theoretical analysis of HDIA is shown as follows.

Theorem 4. Constructing a D-Tree needs O((2m)κ γ!
(γ−κ)!)

time, where m is the total number of partitions, γ is the size
of the hyper-plane batch, and κ is the height of the D-Tree.

Note that although the time complexity appears large due
to the exponential expression, it remains manageable in prac-
tice. First, our strategy only constructs several small D-Trees
(instead of a complete one), each representing a part of the
complete D-Tree. This keeps the height κ of the small D-
Tree low (e.g., 3). Second, we introduce a lower bound for
LN . It helps eliminate certain hyper-planes from consideration
(instead of considering all γ hyper-planes). As a result, the D-
Tree construction remains efficient, as shown in Section VII-A.

Theorem 5. Algorithm HDIA solves the general case of
problem IDT by interacting with a user within O(cd log2 n)
rounds in expectation, where c > 1 is a parameter used to
bound the size of partitions.

Corollary 2. Algorithm HDIA is asymptotically optimal in
terms of the number of interactive rounds for the general case
of problem IDT in expectation if c and d are fixed.

8

VII. EXPERIMENT

We conducted experiments on a machine with 3.10GHz
CPU and 16GB RAM. Programs were implemented in C/C++.

Datasets. The experiments were conducted on synthetic and
real datasets that were commonly used in existing studies [12],
[30], [61], [62]. The synthetic datasets were anti-correlated.
They were constructed by the generator developed for skyline
operators [61], [63]. Following [14], we separated tuples into g
equal-sized groups, where g ≥ 1. The real datasets were Adult
[14], Bank [64] and Car [65]. Dataset Adult consists of 32, 561
individual tuples, each of which is described by two sensitive
attributes (gender and race) and five scoring attributes (educa-
tion years, capital gain, etc.) Dataset Bank consists of 45, 211
individual tuples, each of which is described by one sensitive
attribute (marital) and six scoring attributes (age, balance,
duration, etc.). Dataset Car consists of 1, 294, 759 individual
car tuples. We use one sensitive attribute (transmission type:
manual, automatic, and others) and three scoring attributes
(mileage, power, and price). The tuples in the two real datasets
were separated into groups based on their sensitive attributes.

For all the datasets, each scoring attribute is normalized
to (0, 1]. Note that existing studies [12], [66] preprocessed
datasets to contain skyline tuples only (which are all possible
top-1 tuples w.r.t. at least a utility function) since they look
for the (close to) top-1 tuple. Consistent with their setting, we
also preprocessed all the datasets to enable a fair comparison.
For each group of the dataset, we only included k-skyband
tuples (which are all possible top-k tuples w.r.t. at least a utility
function) [62] since we were interested in the diverse top-k set.

Algorithms. We evaluated our algorithms TDIA and HDIA
against existing ones: ACTIVERANKING [23], UH-SIMPLEX
[12], SINGLEPASS [67], PREFERENCE-LEARNING (denoted
by PREF-LEARNING for short in the following) [24], and RH
[31]. Since none of the existing algorithms are designed to
solve our problem directly, we adapted them as follows:
• Algorithm ACTIVERANKING focuses on learning the full

ranking of tuples by interacting with the user. We find the
diverse top-k set by ∇u(D) when the ranking is obtained.

• Algorithms UH-SIMPLEX and SINGLEPASS are proposed
to return the user’s (close to) top-1 tuple by interacting with
the user. We maintain a set S that is initialized to be ∅
and perform the algorithm iteratively. At each iteration, the
algorithm learns the top-1 tuple of dataset D \ S and adds
it to S. This is achieved by re-using the information about
the utility function that is learned from previous iterations
and interacting with the user to refine the information based
on dataset D \ S . After the iteration, we check whether S
contains k tuples that satisfy the diversity constraint. If yes,
we return the k tuples; otherwise, we start another iteration.

• Algorithm PREF-LEARNING approximates the user’s utility
vector by interacting with the user. After the approximated
utility vector u is obtained, we find the diverse top-k set
based on the approximated utility vector u by ∇u(D).

• Algorithms RH is proposed to achieve two goals based on
its designed stopping conditions: returning desired tuples

Table III: Parameters and Values

Parameter Meaning Default Value
n The dataset size. 100,000
d The number of scoring attributes. 4
g The number of groups. 3
k The size of output. 10

λ
It controls the upper/lower bounds of the
diversity constraint. 0.1

γ The batch size. 30

α
The number of hyper-planes in H(N)
that can be used to derive LN . 3

β
It is related to the number of partitions
allowed in the leaf of the D-Tree. 6

and learning the ranking of tuples by interacting with the
user. We follow its design for the second goal. After the
ranking is obtained, we find the diverse top-k set by ∇u(D).

Parameter Setting. We evaluated the performance of each
algorithm by varying different parameters. (1) The dataset
size n. (2) The number of scoring attributes d. (3) The
number of groups g (as discussed in Section III, tuples can
be divided into groups based on their sensitive attributes).
Unless stated explicitly, following [12], [14], [31], the default
setting of parameters on synthetic datasets is n = 100, 000,
d = 4, and g = 3. (4) The parameter k, which decides
the size of the output. We set k = 10 by default. For the
diversity constraint, following [14], [68], we set the bounds
proportionally. That is, we require the proportion of each group
in the output to be approximately equal to that in the dataset
D. Specifically, for each group Gi, where i ∈ {1, 2, ..., g}, we
set li = ⌊(1 − λ)k · |Gi|

|D| ⌋ and bi = ⌈(1 + λ)k · |Gi|
|D| ⌉, where

λ = 0.1 by default. (5) We also varied parameter λ. Table III
summarizes the parameters used in the experiments.

Performance Measurement. We evaluated algorithms with
two measurements: (1) the execution time, which is the pro-
cessing time; (2) the number of questions asked, which is the
number of rounds interacting with users. Each algorithm was
conducted 10 times with different randomly generated user
utility vectors, and the average performance was reported.

A. Performance on Synthetic Datasets

Parameter Setting of HDIA. We explored several parame-
ters’ setting of HDIA on a 4-dimensional synthetic dataset.
Parameter γ. In Figure 5, we varied parameter γ from 10
to 60, and evaluated the execution time and the number of
questions asked. Parameter γ decides the batch size (intro-
duced in Section V). The results show that when γ increased,
the execution time rose, but the number of questions asked
decreased. This is because a large batch of hyper-planes pro-
vides a broader selection of candidate hyper-planes for tuple
selection, which enhances the likelihood of asking effective
questions to users, and thus, reduces the overall number of
questions asked. However, it also results in a great number
of partitions, causing a high computational cost. To achieve a
balance, we set γ = 30 in the rest of our experiments.
Parameter α. As shown in Section V, parameter α determines,
for each node N , the number of hyper-planes inH(N) that can
be used to derive LN . In Figure 6, we varied parameter α from

9

γ = 10
γ = 20

γ = 30
γ = 40

γ = 50
γ = 60

10

20

30

40

50

60

 5 10 15 20 25 30 35 40

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

k

20
25
30
35
40
45
50
55
60

5 10 15 20 25 30 35 40

#
 o

f
Q

u
e

s
ti
o

n
s

k

(a) (b)

Figure 5: Batch Size γ

α = 2
α = 3

α = 4
α = 5

α = 6
α = 7

10
15
20
25
30
35
40
45
50

 5 10 15 20 25 30 35 40

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

k

20

25

30

35

40

45

50

5 10 15 20 25 30 35 40

#
 o

f
Q

u
e

s
ti
o

n
s

k

(a) (b)

Figure 6: Parameter α

β = 6
β = 12

β = 18
β = 24

β = 30
β = 36

10
15
20
25
30
35
40
45
50

 5 10 15 20 25 30 35 40

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

k

20

25

30

35

40

45

50

5 10 15 20 25 30 35 40

#
 o

f
Q

u
e

s
ti
o

n
s

k

(a) (b)

Figure 7: Parameter β

Pref-Learning
Active-Ranking

SinglePass
TDIA

HDIA
RH

UH-Simplex

0
1
2
3
4
5
6
7
8

 5 10 15 20 25 30 35 40

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

k

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40

#
 o

f
Q

u
e

s
ti
o

n
s

k

50%

60%

70%

80%

90%

100%

5 10 15 20 25 30 35 40

A
c
c
u

ra
c
y

k

(a) (b) (c)

Figure 8: 2D Dataset

Pref-Learning
Active-Ranking

SinglePass
HDIA

RH
UH-Simplex

0

50

100

150

200

250

300

 5 10 15 20 25 30 35 40

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

k

16

32

64

128

256

5 10 15 20 25 30 35 40

#
 o

f
Q

u
e

s
ti
o

n
s

k

50%

60%

70%

80%

90%

100%

5 10 15 20 25 30 35 40

A
c
c
u

ra
c
y

k

(a) (b) (c)

Figure 9: 4D Dataset

Pref-Learning
Active-Ranking

SinglePass
HDIA

RH
UH-Simplex

0

50

100

150

200

250

300

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

λ

16

32

64

128

256

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

#
 o

f
Q

u
e

s
ti
o

n
s

λ

(a) (b)

Figure 10: Vary λ

Pref-Learning
Active-Ranking

SinglePass
HDIA

RH
UH-Simplex

0

50

100

150

200

250

300

10k 50k 100k 500k 1M

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Size

16

32

64

128

256

10k 50k 100k 500k 1M

#
 o

f
Q

u
e

s
ti
o

n
s

Size

(a) (b)

Figure 11: Vary Size n

Pref-Learning
Active-Ranking

SinglePass
HDIA

RH
UH-Simplex

0

50

100

150

200

250

300

 2 3 4 5

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Dim

8

16

32

64

128

256

2 3 4 5

#
 o

f
Q

u
e

s
ti
o

n
s

Dim

(a) (b)

Figure 12: Vary # of scoring attributes d

Pref-Learning
Active-Ranking

SinglePass
HDIA

RH
UH-Simplex

0

50

100

150

200

250

300

 2 3 4 5 6 7 8

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Group

16

32

64

128

256

 2 3 4 5 6 7 8

#
 o

f
Q

u
e

s
ti
o

n
s

Group

(a) (b)

Figure 13: Vary Group g

Pref-Learning
Active-Ranking

SinglePass
HDIA

RH
UH-Simplex

0
5

10
15
20
25
30
35
40

 10 15 20 25 30 35 40

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

k

16

32

64

128

256

10 15 20 25 30 35 40

#
 o

f
Q

u
e

s
ti
o

n
s

k

(a) (b)

Figure 14: Adult

Pref-Learning
Active-Ranking

SingPass
HDIA

RH
UH-Simplex

10
0

10
1

10
2

10
3

10
4

 5 10 15 20 25 30 35 40

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

k

32

64

128

256

512

5 10 15 20 25 30 35 40

#
 o

f
Q

u
e

s
ti
o

n
s

k

(a) (b)

Figure 15: Bank

2 to 7, and evaluated the execution time and the number of
questions asked. Both measurements fluctuated slightly, which
indicated that we only needed to consider a small set of hyper-
planes to derive LN for each node N . Thus, we set α = 3 in
the rest of our experiments.

Parameter β. As shown in Section V, parameter β is related to
the number of partitions allowed in the leaf of the D-Tree. The
partitions in the leaf should be no more than 1/β partitions
in the root node. In Figure 7, we varied β from 6 to 36,
and evaluated the execution time and the number of questions
asked. As can be seen, the execution time rose with the
increasing β, while the number of questions asked remained
almost the same. This indicated that constructing several small
D-Trees was better than constructing a big completed D-Tree.
Thus, we set β = 6 in the rest of our experiments.

Remark. When k increased, there was an upward trend in the
execution time and the number of questions asked. This is
expected since a larger k necessitates a smaller utility range to

distinguish more top-ranked tuples. However, occasional dips
may happen (e.g., when k = 25). This could be attributed
to our dataset preprocessing, where the dataset was restricted
to only include k-skyband tuples. When k increased, there
were more tuples included. This introduced more hyper-planes,
potentially leading to better questions for interaction.

Vary k. We studied the impact of k on all algorithms.
2D Dataset. In Figure 8, we evaluate the performance of algo-
rithms on a 2-dimensional synthetic dataset by varying k from
5 to 40. The other parameters were set by default. Figure 8(a)
depicts the execution time. All algorithms could finish within
7 seconds, indicating high overall efficiency. TDIA and PREF-
LEARNING took slightly longer times than the others. This is
because TDIA has to find all possible diverse top-k sets in
the exploration phase, and PREF-LEARNING requires building
a spherical tree data structure at the beginning. Nevertheless,
the additional execution time is minimal and occurs before
the interaction phase, ensuring it does not affect the user

10

RH UH-Simplex HDIA

 2

 4

 8

 16

 32

of Questions Satisfaction Boredom

V
a

lu
e

Measurement

Figure 16: User Study

HDIA HDIA-1 HDIA-2

 2

 4

 8

 16

 32

of Questions Satisfaction Boredom

V
a

lu
e

Measurement

Figure 17: Diversity Study

interaction. Figure 8(b) presents the number of questions
asked. We do not show SINGLEPASS since it asked over 1,838
questions in all cases, which was two orders of magnitude
more than the others. Our algorithm TDIA asked the fewest
questions. It reduced at least 31% questions compared to
the best existing one UH-SIMPLEX. Figure 8(c) validates all
algorithms returned the exact diverse top-k set. We compared
the set S of tuples returned by each algorithm with the ground
truth S∗. The accuracy was defined as |S∗ ∩ S|/|S∗|. We
observed that all algorithms achieved 100% accuracy.
4D Dataset. Figure 9 presents the performance of algorithms
on a 4-dimensional synthetic dataset by varying k from 5 to
40. The other parameters were set by default. SINGLEPASS
achieved significantly shorter execution times. However, this
speed came at the cost of a large number of questions (exceed-
ing 2,052), which was two to three orders of magnitude more
than the others. Given that the number of questions mainly
determines user satisfaction during interaction (as discussed in
Section I), this trade-off results in a less favorable balance. To
better highlight the performance of the remaining algorithms,
SINGLEPASS is omitted from Figure 9(b). ACTIVERANKING
and RH also asked many questions since they needed to
learn the full ranking of tuples. For example, when k = 40,
they asked 159.1 and 152.8 questions, respectively. Among
existing algorithms, UH-SIMPLEX asked the fewest questions
However, its execution time could extend to hundreds of
seconds. In contrast, our algorithm HDIA required a much
shorter execution time than UH-SIMPLEX for arbitrary k.
For instance, it took 81% less time than UH-SIMPLEX when
k = 40. Additionally, HDIA asked fewer questions than
existing ones. Compared to the best algorithm UH-SIMPLEX,
it asked 15.4 fewer questions on average. Figure 9(c) shows
that all the algorithms returned the exact diverse top-k set.
Vary λ. In Figure 10, we studied the impact of the tightness of
the diversity constraint on the algorithms. We varied parameter
λ from 0.1 to 0.8, which is used to restrict the proportion of
each group in the output as introduced at the beginning of
Section VII. We excluded algorithm SINGLEPASS from Fig-
ure 10(b) since it asked more than two thousand questions in
all cases. The performances of PREF-LEARNING, ACTIVER-
ANKING, and RH remained unaffected with the variation of
parameter λ. This is because these algorithms either learn
the ranking of tuples or approximate the user’s utility vector,
which are independent of the diverse constraints. For the
other algorithms, when λ increased, the number of questions
asked showed a downward trend. For example, algorithm

SINGLEPASS dropped from 4,579.9 to 2,909.4. The underlying
reason is that a larger λ corresponds to a more relaxed
constraint, and thus, the algorithms are required to collect
less information about the user’s utility vector to identify the
diverse top-k set. Our algorithm HDIA was affected slightly,
and it consistently asked the fewest questions in all cases.
Scalability. We evaluated the scalability of algorithms by
varying three parameters n, d, and g, respectively.
Varying n. In Figure 11, we varied the dataset size n from
10k to 1M on 4-dimensional datasets. Figure 11(a) shows
the execution time. Except for PREF-LEARNING and RH,
the other algorithms displayed relatively similar execution
times. Figure 11(b) displays the number of questions asked
by each algorithm. We omitted SINGLEPASS since it asked
more than 3,471.8 questions. Our algorithm HDIA scaled the
best. The number of questions it asked is significantly small.
For instance, HDIA asked 38 questions when n = 500, 000,
whereas SINGLEPASS asked 5,087.50 questions. The results
highlight the effectiveness of HDIA in handling large datasets.
Varying d. In Figure 12, we varied the number of scoring
attributes (i.e., dimensions) d from 2 to 5 on 4-dimensional
datasets. SINGLEPASS consistently spent the shortest execu-
tion time across all dimensions. However, SINGLEPASS asked
a significantly large number of questions, which was two to
three orders of magnitude more than the other algorithms.
For better demonstrations, we omitted SINGLEPASS in Fig-
ure 12(b). For the other algorithms, the execution time and the
number of questions asked increased with high dimensions, as
expected. This can be attributed to the increased complexity of
learning the user’s utility vector in high-dimensional spaces.
Our algorithm HDIA consistently outperformed the others
regarding the number of questions asked across all dimensions.
For example, when d = 5, HDIA asked 40% fewer questions
than the best existing algorithm PREF-LEARNING. The results
show the usefulness of HDIA in high-dimensional spaces.
Varying g. In Figure 13, we varied the number of groups g
from 2 to 8 on 4-dimensional datasets. We excluded SIN-
GLEPASS from Figure 13(b) since it asked thousands of ques-
tions (more than 2,789.4 questions in all cases). The results
show that except for PREF-LEARNING, both the execution
time and the number of questions asked by each algorithm
reduced when the number of groups decreased. This trend
was caused by the complexity of diversity constraints. When
the number of groups decreased, algorithms were required
to collect less information on the user’s utility vector to
accurately identify the diverse top-k set. Conversely, PREF-

11

LEARNING is designed to approximate the user’s utility vector
directly. Its core mechanism is not influenced by the diversity
constraints associated with g. Our algorithm HDIA scaled the
best among all algorithms. For instance, when g = 8, HDIA
asked 37% fewer questions than the best existing algorithm
UH-SIMPLEX. The results underscore HDIA’s adaptability in
different diversity constraints.

Diversity Models. Our algorithm HDIA can be adapted to
different diversity models. We implemented and evaluated it
with two widely-used diversity models proposed by [18] and
[19]. Due to space limitations, the details can be found in [60].

B. Performance on Real Datasets

Vary k. We evaluated algorithms on the three real datasets by
varying parameter k. Figures 14 and 15 show the results on
datasets Adult and Bank, respectively. Due to the lack of space,
the results on dataset Car can be found in [60]. We excluded
SINGLEPASS from Figures 14(b) and 15(b) since it asked
thousands of questions. The results show that our algorithm
performed well regarding the execution time and the number of
questions asked. For example, when k = 10, compared to the
best existing algorithm PREF-LEARNING, HDIA made 57.9%
and 36.0% reduction in terms of the number of questions asked
on Adult and Bank, respectively.

User Study. We conducted a user study on dataset Car to show
our effectiveness on real users. Following existing settings in
[3], [12], [31], we randomly selected 1000 candidate cars from
the dataset. Each car was described by four attributes: price,
horsepower, used mileage, and transmission type. During the
interaction, only the first three attributes were shown, while
all attributes were shown in the final results. We recruited 30
participants and reported their average results.

To reduce the burden on participants, we compared our
algorithm HDIA against two existing ones: RH and UH-
SIMPLEX. Both existing algorithms asked very few questions.
SINGLEPASS was excluded due to the excessive number of
questions it required. PREF-LEARNING was excluded from the
comparison since its stopping condition assumes that the user’s
utility function is known, making it unsuitable for user study
(where the user’s utility function is unknown). Fixing k = 10,
each algorithm was evaluated by three measurements. (1) The
number of questions asked. (2) Satisfaction. It is a score from
1 to 10 given by each participant (the higher, the better),
indicating how satisfied the participant is by considering one
aspect: the returned cars. (3) Boredom. It is a score from 1 to
10 given by each participant (the lower, the better), showing
how bored the participant feels by considering two aspects:
the returned cars and the number of questions asked.

Figure 16 shows the average results and standard devia-
tions. Our algorithm HDIA achieved the smallest standard
deviations. As for the average results, our algorithm HDIA
performed the best across all measurements. The number of
questions asked by HDIA was 13.7, while existing algorithms
RH and UH-SIMPLEX asked 23.3 and 16.8 questions, respec-
tively. The boredom of our algorithm was also better than

existing ones by at least 10%. This verifies the effectiveness
of our algorithms on real users.

Diversity Model Study. We conducted a study on dataset Car
to compare our algorithms equipped with different diversity
modes. For clarity, we denote our algorithm with the diversity
models in [14], [18], and [19] by HDIA, HDIA-1, and HDIA,
respectively. The settings and measurements were consistent
with those used in our previous user study.

Figure 17 summarizes the average results along with their
standard deviations. As shown there, all three versions of
our algorithm asked only a few questions. This indicates the
effectiveness of our algorithm regardless of the diversity model
applied. The satisfaction and boredom across all three versions
were close. Nevertheless, the standard deviations indicate
individual participants expressed various preferences. This
suggests that user preferences for diversity may be subjective.
Given the adaptability of our algorithm to different diversity
models, it has the potential for various scenarios.

C. Summary

The experiments showed the superiority of our algorithms
over the best-known existing ones: (1) We are effective and
efficient. Our algorithms TDIA and HDIA ask fewer ques-
tions within less time than existing algorithms (e.g., on a 2-
dimensional dataset with k = 10, while existing algorithm
RH asks 20.7 questions, TDIA requires only 6.3 questions).
(2) Our algorithms scale well on the dataset size, the number
of dimensions, and the number of groups (e.g., HDIA asks
40% fewer questions than the best existing algorithm when
d = 5). (3) Our algorithms show great promise for real-
world applications (e.g., on dataset Adult with k = 10,
HDIA achieves a 57.9% reduction in the number of questions
compared to existing algorithms). In summary, TDIA asks
the fewest questions in a 2-dimensional space with a small
execution time. In a d-dimensional space, HDIA runs within
a few seconds and asks the fewest questions.

VIII. CONCLUSION

In this paper, we incorporate an interactive learning frame-
work and a diversity mechanism, presenting interactive algo-
rithms for finding the user’s diverse top-k set. For the special
case, where the dataset is described by two scoring attributes,
we propose algorithm TDIA, which is asymptotically optimal
w.r.t. the number of questions asked. For the general case,
where the dataset is described by multiple scoring attributes,
we present algorithm HDIA, which is asymptotically optimal
w.r.t. the number of questions asked in expectation. Extensive
experiments showed that our algorithms are efficient and
effective. As for future work, we consider the case that users
cannot answer the question or equally prefer the presented
tuples during the interaction.

ACKNOWLEDGMENT

We are grateful to the anonymous reviewers for their con-
structive comments. The research is supported in part by NSF
grant 2312931.

12

REFERENCES

[1] M. Xie, T. Chen, and R. C.-W. Wong, “Findyourfavorite: An interactive
system for finding the user’s favorite tuple in the database,” in Proceed-
ings of the ACM SIGMOD International Conference on Management of
Data. New York, NY, USA: ACM, 2019, p. 2017–2020.

[2] M. Xie, R. C.-W. Wong, P. Peng, and V. J. Tsotras, “Being happy with
the least: Achieving α-happiness with minimum number of tuples,” in
Proceedings of the International Conference on Data Engineering, 2020,
pp. 1009–1020.

[3] M. X. Weicheng Wang, Raymond Chi-Wing Wong, “Interactive search
with mixed attributes,” in In IEEE ICDE International Conference on
Data Engineering, 2023.

[4] W. Wang and R. C.-W. Wong, “Interactive mining with ordered and
unordered attributes,” Proceedings of the VLDB Endowment, vol. 15,
no. 11, pp. 2504–2516, 2022.

[5] J. Lee, G.-w. You, and S.-w. Hwang, “Personalized top-k skyline queries
in high-dimensional space,” Information Systems, vol. 34, pp. 45–61,
2009.

[6] M. A. Soliman and I. F. Ilyas, “Ranking with uncertain scores,” in
Proceedings of the International Conference on Data Engineering, 2009,
pp. 317–328.

[7] P. Peng and R. C.-W. Wong, “K-hit query: Top-k query with prob-
abilistic utility function,” in Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p.
577–592.

[8] Z. Song and N. Roussopoulos, “K-nearest neighbor search for moving
query point,” in International Symposium on Spatial and Temporal
Databases. Berlin, Heidelberg: Springer, 2001, pp. 79–96.

[9] D. Mandaliya, “The what, why, and how of brand
fatigue,” 2024. [Online]. Available: https://www.marketingmonk.so/
p/the-what-why-and-how-of-brand-fatigue

[10] O. Bukun-Joseph, “Navigating brand weariness, and paving the path
forward,” 2024. [Online]. Available: https://tosinloluwa.medium.com/
navigating-brand-weariness-and-paving-the-path-forward-8ffaf9bb9dcb

[11] https://www.microsoft.com/en-us/research/academic-program/
phd-fellowship/canada-us/.

[12] M. Xie, R. C.-W. Wong, and A. Lall, “Strongly truthful interactive
regret minimization,” in Proceedings of the ACM SIGMOD International
Conference on Management of Data. New York, NY, USA: ACM, 2019,
p. 281–298.

[13] D. Nanongkai, A. Lall, A. Das Sarma, and K. Makino, “Interactive
regret minimization,” in Proceedings of the ACM SIGMOD International
Conference on Management of Data. New York, NY, USA: ACM, 2012,
p. 109–120.

[14] J. Zheng, Y. Ma, W. Ma, Y. Wang, and X. Wang, “Happiness maximizing
sets under group fairness constraints,” Proc. VLDB Endow., vol. 16,
no. 2, p. 291–303, oct 2022.

[15] E. Pitoura, K. Stefanidis, and G. Koutrika, “Fairness in rankings and
recommendations: An overview,” The VLDB Journal, vol. 31, no. 3, p.
431–458, oct 2021.

[16] A. Asudeh, H. V. Jagadish, J. Stoyanovich, and G. Das, “Designing fair
ranking schemes,” ser. SIGMOD ’19. New York, NY, USA: Association
for Computing Machinery, 2019.

[17] J. Stoyanovich, K. Yang, and H. V. Jagadish, “Online set selection
with fairness and diversity constraints,” in Proceedings of the 21st
International Conference on Extending Database Technology, EDBT
2018, Vienna, Austria, March 26-29, 2018, M. H. Böhlen, R. Pichler,
N. May, E. Rahm, S. Wu, and K. Hose, Eds. OpenProceedings.org,
2018, pp. 241–252.

[18] P. Fraternali, D. Martinenghi, and M. Tagliasacchi, “Top-k bounded
diversification,” in Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’12. New York,
NY, USA: Association for Computing Machinery, 2012, p. 421–432.

[19] L. Qin, J. X. Yu, and L. Chang, “Diversifying top-k results,” Proc. VLDB
Endow., vol. 5, no. 11, p. 1124–1135, jul 2012.

[20] M. Zehlike, K. Yang, and J. Stoyanovich, “Fairness in ranking, part i:
Score-based ranking,” ACM Comput. Surv., vol. 55, no. 6, dec 2022.

[21] “Alchemer llc,” Last accessed on 02/2025. [Online]. Available:
https://www.alchemer.com/resources/blog/how-many-survey-questions/

[22] “Questionpro,” Last accessed on 02/2025. [Online]. Available: https:
//www.questionpro.com/blog/optimal-number-of-survey-questions/

[23] K. G. Jamieson and R. D. Nowak, “Active ranking using pairwise
comparisons,” in Proceedings of the 24th International Conference on
Neural Information Processing Systems. Red Hook, NY, USA: Curran
Associates Inc., 2011, p. 2240–2248.

[24] L. Qian, J. Gao, and H. V. Jagadish, “Learning user preferences by
adaptive pairwise comparison,” in Proceedings of the VLDB Endowment,
vol. 8, no. 11. VLDB Endowment, 2015, p. 1322–1333.

[25] J. Li, Y. Moskovitch, J. Stoyanovich, and H. Jagadish, “Query refinement
for diversity constraint satisfaction,” Proceedings of the VLDB Endow-
ment, vol. 17, no. 2, pp. 106–118, 2023.

[26] D. Nanongkai, A. D. Sarma, A. Lall, R. J. Lipton, and J. Xu, “Regret-
minimizing representative databases,” in Proceedings of the VLDB
Endowment, vol. 3, no. 1–2. VLDB Endowment, 2010, p. 1114–1124.

[27] P. Peng and R. C.-W. Wong, “Geometry approach for k-regret query,”
in Proceedings of the International Conference on Data Engineering,
2014, pp. 772–783.

[28] S. Chester, A. Thomo, S. Venkatesh, and S. Whitesides, “Computing k-
regret minimizing sets,” in Proceedings of the VLDB Endowment, vol. 7,
no. 5. VLDB Endowment, 2014, p. 389–400.

[29] P. K. Agarwal, N. Kumar, S. Sintos, and S. Suri, “Efficient algorithms
for k-regret minimizing sets,” arXiv preprint arXiv:1702.01446, 2017.

[30] G. Koutrika, E. Pitoura, and K. Stefanidis, “Preference-based query
personalization,” Advanced Query Processing, pp. 57–81, 2013.

[31] W. Wang, R. C.-W. Wong, and M. Xie, “Interactive search for one of the
top-k,” in Proceedings of the ACM SIGMOD International Conference
on Management of Data. New York, NY, USA: ACM, 2021.

[32] M. R. Vieira, H. L. Razente, M. C. Barioni, M. Hadjieleftheriou, D. Sri-
vastava, C. Traina, and V. J. Tsotras, “On query result diversification,” in
2011 IEEE 27th International Conference on Data Engineering. IEEE,
2011, pp. 1163–1174.

[33] K. Zheng, H. Wang, Z. Qi, J. Li, and H. Gao, “A survey of query result
diversification,” Knowledge and Information Systems, vol. 51, no. 1, pp.
1–36, 2017.

[34] F. Radlinski, R. Kleinberg, and T. Joachims, “Learning diverse rankings
with multi-armed bandits,” in Proceedings of the 25th international
conference on Machine learning, 2008, pp. 784–791.

[35] R. H. Van Leuken, L. Garcia, X. Olivares, and R. van Zwol, “Visual
diversification of image search results,” in Proceedings of the 18th
international conference on World wide web, 2009, pp. 341–350.

[36] C. Yu, L. V. Lakshmanan, and S. Amer-Yahia, “Recommendation
diversification using explanations,” in 2009 IEEE 25th international
conference on data engineering. IEEE, 2009, pp. 1299–1302.

[37] C. Yu, L. Lakshmanan, and S. Amer-Yahia, “It takes variety to make
a world: diversification in recommender systems,” in Proceedings of
the 12th international conference on extending database technology:
Advances in database technology, 2009, pp. 368–378.

[38] Q. Wu, Y. Liu, C. Miao, Y. Zhao, L. Guan, and H. Tang,
“Recent advances in diversified recommendation,” arXiv preprint
arXiv:1905.06589, 2019.

[39] D. Rafiei, K. Bharat, and A. Shukla, “Diversifying web search results,”
in Proceedings of the 19th international conference on World wide web,
2010, pp. 781–790.

[40] G. Capannini, F. M. Nardini, R. Perego, and F. Silvestri, “Efficient
diversification of web search results,” arXiv preprint arXiv:1105.4255,
2011.

[41] R. L. Santos, C. Macdonald, and I. Ounis, “Selectively diversifying web
search results,” in Proceedings of the 19th ACM international conference
on Information and knowledge management, 2010, pp. 1179–1188.

[42] Z. Liu, P. Sun, and Y. Chen, “Structured search result differentiation,”
Proceedings of the VLDB Endowment, vol. 2, no. 1, pp. 313–324, 2009.

[43] E. Demidova, P. Fankhauser, X. Zhou, and W. Nejdl, “Divq: diversifica-
tion for keyword search over structured databases,” in Proceedings of the
33rd international ACM SIGIR conference on Research and development
in information retrieval, 2010, pp. 331–338.

[44] B. Eravci and H. Ferhatosmanoglu, “Diversity based relevance feedback
for time series search,” Proceedings of the VLDB Endowment, vol. 7,
no. 2, pp. 109–120, 2013.

[45] T. N. Nguyen and N. Kanhabua, “Leveraging dynamic query subtopics
for time-aware search result diversification,” in European Conference on
Information Retrieval. Springer, 2014, pp. 222–234.

[46] T. Deng and W. Fan, “On the complexity of query result diversification,”
Proceedings of the VLDB Endowment, vol. 6, no. 8, pp. 577–588, 2013.

13

[47] J. Carbonell and J. Goldstein, “The use of mmr, diversity-based rerank-
ing for reordering documents and producing summaries,” in Proceedings
of the 21st Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, ser. SIGIR ’98. New York,
NY, USA: Association for Computing Machinery, 1998, p. 335–336.

[48] M. Drosou, H. V. Jagadish, E. Pitoura, and J. Stoyanovich, “Diversity
in big data: A review,” Big data, vol. 5, no. 2, pp. 73–84, 2017.

[49] M. Drosou and E. Pitoura, “Search result diversification,” ACM SIGMOD
Record, vol. 39, no. 1, pp. 41–47, 2010.

[50] L. E. Celis, D. Straszak, and N. K. Vishnoi, “Ranking with fairness
constraints,” arXiv preprint arXiv:1704.06840, 2017.

[51] S. Shetiya, I. P. Swift, A. Asudeh, and G. Das, “Fairness-aware range
queries for selecting unbiased data,” in Proc. of the Int. Conf. on Data
Engineering, ICDE, 2022.

[52] J. Li, A. Silberstein, Y. Moskovitch, J. Stoyanovich, and H. Jagadish,
“Erica: Query refinement for diversity constraint satisfaction,” Proceed-
ings of the VLDB Endowment, vol. 16, no. 12, pp. 4070–4073, 2023.

[53] M. Xie, R. C.-W. Wong, J. Li, C. Long, and A. Lall, “Efficient k-regret
query algorithm with restriction-free bound for any dimensionality,”
in Proceedings of the ACM SIGMOD International Conference on
Management of Data. New York, NY, USA: ACM, 2018, p. 959–974.

[54] A. Asudeh, A. Nazi, N. Zhang, G. Das, and H. V. Jagadish, “Rrr: Rank-
regret representative,” in Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data. New York, NY, USA:
ACM, 2019, pp. 263–280.

[55] J. Dyer and R. Sarin, “Measurable multiattribute value functions,”
Operations Research, vol. 27, pp. 810–822, 08 1979.

[56] R. Keeney, H. Raiffa, and D. Rajala, “Decisions with multiple objectives:
Preferences and value trade-offs,” Systems, Man and Cybernetics, IEEE
Transactions on, vol. 9, pp. 403 – 403, 08 1979.

[57] L. E. Celis, L. Huang, and N. K. Vishnoi, “Multiwinner voting with
fairness constraints,” in Proceedings of the 27th International Joint
Conference on Artificial Intelligence, ser. IJCAI’18. AAAI Press, 2018,
p. 144–151.

[58] H. Liu, R. C.-W. Wong, Z. Zhang, M. Xie, and B. Tang, “Fair top-k
query on alpha-fairness,” in 2024 IEEE 40th International Conference
on Data Engineering (ICDE). IEEE, 2024, pp. 2338–2350.

[59] M. De Berg, O. Cheong, M. Van Kreveld, and M. Overmars, Com-
putational geometry: Algorithms and applications. Springer Berlin
Heidelberg, 2008.

[60] W. Wang, R. C.-W. Wong, J. Li, and H. Jagadish,
“Interactive learning for diverse top-k set,” Tech. Rep.,
2025. [Online]. Available: https://github.com/WANGWC1996/
2025ICDE-Interactive-Learning-for-Diverse-Top-k-Set

[61] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive skyline com-
putation in database systems,” ACM Transactions on Database Systems,
vol. 30, no. 1, p. 41–82, 2005.

[62] Y. Gao, Q. Liu, B. Zheng, L. Mou, G. Chen, and Q. Li, “On processing
reverse k-skyband and ranked reverse skyline queries,” Information
Sciences, vol. 293, pp. 11–34, 2015.

[63] S. Börzsönyi, D. Kossmann, and K. Stocker, “The skyline operator,”
in Proceedings of the International Conference on Data Engineering,
2001, p. 421–430.

[64] “Dataset bank,” Last accessed on 02/2025. [Online]. Available:
https://archive.ics.uci.edu/dataset/222/bank+marketing

[65] “Dataset car,” Last accessed on 11/2024. [Online]. Avail-
able: https://www.kaggle.com/datasets/ekibee/car-sales-information?
select=region25 en.csv

[66] W. Cao, J. Li, H. Wang, K. Wang, R. Wang, R. C.-W. Wong, and
W. Zhan, “k-Regret Minimizing Set: Efficient Algorithms and Hard-
ness,” in 20th International Conference on Database Theory. Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017, pp.
11:1–11:19.

[67] G. Zhang, N. Tatti, and A. Gionis, “Finding favourite tuples on data
streams with provably few comparisons,” in Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
ser. KDD ’23. New York, NY, USA: Association for Computing
Machinery, 2023, p. 3229–3238.

[68] M. El Halabi, S. Mitrović, A. Norouzi-Fard, J. Tardos, and J. Tarnawski,
“Fairness in streaming submodular maximization: Algorithms and hard-
ness,” in Proceedings of the 34th International Conference on Neural
Information Processing Systems, ser. NIPS’20. Red Hook, NY, USA:
Curran Associates Inc., 2020.

14

