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Abstract—The pervasiveness of shortest path queries is evident
in real life, particularly in online mapping applications. However,
in practice, the travel times of road segments can be uncertain
due to various reasons, such as traffic congestion, which leads
to the shortest path not to be the fastest, resulting in an
unreliable path. The Reliable Shortest Path (RSP) query has
been developed to fulfill individuals’ reliability requirements by
considering travel times as random variables. Extensive solutions
have been proposed to efficiently find RSPs in stochastic road
networks. However, they are either unscalable to large networks
or incapable of handling rapid streams of routing queries. In
this paper, we propose an efficient index-based solution for RSP
queries, called Non-dominated Reliable Path (NRP). It stores
partial path answers to support fast query processing and
utilizes several tailored pruning techniques that can significantly
reduce the query time. Experiments conducted on large city
road networks verified the superiority of our solution, which
can answer each query in around 100 microseconds and beat
competitors by orders of magnitude.

I. INTRODUCTION

The point-to-point shortest path query is the cornerstone of
many spatial applications, such as navigation systems, ride-
hailing platforms, and food delivery services. Online map-
ping platforms (e.g., Google Maps) receive numerous users’
shortest path queries daily. Users essentially seek traveling
guidance from these platforms to reach their destinations.
The query is answered by a recommended path with the
“shortest” travel time based on the current estimated travel
times of all road segments. However, the estimation can be
inaccurate due to various reasons, such as traffic congestion,
roadway geometry, and weather conditions, which makes the
path’s total travel time unreliable [1]–[3]. Simply ignoring
the uncertainty of travel times can lead to many unfavorable
consequences, including unpredictable delays, increased fuel
consumption, and risky driving behaviors. For example, the
shortest or fastest path that uses deterministic values of roads’
travel times as edge weights is unreliable when it traverses
roads with large variances during rush hour, as shown in
our case study (Section VI-B3). On the other hand, recent
studies revealed that travel time reliability plays a critical
role in travelers’ decision-making of final path choices [4],
[5]. Therefore, it is more realistic to take the uncertainty into
account to find the reliable shortest path (RSP).

We focus on the prevailing definition of RSP first proposed
by [6]. In a stochastic road network, where road segments and
their junctions are modeled as edges and vertices, respectively,

edges’ travel times are characterized by random variables. It
further implies that the travel time of each path (by summing
up its edges’ travel times) is also a random variable. For the
reliability of the travel time, individuals could have varying
requirements in different scenarios. For example, during rush
hour, a person leaving for the airport would avoid the risk and
care much about the variance of the travel time. However, one
commuter going home wants to minimize the expected travel
time even if the variances of some roads’ travel times are high.
Thus, it is more flexible to introduce a user-defined confidence
level α ∈ (0, 1) to represent the degree of reliability require-
ment. To evaluate each path, we would find an upper bound
of the path’s travel time (as the path’s metric value) such that
the probability that its travel time is at most the upper bound
should be at least the confidence level α.

The main challenge of finding RSPs efficiently lies in han-
dling the stochastic travel times, particularly with correlations.
There have been extensive routing solutions in stochastic
networks [1], [7]–[17]. Most of them searched the path from
the source to the destination incrementally by using some path
dominance conditions to prune the search space [7]–[16]. For
example, [1] applied matrix operations on large correlation
matrices. The state-of-the-art TBS [16] uses the travel times
of the reversed paths from the destination to prune the search
space. However, their routing algorithms are inefficient in large
networks since they need to search the network edges one by
one. They cannot fulfill the demand of answering RSP queries
efficiently in large stochastic networks.

Motivated by the above limitation, we propose by far the
fastest index-based solution for RSP queries. Specifically,
we propose the Non-dominated Reliable Path (NRP) index
that mainly stores some partial path answers (i.e., NRP) that
are superior under some conditions. They could be quickly
retrieved by label lookups and concatenated to form the final
RSP. By storing only NRP, we avoid the network search during
query processing and prune many useless paths that cannot be
a part of the RSP under different conditions. We also explore
how to maintain the index since travel times could change. The
experimental results show that our solution has an average
query processing time of 100 microseconds on New York’s
road network of standard cities and runs faster than state-of-
the-art competitors by orders of magnitude.

We summarize our contributions as follows.
• We propose the NRP index that utilizes several pruning



techniques to support fast RSP query processing.
• We introduce the mechanism of maintaining the index

when the travel time distribution changes.
• We empirically demonstrate the superiority of NRP on

large real-world city road networks. It is orders of mag-
nitude faster than state-of-the-art baselines.

The remainder of the paper is organized as follows. Sec-
tion II defines the problem. Section III illustrates our query
processing. Section IV and Section V explain the details of
index construction and maintenance, respectively. Section VI
shows experimental results. Section VII reviews the related
work, and Section VIII concludes this paper.

II. PRELIMINARIES

A. Problem Definitions
Definition 1 (Stochastic Road Network): A stochastic road

network is a connected undirected graph, denoted by G(V,E),
where V and E are the vertex and edge sets, respectively.
At any time, each edge e ∈ E is associated with a continu-
ous random variable, denoted by We, representing its travel
time. Its cumulative distribution function (CDF) is defined
by Fe(w) = Pr(We ≤ w) (where w ∈ R+), which is the
probability of the event that e’s travel time is at most w.

Following [2], [7], [18]–[20], we assume that edges’ travel
times are normal variables, which can be obtained by modern
machine learning techniques [21]–[23] and is out of the
scope of this paper. Note that this hypothesis about normal
variables has been verified on historical traffic data [24], [25].
The travel times could be either independent or correlated
variables. We will separately discuss the two cases for clarity,
but all the proposed techniques can be applied to a network
where both cases exist. For correlated variables, we define
the covariance between Wei and Wej as σei,ej = E[(Wei −
E[Wei ])(Wej − E[Wej ])]. In addition, the distributions of
travel times can change and be arbitrarily different normal
variables. For example, the mean and variance are usually
higher during rush hour than in light traffic. We omit the
notation of time associated with travel times at different times
since we answer queries based on current travel times. We will
discuss how to handle the changes in Section V.

Example 1: An example road network is shown in Figure 1.
Beside each edge e, we give its travel time We ∼ N (µe, σ

2
e)

with its mean µe and standard deviation σe. For example, both
the mean µ and standard deviation σ of the edge (v6, v8) are 2
and 2, respectively, where its variance σ2 is 4. For correlated
variables, we additionally assume that σ(v6,v4),(v4,v7) = −2,
σ(v4,v7),(v7,v5) = 1, and other covariances are 0.

Definition 2 (Path): A path p is a finite sequence of vertices
p = (v0, v1, . . . , vk) such that for i = 1, 2, . . . , k, each
(vi−1, vi) is an edge. A path is called an s-t path if v0 = s and
vk = t. Let Wp denote the travel time of path p, defined by
Wp =

∑k
i=1 W(vi−1,vi), with its CDF Fp(w) = Pr(Wp ≤ w)

where w ∈ R+. The concatenation of two paths p1 and p2
is denoted by p1 ⊕ p2 when p1 and p2 share a common end
vertex. Given a set P1 of paths and a set P2 of paths, P1⊕P2

is defined to be {p1 ⊕ p2 : p1 ∈ P1, p2 ∈ P2}.
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Fig. 1: A road network with random travel times

Definition 3 (RSP Query): Given a network G, a source
s ∈ V , a destination t ∈ V , and a confidence level α ∈ (0, 1),
the reliable shortest path (RSP) query is answered by the s-t
path p∗ that minimizes an upper bound w of the path’s travel
time Wp∗ such that Fp∗(w) = Pr(Wp∗ ≤ w) ≥ α. In other
words, p∗ gives the minimum w such that the probability that
Wp∗ is at most w is at least α.

For a fixed path p, we can minimize w w.r.t. path p by
setting Fp(w) = α since Fp(w) monotonically increases
as w increases. If the inverse function F−1

p (·) exists, then
w = F−1

p (α), and the objective of minimizing w is equivalent
to minimizing F−1

p (α), no matter for the independent or
correlated case. Since p’s travel time Wp is a normal variable,
F−1
p (α) = µp + Zασp, where µp and σp are the mean and

standard deviation of Wp, respectively, and Zα ∈ R is the
inverse CDF of the standard normal distribution at α (Zα = 0
when α = 0.5). We can find the value of Zα by looking up
the standard normal table (also called the Z table) or using
numerical function approximation.

Example 2: Consider an RSP query with s = v6, t = v5, and
α = 0.95. For the independent case, p∗ can be (v6, v8, v9, v5)
or (v6, v4, v7, v5) with the same Wp∗ ∼ N (9, 13) and the
minimum F−1

p∗ (α) = 9+
√
13Zα = 14.93 where Zα ≈ 1.645.

For the correlated case, p∗ = (v6, v4, v7, v5) has the minimum
F−1
p∗ (α) = 9 +

√
11Zα = 14.46. Note that the variance

σ2
Wp∗

= σ2
W(v6,v4)

+ σ2
W(v4,v7)

+ σ2
W(v7,v5)

+2σ(v6,v4),(v4,v7) +

2σ(v4,v7),(v7,v5) = 5 + 5 + 3 + (−2)× 2 + 1× 2 = 11.

B. Tree Decomposition

Tree decomposition is widely used for path queries [26]–
[30]. It allows us to focus on a small set of vertices, called
a separator, which makes the source s and the destination t
disconnected after the vertices in the separator are removed.
In other words, any s-t paths must traverse at least one vertex
in the separator. Though it cannot handle the stochastic travel
times, we can still use it to improve query efficiency.

Definition 4 (Tree Decomposition [26], [31]): The tree
decomposition maps the network G to a rooted tree, denoted
by T . There is a bijection, denoted by X , from V to the tree
nodes. For each tree node X(v), it is associated with a subset
of V that includes v. Abusing notations slightly, we also use
X(v) to denote this subset. Thus, for each tree node X(v),
X(v) ⊆ V and v ∈ X(v). The tree decomposition satisfies
three conditions: 1)

⋃
v∈V X(v) = V . 2) For each e = (u, v),

there exists one X(v′) such that u, v ∈ X(v′). 3) For each v,
the set {X(v′) : v ∈ X(v′)} forms a connected subtree.

A tree decomposition can be generated by Algorithm 6 in
[26]. We only care about its useful property after building it.
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Fig. 2: An example tree decomposition for the network G

Example 3: In Figure 2, we depict a tree decomposition
generated by Algorithm 6 in [26]. For each tree node X(v),
where v is in the gray block, there is a subset of V . For
example, the tree node X(v7) = {v7, v8, v9}.

It has a useful property about the separator defined below.
Definition 5 (Separator): The separator of two vertices s

and t, denoted by H , is a set of vertices such that s and t are
disconnected after the vertices in the separator are removed.

Lemma 1 (Lemma 4 in [32]): Given any s and t, suppose
that there is no ancestor-descendant relationship between the
two tree nodes X(s) and X(t). Let X(l) denote the least
common ancestor (LCA) of X(s) and X(t). X(l) is a
separator. Let X(cs) and X(ct) be the two children of the
LCA X(l) in the two branches containing X(s) and X(t),
respectively. X(cs)\{cs} and X(ct)\{ct} are two separators.
We only consider the one with a smaller size for efficiency.

Example 4: Back to Example 2, X(v7) is the LCA of X(v6)
and X(v5), and cs = v6 and ct = v5. Hence, X(v6)\{v6} =
{v7, v8, v9} and X(v5)\{v5} = {v7, v9} are two separators.
We focus on the latter one since it has a smaller size.

Though the NRP index uses the tree decomposition, its
novelty lies in building the labels for independent and cor-
related variables and precomputing statistics for our proposed
dominance conditions.

III. QUERY PROCESSING

A. Overview

Given a separator H , one natural idea is to divide the
problem into two subproblems that consider two subpaths,
one from s to a vertex h ∈ H and the other from h to
t. This vertex h is also called a “hoplink” since it links
two “hops” (i.e., the two subpaths). Suppose that we have
obtained the two “locally” optimal subpaths w.r.t. the two
sub-problems. We may expect to find the optimal path p∗ by
concatenating the two locally optimal subpaths for each h ∈ H
and comparing the F−1

p (α) values of the |H| concatenated
s-t paths. However, this intuition is wrong as shown in the
following counterexample, which is essentially due to RSP’s
nonlinear objective.

Example 5: We still use Example 2. Suppose that we only
consider the subgraph induced by v3, v6, v8, v9 for simplicity.
We want to find the optimal v6-v9 path and use v8 as a
hoplink. The locally optimal v6-v8 path is (v6, v3, v8) since
its F−1
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Fig. 3: Query processing overview

2 +
√
4 × 1.645 = 5.30 of the other path (v6, v8). The

locally optimal v8-v9 path is certainly (v8, v9). However, after
concatenating (v6, v3, v8) with (v8, v9), we find that it is not
optimal since F−1

(v6,v3,v8,v9)
(α) = 8 +

√
6 × 1.645 = 12.03 ≥

F−1
(v6,v8,v9)

(α) = 7 +
√
9× 1.645 = 11.93.

The main reason is that RSP’s nonlinear objective makes
the property of optimal substructure unavailable; that is, the
locally optimal subpaths are not necessarily parts of the
optimal path p∗. Instead of storing only one s-h (or h-t) path,
we store a set of non-dominated s-h (or h-t) paths.

Definition 6 (Path Dominance): For any two paths p1 and
p2, p1 dominates p2, denoted by p1 ≺ p2, iff for any path p3
and any α ∈ (0, 1), F−1

p1⊕p3
(α) < F−1

p2⊕p3
(α).

Intuitively, no matter what p3 is, p1⊕p3 always has a smaller
F−1
p (α) value than p2 ⊕ p3, which suggests that p1 is better

than p2. Let µi and σi be Wpi
’s mean and standard deviation.

Example 6: For the independent case, p1 ≺ p2 when µ1 <
µ2 and σ1 = σ2. This is because F−1

p1⊕p3
(α) = µ1 + µ3 +

Zα

√
σ2
1 + σ2

3 < µ2 + µ3 + Zα

√
σ2
2 + σ2

3 = F−1
p2⊕p3

(α).
A non-dominated u-v path is not dominated by any other

u-v paths. Let Puv be the set of all non-dominated u-v paths.
Given a source s and a destination t, the optimal path p∗ is in
Pst since otherwise we can obtain a contradiction by setting
p3 = (t) in Definition 6. We can also show that any s-v (or
v-t) subpath of p∗ is a non-dominated s-v (or v-t) path by
contradiction. Simply using Puv is infeasible and prohibited
since this relationship (Definition 6) rarely exists, which makes
its size |Puv| very large. The formal explanation is given in
Section III-B. To make it feasible and efficient, we propose to
use a pruned path set denoted by P>0.5

uv ⊆ Puv . Its details are
given in Section III-B.

Our Non-dominated Reliable Path (NRP) index mainly
stores a label L(v) for each tree node X(v) and v ∈ V . Each
label L(v) is {(u,P>0.5

uv ) : X(u) is an ancestor of X(v)}
whenever X(u) is an ancestor of X(v). Its construction is
introduced in Section IV.

Algorithm 1 gives a query processing overview. In Line 1,
we first find the least common ancestor (LCA) of X(s) and
X(t). In Lines 2–4, if X(s) and X(t) have the ancestor-
descendant relationship, we can directly compare all the paths
in P>0.5

st (since P>0.5
st must exist in L(s) or L(t)) and return



Algorithm 1: Query Processing Overview
input : The index and an RSP query with s, t, and α
output: The optimal path p∗

1 X(l)← the LCA node of X(s) and X(t)
2 if l = s then
3 return the optimal path in P>0.5

st stored in L(t)

4 else if l = t then
5 return the optimal path in P>0.5

st stored in L(s)

6 else
7 Hoplinks← argminH∈{H(s),H(t)} |H|
8 foreach h ∈ Hoplinks do
9 use α to prune P>0.5

sh and P>0.5
ht to get P̂sh

and P̂ht (Algorithm 2)
10 find p∗h ∈ {p1 ⊕ p2 : p1 ∈ P̂sh, p2 ∈ P̂ht} for

hoplink h with the minimum F−1
p (α) value

11 return p∗ ← argminp∈{p∗
h:h∈Hoplinks} F

−1
p (α)

the optimal one with the minimum F−1
p (α). Otherwise, we

need to find a separator to be the set of hoplinks, denoted by
Hoplinks. Let H(s) = X(cs)\{cs} and H(t) = X(ct)\{ct}.
Since H(s) and H(t) are two separators by Lemma 1, we set
Hoplinks to be the one with a smaller size in Line 7. Now
consider each h ∈ Hoplinks in Line 8. In Line 9, We first
retrieve P>0.5

sh and P>0.5
ht from the NRP index and then use

the confidence level α to prune them, which is introduced in
Section III-B. In Line 10, we concatenate the paths from the
two sets P̂sh and P̂ht and find the suboptimal path p∗h with
the minimum F−1

p (α). Finally, we return the optimal one p∗

among all p∗h. These main steps are also shown in Figure 3.
Example 7: In Example 2, when s = v6 and t = v5, X(l) =

X(v7), and Hoplinks = H(v5) = X(v5)\{v5} = {v7, v9}
since its size is smaller than |H(v6)| = 3. For h = v9, we
find p∗v9 by concatenating the paths in P>0.5

v6v9 and P>0.5
v9v5 and

similarly obtain p∗v7 for h = v7. We obtain the final p∗ by
comparing the F−1

p (α) values of p∗v9 and p∗v7 .

B. Pruning Techniques

Directly applying Definition 6 may make the sets Psh and
Pht very large. We first give two definitions by extending
Definition 6 and then present pruning techniques based on
the two definitions by separately discussing independent and
correlated cases for clarity.

1) Extended Path Dominance:
To see that the case in Definition 6 rarely exists, we first

show the following lemma.
Lemma 2: For two paths p1 and p2, suppose that either

µ1 ̸= µ2 or σ1 ̸= σ2. For α ∈ (0, 1), F−1
p1

(α) and F−1
p2

(α)
have one intersection when σ1 ̸= σ2 and none when σ1 = σ2.

Proof: Consider the function g(α) = F−1
p1

(α)− F−1
p2

(α)
and its roots. Let g(α) = µ1 − µ2 + Zα(σ1 − σ2) = 0. If
σ1 = σ2, it has no root because µ1 ̸= µ2. Otherwise, we
get Zα = µ2−µ1

σ1−σ2
and only one root α′ = Φ(µ2−µ1

σ1−σ2
) (because

Zα’s inverse function exists), where Φ(x) is the CDF of the
standard normal distribution N (0, 1).

Now consider the two paths p1⊕p3 and p2⊕p3. The fact that
F−1
p1⊕p3

(α) < F−1
p2⊕p3

(α) holds for any α ∈ (0, 1) indicates
that the two functions should have no intersection and the
standard deviations of Wp1⊕p3

and Wp2⊕p3
are equal, which

rarely happens since p1 and p2 can be different. To relax this
strict condition, we consider the following two definitions.

Definition 7 (Path Dominance on an Interval of α): For any
two paths p1 and p2, p1 ≺ p2 on an interval of α, iff for any
path p3, F−1

p1⊕p3
(α) < F−1

p2⊕p3
(α) for any α in this interval.

Based on Definition 7, we separately use the sets of all non-
dominated paths w.r.t. different intervals of α (i.e., P>0.5

uv for
α > 0.5), which are expected to be smaller.

Furthermore, in Line 9 of Algorithm 1, when we prune the
paths in P>0.5

sh , we actually concatenate them with those in
P>0.5
ht (instead of any path p3 as in Definition 7), and vice

versa. Thus, we propose the following looser condition.
Definition 8 (Path Dominance w.r.t. an Interval of α and

a Path Set P ): For any two paths p1 and p2, p1 ≺ p2 w.r.t.
an interval of α and a path set P , iff for any path p3 ∈ P ,
F−1
p1⊕p3

(α) < F−1
p2⊕p3

(α) for any α in the interval.
Theorem 1: Algorithm 1 correctly answers the RSP.

Proof: We only need to show that p∗ is one of the
concatenated paths in {p1 ⊕ p2 : p1 ∈ P̂sh, p2 ∈ P̂ht} for
some h. By the definition of the separator, p∗ must visit one
h ∈ H and can be rewritten as p∗ = p1⊕ p2 where p1 and p2
are the s-h and h-t subpaths, respectively. We know that p1
and p2 must exist in P̂sh and P̂ht, respectively.

Algorithm 1’s time complexity is O(|Hoplink||P̂sh||P̂ht|).
The main time-consuming part lies in Line 10 of finding the
path p∗h, which takes O(|P̂sh||P̂ht|) time for path concate-
nation. Line 9 takes linear time O(|P̂sh| + |P̂ht|) to prune
the paths. Since there are |Hoplinks| iterations, the time
complexity follows straightaway.

2) Independent Variables:
Separate Cases by M-V Dominance. We start with an

intuitive dominance based on Definition 7.
Proposition 1 (M-V Dominance [18]): For two paths p1

and p2, p1 ≺ p2 on α ∈ (0.5, 1) if µ1 ≤ µ2 and σ1 < σ2.
Similarly, p1 ≺ p2 on α ∈ (0, 0.5) if µ1 ≤ µ2 and σ1 > σ2.

Proof: F−1
p1⊕p3

(α) = µ1 + µ3 + Zα

√
σ2
1 + σ2

3 and
F−1
p2⊕p3

(α) = µ2 + µ3 + Zα

√
σ2
2 + σ2

3 . F−1
p1⊕p3

(α) <

F−1
p2⊕p3

(α) holds on the two intervals because Zα > 0 for
α ∈ (0.5, 1) and Zα < 0 for α ∈ (0, 0.5).

Note that we omit the case where σ1 = σ2 since the
dominance holds on (0, 1) and we can easily prune such dom-
inated paths first. Based on the above observation, we would
separately consider three cases: 1) α = 0.5, 2) α ∈ (0.5, 1),
and 3) α ∈ (0, 0.5). For each label L(v), for each X(v)’s
ancestor X(u), instead of storing the set of all non-dominated
paths Puv w.r.t. α ∈ (0, 1), our index preprocesses the three
sets of non-dominated paths w.r.t. α’s three intervals, denoted
by P0.5

uv , P>0.5
uv , and P<0.5

uv , respectively.
For the first case where α = 0.5, Zα = 0 and F−1

p (α) = µp.
By Definition 7, p1 ≺ p2 iff µ1+µ3 < µ2+µ3 (i.e. µ1 < µ2).



(𝑣6, 𝑣8, 𝑣9)
(𝑣6, 𝑣3, 𝑣8, 𝑣9)

(𝑣6, 𝑣8, 𝑣9, 𝑣5)
(𝑣6, 𝑣3, 𝑣8, 𝑣9, 𝑣5)

(a) Before concatenating (v9, v5)

(𝑣6, 𝑣8, 𝑣9)
(𝑣6, 𝑣3, 𝑣8, 𝑣9)

(𝑣6, 𝑣8, 𝑣9, 𝑣5)
(𝑣6, 𝑣3, 𝑣8, 𝑣9, 𝑣5)

(b) After concatenating (v9, v5)

Fig. 4: Dominance w.r.t. the path set P = {(v9, v5)}

We only need to store only one u-v path with the minimum
mean value in P0.5

uv (where ties are broken arbitrarily). This
special case is equivalent to finding the shortest path on a
special network where edges’ travel times are deterministic
constants equal to the mean values.

For the second case where α > 0.5, P>0.5
uv includes all the

non-dominated paths w.r.t. α ∈ (0.5, 1).
Definition 9 (Pruned path set P>0.5

uv ): For each p ∈ P>0.5
uv ,

it is not dominated by any other u-v path on (0.5, 1). If w.l.o.g.
P>0.5
uv = {p1, p2, . . . , pk} where µ1 ≤ µ2 ≤ . . . ≤ µk, σ1 >

σ2 > . . . > σk.
Example 8: In the example, P>0.5

v6v9 = {p1, p2, p3} where
p1 = (v6, v1, v2, v9), p2 = (v6, v8, v9), p3 = (v6, v3, v8, v9)
with their means µ1 = 6, µ2 = 7, µ3 = 8 and standard
deviations σ1 = 4, σ2 = 3, σ3 =

√
6, respectively.

We do not use split points other than 0.5 because it is hard
to check the dominance (Definition 7). For example, if we use
P>0.1587
uv , where Zα = −1 with α ≈ 0.1587, there are no con-

cise conditions (i.e., µ1 ≤ µ2 and σ1 < σ2 in Proposition 1) to
ensure that µ1+µ3+Zα

√
σ2
1 + σ2

3 < µ2+µ3+Zα

√
σ2
2 + σ2

3

for any Zα > −1 since Zα can be positive or negative.
Furthermore, we will discuss such more refined dominance
on flexible intervals later by Propositions 2 and 3.

We omit the third case since similar results can be done
by symmetry, and users usually set the confidence level α to
be greater than 0.5 to avoid a high risk in practice. In the
following, we only discuss the second case for simplicity.
NRP builds P>0.5

uv during index construction (explained in
Section IV). We next discuss our further pruning techniques
used in Line 9 of Algorithm 1.

Intersection Dominance. When α > 0.5, for any two
paths p1, p2 ∈ P>0.5

sh , we know that if µ1 ≤ µ2, we have
σ1 > σ2. Though the intersection is above 0.5 and the fact
that p1 ≺ p2 on α ∈ (0.5, 1) does not hold, we can observe
that the red line is still on the left side of the blue line from
0.5 to the y-value of the intersection. Besides, since the paths
in P>0.5

sh could only be concatenated with those in P>0.5
ht ,

we hope to find dominance w.r.t. a specific interval of α
and P>0.5

ht based on Definition 8. Formally, we propose the
intersection dominance. When we prune P>0.5

sh , the dominance
is w.r.t. the path set P>0.5

ht , and vice versa. We only need
to find the interval of α to make the condition hold. Let
σmin(P ) = minp∈P σp and σmax(P ) = maxp∈P σp. Suppose
that NRP has precomputed σmin(P>0.5

uv ) and σmax(P>0.5
uv ) for

(𝑣6, 𝑣8, 𝑣9)
(𝑣6, 𝑣3, 𝑣8, 𝑣9)

(𝑣6, 𝑣1, 𝑣2, 𝑣9)

(𝑣6, 𝑣8, 𝑣9, 𝑣5)
(𝑣6, 𝑣3, 𝑣8, 𝑣9, 𝑣5)

(𝑣6, 𝑣1, 𝑣2, 𝑣9, 𝑣5)

(a) Before concatenating (v9, v5)

(𝑣6, 𝑣8, 𝑣9)
(𝑣6, 𝑣3, 𝑣8, 𝑣9)

(𝑣6, 𝑣1, 𝑣2, 𝑣9)

(𝑣6, 𝑣8, 𝑣9, 𝑣5)
(𝑣6, 𝑣3, 𝑣8, 𝑣9, 𝑣5)

(𝑣6, 𝑣1, 𝑣2, 𝑣9, 𝑣5)

(b) After concatenating (v9, v5)

Fig. 5: Upper Bound Maximizer of (v6, v3, v8, v9)

each X(v)’s ancestor X(u).
Proposition 2 (Intersection Dominance): For paths p1 and

p2, p1 ≺ p2 on α ∈ (0.5,Φ( µ2−µ1√
σ2
1+σmin(P )2−

√
σ2
2+σmin(P )2

))

w.r.t. path set P when µ1 ≤ µ2 and σ1 > σ2.
Proof: We first show that F−1

p1⊕p3
(α) < F−1

p2⊕p3
(α) for

α ∈ (0.5,Φ( µ2−µ1√
σ2
1+σ2

3−
√

σ2
2+σ2

3

)) and any p3 with any σ3.

By Lemma 2, F−1
p1⊕p3

(α) and F−1
p2⊕p3

(α) have only one
intersection since the two standard deviations (i.e.,

√
σ2
1 + σ2

3

and
√
σ2
2 + σ2

3) are not equal. Consider the function g(α) =
F−1
p1⊕p3

(α) − F−1
p2⊕p3

(α). The only one root of g(α) is α′ =

Φ( µ2−µ1√
σ2
1+σ2

3−
√

σ2
2+σ2

3

), similar to the one in Lemma 2, and

g(α) < 0 on (0.5, α′) and g(α) > 0 on (α′, 1).
Since we need to find an interval of α such that g(α) <

0 holds for any path p3 ∈ P on this interval, we need to
take the minimum α′ for each p3. Let A(x) =

√
σ2
1 + x2 −√

σ2
2 + x2. Since A(x) is decreasing on x ≥ 0 (by A′(x) < 0),

A(σ3) ≤ A(σmin(P )) (by σ3 ≥ σmin(P )). Since Φ(x) is a
monotonically increasing function, α′ ≥ Φ( µ2−µ1

A(σmin(P )) ).
To get some intuition, we may imagine that the y-value of

the intersection will increase when we concatenate any p3 with
any σ3. We need to use the minimum y-value of intersections
since the dominance has to hold for any paths in the set P .

Example 9: Back to the previous example, for h = v9, we
concatenate the paths in P>0.5

v6v9
and P>0.5

v9v5 = {(v9, v5)}. Now
consider two paths (v6, v8, v9) and (v6, v3, v8, v9) in P>0.5

v6v9 ,
shown by red and blue lines, respectively, in Figure 4. Before
concatenating (v9, v5), we know that the red line is on the left
side of the blue line from 0.5 to the y-value of the intersection
in Figure 4a. Since we will concatenate the two paths with
(v9, v5), the y-value of the intersection is Φ( 10−9√

9+4−
√
6+4

) =
0.988 in Figure 4b, larger than that in Figure 4a. We know
that (v6, v8, v9) ≺ (v6, v3, v8, v9) on (0.5, 0.988) w.r.t. P>0.5

v9v5 .
For each path p, any other paths in P>0.5

sh with smaller
means can dominate p with different intervals w.r.t. a path set
P>0.5
ht . The one that gives the largest upper bound could be

applied to more α values. Our NRP index stores this upper
bound maximizer for each path p, denoted by pmax. Note that
pmax does not change.

Definition 10 (Upper Bound Maximizer): We consider the
path set Sp = {p′ ∈ P>0.5

uv : µp′ < µp} consisting
of paths with their means smaller than µp. For each path
p ∈ P>0.5

uv , we define its upper bound maximizer pmax =



argmaxp′∈Sp
Φ(

µp−µp′√
σ2
p′+σmin(P )2−

√
σ2
p+σmin(P )2

) w.r.t. a path

set P . It can be found that pmax = argmaxp′∈Sp
Φ(

µp−µp′

σp′−σp
).

Example 10: Consider P>0.5
v6v9 in the running example. For

the path (v6, v3, v8, v9), Sp = {(v6, v1, v2, v9), (v6, v8, v9)}
since their means are smaller. In Figure 5, (v6, v1, v2, v9),
(v6, v8, v9), and (v6, v3, v8, v9) are represented by red, green,
and blue lines, respectively. For (v6, v3, v8, v9), the other two
paths can dominate it on different intervals w.r.t. P>0.5

v9v5 as
shown in Figure 4b. Its upper bound maximizer is (v6, v8, v9)
since Φ( 8−7

3−
√
6
) > Φ( 8−6

4−
√
6
). Note that its maximizer does not

change as in Figure 4b where we concatenate (v9, v5).
Reverse Intersection Dominance. It can be also found in

Figure 4 that the blue line is on the left side of the red one
from the y-value of the intersection to 1. Similarly, we can
find an interval based on Definition 8 and propose the reverse
intersection dominance (since now the paths with larger means
can dominate the others).

Proposition 3 (Reverse Intersection Dominance): For two
paths p1 and p2 and a path set P , p2 ≺ p1 on α ∈
(Φ( µ2−µ1√

σ2
1+σmax(P )2−

√
σ2
2+σmax(P )2

), 1) w.r.t. P when µ1 ≤ µ2

and σ1 > σ2, where σmax(P ) = maxp∈P σp.
Proof: Similar to the previous proof, we define α′ and

A(x). We know that g(α) > 0 on (α′, 1) for any path p3. We
need to take the maximum α′ w.r.t. all p3 ∈ P . We obtain
α′ ≤ Φ( µ2−µ1

A(σmax(P )) )
Similarly, we want to find the lowest (or best) lower bound

with the lower bound minimizer, denoted by pmin.
Definition 11 (Lower Bound Minimizer): Let Sp = {p′ ∈

P>0.5
uv : µp′ > µp} be the set of paths with their means greater

than µp. For each path p ∈ P>0.5
uv , its lower bound minimizer

pmin = argminp′∈Sp
Φ(

µp′−µp

σp−σp′
).

Example 11: For the path (v6, v1, v2, v9), we can obtain its
Sp = {(v6, v8, v9), (v6, v3, v8, v9)}. Its lower bound minimizer
is (v6, v8, v9) since Φ( 7−6

4−3 ) < Φ( 8−6
4−

√
6
).

Note that the upper bound maximizer and the lower bound
minimizer could be preprocessed in the NRP index since they
are fixed whatever the path set P is.

Let Bp(pm, x) = Φ(
µpm−µp√

σ2
p+x2−

√
σ2
pm

+x2
) be the function

to compute the two bounds, where pm is the upper bound
maximizer or the lower bound minimizer and x is σmin(P )
or σmax(P ), respectively. If α lies in the interval between the
two bounds, we can prune the path p. Algorithm 2 illustrates
the pruning procedure. We only discuss α > 0.5 for simplicity.
In Lines 1–3, for each p ∈ P>0.5

sh , it can be pruned if α is
smaller than the upper bound or greater than the lower bound,
computed by using the upper bound maximizer or the lower
bound minimizer in Bp(pm, x), respectively. In Lines 4–6, we
similarly prune P>0.5

ht .
Example 12: For P>0.5

v6v9 , σmin(P>0.5
v9v5 ) = σmax(P>0.5

v9v5 ) =
2. For (v6, v1, v2, v9), it does not have pmax but pmin =
(v6, v8, v9), we can prune it since α = 0.95 >
Bp(pmin, σmax(P>0.5

ht )) = Φ( 7−6√
16+4−

√
9+4

) = 0.88. For
(v6, v8, v9), its pmax = (v6, v1, v2, v9) and pmin =
(v6, v3, v8, v9). The two bounds for pmax and pmin are 0.88

Algorithm 2: Pruning Dominated Paths

input : P>0.5
sh , P>0.5

ht , and α

output: P̂sh and P̂ht

1 foreach p ∈ P>0.5
sh s.t. Bp(pmax, σmin(P>0.5

ht )) ≤ α ≤
Bp(pmin, σmax(P>0.5

ht )) do
2 P̂sh ← P̂sh ∪ {p}
3 foreach p ∈ P>0.5

ht s.t. Bp(pmax, σmin(P>0.5
sh )) ≤ α ≤

Bp(pmin, σmax(P>0.5
sh )) do

4 P̂ht ← P̂ht ∪ {p}

and 0.99, respectively. We need to include (v6, v8, v9) in P̂v6v9

since α ≥ 0.88 and α ≤ 0.99. For (v6, v3, v8, v9), it does
not have pmin but pmax = (v6, v3, v8, v9). It can also be
pruned since α = 0.95 < Bp(pmax, σmin(P>0.5

ht )) = 0.99. For
(v9, v5) ∈ P>0.5

v9v5 , it does not have the maximizer and the mini-
mizer. Finally, P̂v6v9

= {(v6, v8, v9)} and P̂v9v5
= {(v9, v5)}.

It can be easily seen that the time complexity of Algorithm 2
is O(|P>0.5

sh |+ |P>0.5
ht |) since there are only two for-loops.

3) Correlated Variables:
By extending the M-V dominance for independent variables,

we can similarly consider the three separate cases and focus
on the one where α ∈ (0.5, 1). We first propose the correlated
M-V dominance for P>0.5

uv and then a dominance relationship
based on the lower and upper bounds of the variance.

Separate Cases by Correlated M-V Dominance. For each
path p = (e1, e2, . . . , e|p|), Wp =

∑k
i=1 Wei is a normal

variable with its mean
∑k

i=1 µei and variance
∑k

i=1 σ
2
ei +

2
∑

i<j σei,ej , where σei,ej is the covariance between Wei

and Wej . Let σpi,pj
be the covariance between Wpi

and Wpj
.

To extend Proposition 1, we want to make F−1
p1⊕p3

(α) <

F−1
p2⊕p3

(α) hold for any path p3, which further requires that
µ1 ≤ µ2 and σ2

1 + 2σp1,p3
+ σ2

3 < σ2
2 + 2σp2,p3

+ σ2
3 as

in Proposition 1. However, it is costly to check the second
condition since there are infinite paths to be p3. In practice,
the correlation between two edges is often weak when they are
far from each other [7], [8], [33]. Let the K-hop neighborhood
of v, denoted by NeiK(v), be the set of all simple paths that
start from v and have at most K edges. For each u-v path
p, assume that there are only correlations between edges in p
and those of the paths in NeiK(u) ∪ NeiK(v) for some K.
We then use NeiK(u) ∪NeiK(v) to check the covariance.

Proposition 4 (Correlated M-V Dominance): For two u-v
paths p1 and p2, p1 ≺ p2 on α ∈ (0.5, 1) if 1) µ1 ≤ µ2 and
2) for p ∈ NeiK(u) ∪NeiK(v), σ2

1 + 2σp1,p < σ2
2 + 2σp2,p.

Proof: We need to show that for any path p3,
F−1
p1⊕p3

(α) = µ1+µ3+Zα

√
σ2
1 + 2σp1,p3

+ σ2
3 < µ2+µ3+

Zα

√
σ2
2 + 2σp2,p3 + σ2

3 = F−1
p2⊕p3

(α). The path p3 can be
always divided into two subpaths, one in NeiK(u)∪NeiK(v)
(i.e., some p) and the remaining part. Since σp1,p3

= σp1,p,
σp2,p3

= σp2,p, µ1 ≤ µ2, and Zα > 0 on α ∈ (0.5, 1), we
have F−1

p1⊕p3
(α) < F−1

p2⊕p3
(α).

Our NRP index would then store P>0.5
uv = {p1, p2, . . . , pk}

and w.l.o.g. µ1 ≤ µ2 ≤ . . . ≤ µk. Then, for any two paths pi



and pj with i < j, σ2
i + 2σpi,p > σ2

j + 2σpj ,p for one path
p ∈ NeiK(u)∪NeiK(v), since otherwise it would contradict
the condition in Proposition 4. Note that if the edges in p is
independent of the edges in NeiK(u) (or NeiK(v)), we do not
need to check NeiK(u) (or NeiK(v)). If both NeiK(u) and
NeiK(v) can be ignored, we can directly use the techniques
for independent variables.

Example 13: Consider the graph in Example 2 where the
two covariances σ(v6,v4),(v4,v7) = −2 and σ(v4,v7),(v7,v5) = 1
exist between adjacent edges, which further means that K = 1
is sufficient. Consider two v6-v7 paths p1 = (v6, v4, v7) and
p2 = (v6, v8, v7). We can derive that p1 ≺ p2 because µ1 =
6 < 13 = µ2 and for (v7, v5) ∈ Nei1(v7), σ2

1 + 2σp1,p3
=

(5 + 5− 2× 2) + 2× 1 = 8 < σ2
2 + 2σp2,p3

= 12.
Correlated Bound Dominance. To prune P>0.5

sh further, we
could also apply Definition 8 to find a dominance relationship
since the paths in P>0.5

sh will be concatenated with those in
P>0.5
ht . Using the maximum variance σmax(P ) = maxp∈P σp,

we propose the following correlated bound dominance.
Proposition 5 (Correlated Bound Dominance): For two

paths p1 and p2, p1 ≺ p2 for some α w.r.t. the path set P
if µ1 + Zα(σ1 + σmax(P )) < µ2.

Proof: For any path p ∈ P , we have F−1
p1⊕p(α) =

µ1 + µp + Zα

√
σ2
1 + 2σp1,p + σ2

p ≤ µ1 + µp + Zα(σ1 +

σp) ≤ µ1 + µp + Zα(σ1 + σmax(P )) < µ2 ≤ µ2 + µp +

Zα

√
σ2
2 + 2σp2,p + σ2

p = F−1
p2⊕p(α), where the first inequality

is because |σp1,p| ≤ σ1σp.
Example 14: Back to the previous example, we can derive

that p1 = (v6, v4, v7) ≺ p2 = (v6, v8, v7) w.r.t. P>0.5
v7v5 =

{(v7, v5)} since µ1 + Zα(σ1 + σmax(P>0.5
v7v5 )) = 6 + 1.645×

(
√
6 +
√
3) = 12.88 < 13 = µ2.

The whole procedure takes O(|P>0.5
sh |+ |P>0.5

ht |) time.

IV. INDEX CONSTRUCTION

The main task is to preprocess the sets P>0.5
uv of non-

dominated reliable paths. We basically follow the structure
of the tree decomposition to build the sets recursively on the
tree. To accelerate the procedure, we can apply Propositions 1
and 4 for independent and correlated variables.

The tree decomposition is built by contracting each vertex
following a given vertex order π, where π(v) denotes v’s
position in the order. When contracting v, we are removing it
and its incident edges and assigning X(v) as the set including
v and its current neighbors. When v’s two neighbors u and
w are removed, we need to preserve the information about
non-dominated paths (which means that P>0.5

uv for any u and
v remains unchanged on the new graph after the removal of
v) by adding a new edge (u,w) if (u,w) does not exist and
associating it with an edge-driven path set P(u,w) (for each e ∈
E, Pe initially contains one single path corresponding to e).
P(u,w) is updated by RF (P(u,w)∪(P(u,v)⊕P(v,w))), where the
refining operation RF (P ) for a path set P keeps only the non-
dominated paths in P . After generating all edge-driven path
sets, we can then obtain P>0.5

uv by RF (
⋃

w∈X(v)\{v} P(v,w)⊕
P>0.5
uw ) (where P>0.5

uw has been computed in previous labels)

Algorithm 3: Index Construction
input : A road network G
output: The tree decomposition T and the labels L

1 P(u,v) ← {(u, v)} for (u, v) ∈ E
2 T, π ← Algorithm 6 in [26] on G
3 foreach tree node X(v) in the contraction order π do
4 foreach (u,w) where u ̸= w and u,w ∈ X(v) do
5 P(u,w) ← RF (P(u,w) ∪ (P(u,v) ⊕ P(v,w)))

6 foreach tree node X(v) in a top-down manner do
7 foreach ancestor X(u) of X(v) do
8 foreach w ∈ X(v)\{v} do
9 P>0.5

uv ← RF (P>0.5
uv ∪RF (P(v,w)⊕P>0.5

uw ))

10 L(v)← L(v) ∪ (u,P>0.5
uv )

𝑣6 𝑣5

𝑣9
𝑝max, 𝜎min(𝑃)

𝑝

𝑝min, 𝜎max(𝑃)

𝛼

Interval where 𝑝 can be pruned

head

tail

new head

new tail𝑢

𝑤

𝜋 𝑢 < 𝜋(𝑤)
𝑣

𝑢

𝑣
𝜋 𝑣 < 𝜋(𝑢)

Fig. 6: The head and tail in the path concatenation

in the tree recursively since X(v)\{v} includes v’s neighbors
during the contraction of v.

Algorithm 3 summarizes the whole procedure. In Lines 1–
2, we initialize Pe for each e ∈ E and obtain the tree
decomposition. In Lines 3–5, we build the edge-driven path
sets following the contraction order. In Lines 6–10, we build
P>0.5
uv in a top-down manner.
Since Lines 5 and 9 use the path concatenation P1⊕P2 and

the refining operation RF (P ), we show next how to do them
efficiently for independent and correlated variables.

Independent Variables. Let (µp, σ
2
p) represent each path

p. The path concatenation p1⊕ p2 of two paths p1 and p2 has
its (µp1

+ µp2
, σ2

p1
+ σ2

p2
). For the refining operation, given

a path set P = {p1, p2, . . . , pk}, it can be easily done by
first sorting all the paths in P in the increasing order of their
µ values (i.e., µ1 ≤ µ2 ≤ . . . ≤ µk) and then sequentially
removing those with σ values larger than their previous ones
(to make σ1 > σ2 > . . . > σk hold), as in Proposition 1. After
obtaining P>0.5

uv in each label, we can easily obtain the upper
bound maximizer, the lower bound minimizer, σmin(P>0.5

uv ),
and σmax(P>0.5

uv ) by their definitions.
In practice, α ≤ 0.999 can satisfy most user requirements.

After sorting paths in the increasing order of µ values, we can
refine them by maintaining µ1 +3.1σ1 > µ2 +3.1σ2 > . . . >
µk + 3.1σk, which uses F−1

p (α) when α = 0.999 and Zα =
3.1. This can be easily proved by using the monotonicity of
g(α) in Lemma 2. Note that σ1 > σ2 > . . . > σk corresponds
to the extreme case where α→ 1 and Zα → +∞.

Correlated Variables. Since we need to consider the co-
variances in K hops during path concatenation, we maintain
for each u-v path p its head and tail. Suppose w.l.o.g. v is



contracted before u (i.e., π(v) < π(u)). We define its head and
tail as the K edges starting from v and the K edges ending at
u, respectively, as shown in the red and blue parts in Figure 6.
Now suppose that we are concatenating a u-v path with a v-w
path as shown in Figure 6. We first find the common vertex v,
then compute the covariance between them by using the 2K
edges, and finally maintain the new head and tail by comparing
π(u) with π(w). Note that the common vertex v can be the
end vertex of either the head or tail. Also note that the path
p’s head or tail has fewer than K edges when |p| < K.

For the refining operation RF (P ), given an upper bound of
α, we can apply the same technique of using F−1

p (α) as in
the independent case. Proposition 4 can be checked with the
support of paths’ heads and tails. Besides, we maintain a flag
for each vertex v, which is true if there are edges in Nei(v)
that have correlations with other edges and false otherwise.
We then ignore Nei(v) if v’s flag is false.

Let ω = maxv∈V |X(v)| be the treewidth and η be
the treeheight (which is an upper bound for the number
of X(v)’s ancestors). Let |P>0.5

uv | be the average size of
P>0.5
uw for any u and v. Algorithm 3’s time complexity is
O(|V |ηω|P>0.5

uv |
2
ln |P>0.5

uv |) for the independent case and
O(|V |ηω|P>0.5

uv |
2
ln |P>0.5

uv ||maxv |NeiK(v)|) for the corre-
lated case, where the difference lies in the refining operation.
The space cost of NRP index is O(|V |η|P>0.5

uv |) since P>0.5
uv

is built for each X(v) and each of its ancestor X(u).
Example 15: We use the independent case for ease of

illustration. Suppose that we are given the tree decompo-
sition in Figure 2 and the contraction order is from v1 to
v9. When we contract v1, X(v1) = {v1, v2, v6}. For its
two neighbors v2 and v6, we add an edge (v2, v6) with
P(v2,v6) = P(v1,v2)⊕P(v1,v6) = {(4, 10)} and remove (v1, v2)
and (v1, v6). We can similarly contract v2. When we contract
v3, X(v3) = {v3, v6, v8}. Since (v6, v8) exists, we update
P(v6,v8) = {(2, 4), (3, 1)}. We similarly process v4, v5, . . . , v9.
We next build the labels. We set L(v9) = ∅ since X(v9) has no
ancestor. For X(v8), P>0.5

v8v9 = P(v8,v9) ⊕ P>0.5
v9v9 = P(v8,v9) =

{(5, 5)}. For X(v7), P>0.5
v7v9 = P(v7,v8) ⊕ P>0.5

v8v9 = {(4, 7)}.
We similarly build the rest labels.

V. INDEX MAINTENANCE

We need to update the index when the distribution of one
edge’s travel time changes. To detect such changes, we directly
adopt a widely used method since it is not our focus. Updating
NRP essentially requires us to recompute non-dominated path
sets P>0.5

uv . Since P>0.5
uv is built based on the e-driven path set

Pe, we will talk about how to first update Pe and then P>0.5
uv .

We detect such distribution changes in a canonical manner
as statistically-significant deviations [34]; specifically, the sign
of one change is that one sample of the travel time We ∼
N (µe, σe) is outside µe ± 2σe at the 5% significance level.
It has been shown that the number of changes can be smaller
than 10 even in peak hours lasting for one hour [3], [35].

We first update affected Pe in the index. When W(u,w) of an
edge (u,w) changes, we need to find all the “center” vertices v
such that P(u,w) could be affected as in Line 5 of Algorithm 3

Algorithm 4: Updating P(u,w)

input : The edge (u,w)
output: The new P(u,w)

1 swap u and w if u is contracted after w, i.e.,
π(u) > π(w)

2 initialize P(u,w) with its latest mean and standard
deviation

3 foreach v ∈ C((u,w)) do
4 P(u,w) ← RF (P(u,w) ∪ (P(u,v) ⊕ P(v,w)))

5 if P(u,w) is different from the original one then
6 foreach v ∈ X(u)\{u,w} do
7 update P(v,w) by Algorithm 4

Algorithm 5: Index Maintenance
input : The new travel time W ′

(u,w) and NRP index
output: The updated NRP index

1 update P(u,w) by Algorithm 4
2 foreach X(v) in the subtree rooted at the X(r) in a

top-down manner do
3 use Lines 7–10 of Algorithm 3 to update L(v)

(i.e., u and w are both the neighbors of v during the contrac-
tion of v). Suppose that the set of such center vertices for
each edge e is denoted by C(e). We can similarly initialize
P(u,w) by using the latest mean and variance, and for each
v ∈ C((u,w)), update it by RF (P(u,w) ∪ (P(u,v) ⊕ P(v,w))).

Suppose that w.l.o.g. u is contracted before w (i.e., π(u) <
π(w)). If P(u,w) changes, some other Pe could also be
affected. During the contraction of u, for each u’s neighbor v
other than w, P(u,w) would be used to update P(v,w) in Line 5
of Algorithm 3. Note that X(u) include all u’s neighbors
during the contraction of u. We can then check if we have
to update each P(v,w) for each v ∈ X(u)\{u,w}. If P(v,w) is
also affected, we need to do the update procedure recursively.

Algorithm 4 illustrates how to update P(u,w) in a bottom-
up manner (following the contraction order). In Line 2, we
initialize the edge with its latest mean and standard deviation.
We use C((u,w)) to update P(u,w) in Lines 3–4. In Lines 5–
7, we recursively update P(v,w) for each v ∈ X(u)\{u,w} if
P(v,w) is affected.

After we process all the affected Pe, we can update P>0.5
uw

in a top-down manner as in the construction of labels. For each
updated P(u,w), we update r as u if u is contracted after r. In
this way, the label L(v) for each v that is contracted after r is
not affected. For each node v in the subtree rooted at X(r),
we update L(v) by Lines 7–10 of Algorithm 3. Algorithm 5
summarizes the whole procedure. In Line 1, we update P(u,w)

by Algorithm 4. In Lines 2–3, we rebuild labels of nodes in
the subtree rooted at X(r). Note that the whole procedure can
be extended to handle a batch of updates by first processing
Pe bottom-up and then L(v) top-down in one go.

Let |Vsub| be the number of tree nodes in the subtree rooted



at X(r). For each tree node X(v), all of the path sets in its
label L(v) are updated in the worst case. Algorithm 5 needs
O(|Vsub|ηω|P>0.5

uv |
2
ln |P>0.5

uv |) time for the independent
case, and O(|Vsub|ηω|P>0.5

uv |
2
ln |P>0.5

uv ||maxv |NeiK(v)|)
time for the correlated case.

Example 16: For ease of illustration, we assume that all
variables are independent. The only difference from the corre-
lated case lies in the refining operation. Suppose that W(v6,v8)

changes from N (2, 4) to N (2, 2). For (v6, v8), we initialize
P(v6,v8) = {(2, 2)}. We obtain its C((v6, v8)) = {v3} and
update P(v6,v8) = {(2, 2), (3, 1)}. Since X(v6)\{v6, v8} =
{v7, v9}, we check that P(v7,v8) and P(v8,v9) do not change
and stop updating Pe. Finally, we find the vertex r = v6 that is
last contracted. For each X(v) in the subtree rooted at X(v6),
we rebuild L(v6), L(v2), L(v3), L(v4), and L(v1).

VI. EXPERIMENTS

A. Experimental Setup

All experiments were conducted on a machine with two
Intel Xeon Gold 5220R 2.2GHz processors and 512GB RAM
running CentOS 7 Linux distribution. All algorithms were
implemented in C++ and compiled by GNU C++ compiler
with O3 optimization.

Datasets. We collected three publicly available city road
networks from DIMACS [36], including NY, BAY, and COL,
with details shown in Table I. They should cover most sce-
narios since users usually issue RSP queries within a city.
The last column gives the approximate diameter dmax of each
network, which is the maximum shortest distance between
two vertices. For the probability distributions of travel times,
since the network data from DIMACS provide deterministic
travel times for each edge, we directly used them as the
mean values µe. Following existing work [8], we generated
the standard deviation σe by multiplying the mean with the
Coefficient of Variation (CV), defined as the ratio CVe =

σe

µe
.

Each CVe was uniformly sampled from (0, CV ) where CV
is in {0.1, 0.3, 0.5, 0.7, 0.9}. The covariances σei,ej were sub-
sequently generated by ρei,ejσeiσej , where ρei,ej ∈ [−1, 1]
is the correlation coefficient. Since it has been proved that
considering the covariances in K = 4 hops is sufficient
to approximate the path’s travel time with at least 99.1%
accuracy [7], we only generated covariances between pairs
of edges that can be reached to each other in 5 hops. To make
the covariance matrix positive semi-definite, we randomly
selected ρei,ej on [−0.2, 1], where −0.2 is the minimum
feasible value for 6 random variables (corresponding to 5 hops)
with pairwise equal correlation coefficients. We evaluated our
algorithms by varying the CV = {0.1, 0.3, 0.5, 0.7, 0.9} and
K = {1, 2, 3, 4, 5}, where the default setting is underlined.
For RSP queries, following [26], [37], we tested the effect
of the distance between the source and destination of queries
and the confidence level α. We generated 5 query sets Qi

for varying distances, where i = {1, 2, 3, 4, 5}, each of which
includes 1,000 queries with random source-destination pairs
with their shortest distances lie in [dmax/2

6−i, dmax/2
5−i]

TABLE I: Real dataset description

Dataset Region |V | |E| dmax ≈
NY New York City 264,346 733,846 154 km
BAY San Francisco Bay Area 321,270 800,172 320 km
COL Colorado 435,666 1,057,066 832 km

and α randomly in [0.7, 0.8], and another 5 query sets that all
use the 1000 source-destination pairs in Q3 with αi randomly
drawn from [0.4 + 0.1i, 0.5 + 0.1i] for i = [1, 2, 3, 4, 5].

We also extracted distributions of real historic travel times
from NYC open data provided by the Department of Trans-
portation (DOT) [38]. We first mapped the sensors to the edges
by considering the midpoints of the edges and finding the
sensors’ nearest midpoints. For each sensor, we used all of its
recorded travel times from 7:00 am to 7:15 am in September of
2022 to obtain the normal distributions of edges’ travel times
by using the maximum likelihood estimates.

Compared algorithms. Since we considered the correlated
case with covariances in our problem, we compared our
solution NRP with four baselines for RSP queries that can
handle spatial correlations. Note that we omit [1] because it
uses the variance-covariance matrix of size O(|E|2), which is
infeasible in any network.

• SMOGA [17]: a genetic algorithm that repeatedly gen-
erates a set of paths, called a population, and optimizes
them by changing the current paths in several rounds.

• SDRSP-A* [7]: an A*-based algorithm that uses the M-V
dominance to maintain non-dominated paths for labels.

• ERSP-A* [8]: an A*-based algorithm that extends
SDRSP-A* and additionally utilizes the M-B dominance.

• TBS [16]. The state-of-the-art algorithm that uses the
precomputed reversed paths to prune the search space.

For SMOGA, we set the population size and the number
of rounds as 10 and 20 in order to speed up the algorithm.
We did not consider the other solutions that are infeasible on
large road networks as explained in related work.

B. Experiment Results

1) Query Performance:
Figure 7 reports the query processing time for a workload

of 1,000 queries by varying the four factors stated above.
Effect of Q. The first column of Figure 7 shows the

results of different Q. As the distance between the source
and destination of each query increases, it can be observed
that all algorithms except NRP tend to take more time on all
networks. This is because the other four algorithms all search
the path from the source to the destination, which suggests
that their query times depend on the search range. For NRP,
since it utilizes the preprocessed labels for query processing,
its query time depends on the number of label lookups and is
independent of the distance.

Among all algorithms, NRP runs faster than the others by
orders of magnitude due to its small number of label lookups
on the preprocessed index. It takes around 0.1 seconds to
finish a workload. TBS is the second-best algorithm since its
precomputed reversed path can prune many search branches
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Fig. 7: Query times by varying Q, α, CV , and K in NeiK on NY, BAY, and COL

during query processing. However, it needs over 100 seconds
to finish a workload on COL, which is unacceptable in
practice. SMOGA is the worst one due to its multiple iterations
of updating the entire path.

Effect of α. The second column of Figure 7 presents the
query time when we vary the confidence level α. It can be
found that all algorithms are insensitive to α. For SMOGA,
the population size and the number of rounds are fixed and
irrelevant to α. The search space of the other algorithms is
slightly affected by α. Similar performance results can be
made. NRP’s query time is at least two orders of magnitude
shorter than those of the other three, which is mainly due to
the index power of fast query processing.

Effect of CV . We report the query time of different CV in
the third column of Figure 7. Recall that CV is the ratio of the
standard deviation over the mean. When CV becomes greater,
the variance of the path’s travel time Wp also increases, which
further indicates that there will be more non-dominated paths
for each query since the dominance conditions are decided by
the variance. It can be seen that all algorithms except SMOGA
need slightly more time to answer queries when CV is larger.
SMOGA’s query time is not affected because the number of
its updated paths is independent of the variance. Furthermore,
we can similarly find that that NRP is the best one.

Effect of K. In the last column of Figure 7, we depict
the results of different K, where the K value implies that the
covariances exist between edges that are K hops away. We can
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Fig. 8: Numbers of hoplinks and path concatenations (NY)

find that the query times of all the algorithms are independent
of K. For SMOGA, the reason is the same as before. For the
other four, the non-dominated paths are essentially affected by
the variance of the path’s travel time, to which the covariance
can make a limited variation. In addition, NRP beats the others
by a large margin as before.

Numbers of hoplinks and path concatenations. To ana-
lyze NRP’s performance further, we record the average num-
bers of used hoplinks h and performed path concatenations per
query in Figure 8. Note that the latter is the dominant term in
the query time complexity. In Figure 8a, we can find that the
numbers of hoplinks and path concatenations are insensitive to
Q with the same reason as before. In Figure 8b, the number of
hoplinks remains the same because we use the same queries in
Q3. For the hoplinks, we select the separator based on the LCA
of the two tree nodes X(s) and X(t). Therefore, the number
of hoplinks is only relevant to the source and destination of
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Fig. 9: Ablation study on NY
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Fig. 10: Real NYC Open Data from DOT

each query. For the number of path concatenations, it increases
as CV becomes larger since the larger variance would result
in more non-dominated paths.

Ablation study. We compare the variant without using the
pruning techniques, called “NRP-w/o pruning” in terms of
the number of path concatenations in Figure 9. In both two
figures, it can be observed that there is a dramatic decrease in
the number when the pruning is applied under each setting,
which further demonstrates the effectiveness of the pruning
techniques. Moreover, we can observe a similar trend to that
of NRP’s query time since the number of path concatenations
dominates the query time complexity.

Real travel times. The query times of varying Q and α on
NYC open data from DOT is shown in Figures 10a and 10b,
respectively. We can find similar results that all the algorithms
tend to take more query times when the distance is larger and
that they are insensitive to α. Among all algorithms, NRP
performs the best and takes less than 0.1 seconds.

2) Index Cost:
We omit SMOGA, SDRSP-A*, and ERSP-A* since they

do not build any index. The index costs of TBS and NRP are
summarized in Table II. The second to the last columns list the
treewidth ω, the treeheight η, NRP’s index time, NRP’s index
size, TBS’s index time, and TBS’s index size, respectively.

Index construction time. We explore the index time by
varying K in Figure 11a. It can be seen that the time for each
network gradually increases linearly with K. This is because
we need to compute more terms about covariances between
pairs of two paths and also spend more time checking the
dominance conditions. NY could take more time than BAY
and COL when K is 1 and 2 because NY has a more densely
distributed grid layout, but the other two networks are sparsely
distributed since there can be bays and mountains. It can be
found that NRP takes smaller indexing time than TBS.

Index storage size. The space consumption of different K

TABLE II: Index cost

Dataset ω η
NRP TBS

Time Size Time Size
NY 148 330 968s 12.4 GB 14,076s 130.1 GB
BAY 100 238 307s 9.6 GB 21,460s 192.2 GB
COL 143 423 1269s 17.1 GB 37,058s 353.5 GB
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Fig. 11: NRP’s index costs on NY

is shown in Figure 11b. We can obtain a similar conclusion
that the space cost grows linearly with K. The last column
of Table II shows the index size of the default setting. NRP’s
index size is also much smaller than TBS’s, and NRP supports
faster query processing.

Index maintenance cost. Table III records NRP’s average
processing time over 1,000 updates of travel times of randomly
selected edges and the extra storage about the set of center
vertices C(e). Note that we omit TBS here since it does not
consider distribution changes [16]. Following existing work
about path index maintenance [27], we increase and decrease
the original µe to a random value in [0.5µ, µ] and [µ, 2µ],
respectively, and do similarly for σe. The results show that
the time cost is insensitive to specific operations. The extra
storage is relatively small compared with the entire index.

3) Case Study:
In Figure 12, we conducted a case study in New York.

Suppose that a businessman at the blue point wants to reach the
red point to attend an important meeting during the morning
rush hour. The fastest path (shown by the brown line) that
uses deterministic values as edges’ estimated travel times is
expected to take around 16 minutes for 14.4 km. However, it
traverses the Cross Bronx Expressway in the shaded region,
which can be congested with potential traffic accidents [39],
and its real travel time can be 39 minutes long. Considering
the uncertainty, we set a high confidence level of 0.95 to find
the RSP (shown by the navy blue line), which takes at most
25 minutes for 20.8 km and does not traverse the Cross Bronx
Expressway. It would be more reliable for the businessman.

C. Summary

(i) Our proposed NRP index-based solution has its query
processing time orders of magnitude faster than state-of-the-
art competitors. For a workload of 1,000 queries, it only needs
around 0.1 seconds in city road networks, whereas existing
RSP solutions can take 100 seconds.

(ii) NRP’s index cost on city road networks are acceptable.
(iii) The proposed pruning techniques can improve both the

time and space efficiencies.



TABLE III: Index update time (sec) and extra storage (NY)

Dataset Inc. µ Dec. µ Inc. σ Dec. σ Extra Storage
NY 0.9142 0.9272 0.9093 0.9125 63.58 MB
BAY 0.2791 0.2776 0.2774 0.2759 31.55 MB
COL 1.2819 1.2799 1.2713 1.2674 30.97 MB

Fig. 12: Case study in New York

VII. RELATED WORK

A. RSP for the Independent Case

The seminal work proposed the most reliable shortest path
(RSP) that has the maximum arrival probability under a given
travel time upper bound [40]. Following it, the α-reliable
shortest path (i.e., our focus) was introduced [6]. It was
shown that the two optimal answers to the two problems are
equivalent under some conditions [41]. For the most RSP, it
has been proven to be NP-hard by using the reduction from
the longest path problem [42]. However, it is often hard for
users to set the upper bound in the most RSP when they are
unfamiliar with the trips, and using inappropriate small values
can make the arrival probability less than 0.5, which makes
the event unlikely to happen. For α-RSP, early solutions were
based on the label-correcting algorithms that search from the
source, maintain a label from the source to each visited vertex
(which is essentially a non-dominated path set), and choose a
promising path from labels for expansion [20], [41]. The size
of the non-dominated path set could be reduced under different
dominance definitions. The first-order stochastic dominance
was first applied [41]. Then, [20] considered the M-V domi-
nance [18] and the M-B dominance [19] to prune more paths
and also utilized the idea of the A* algorithm to speed up the
search. They expanded the currently best path with the mini-
mum F−1

p (α) value plus the distance to the destination. Other
studies considered the skyline definition of path queries [10],
[43] and the reachability [44]. However, they all assume that
travel times are independent, which is unrealistic. Moreover,
though the high-level idea of path dominance has been used,
our proposed dominance conditions are tailored to our solution
and thus more efficient for stochastic routing.

A line of research considered the time-dependent shortest
path query [45]–[53], where travel times are predictable and
given by piecewise linear functions. Its problem is different
from ours due to its deterministic travel times. Though it can
handle time-of-day dependent variations, RSP can model the
inherent uncertainty in travel times caused by unpredictable
factors. Furthermore, RSP can maintain the index to adapt to

distribution changes during one day. The distributions of travel
times can be dependent on the time of day.

B. RSP for the Correlated Case
Since we consider the correlation between edges’ travel

times, our work falls into this category. To handle the cor-
related case, extensive solutions have been proposed [1],
[7]–[9], [11]–[17]. Most of them were search-based routing
algorithms that expand the path answer incrementally by
comparing the network edges sequentially. They include the
depth-first search [9], [12], the two-directional search [15],
and the A* guided-search with tailored lower bounds [7], [8],
[11], [13], [14], [16]. Specifically, the state-of-the-art TBS
used the bounds obtained from a reversed search to prune
the search space [16]. The original TBS finds the most RSP
introduced before. Since the most RSP is equivalent to α-
RSP [41], we adapt TBS to return exactly the same route as
NRP’s to compare their performance in experiments. However,
all search-based solutions are still inefficient because they
need to search the whole network. Our NRP can preprocess
partial path answers in the index and fetch them efficiently
from the index by table lookups during query processing.
[1] decomposed the variance-covariance matrix and utilized
Lagrangian relaxation to solve the dual problem. However,
the matrix could be large and matrix operations are time-
consuming with their time complexities Ω(|E|2), which are
prohibitive in large road networks. [17] applied the heuristic
genetic algorithm to repeatedly optimize the answer. In each
round, it first selects a set of candidate paths, then uses a
defined fitness function to evaluate these paths, and generates
new paths by performing some common operations, such as
crossover and mutation, on the paths with high fitness values.
However, it may not find the exact answer and need many
iterations of updating a number of candidate s-t paths. In sum,
all these solutions are inefficient and unscalable to large road
networks. Other studies considered how to select the best path
from a candidate set [54] and a different arrival window [55],
but their problem settings are completely different from ours.

VIII. CONCLUSION

This paper addresses the problem of efficiently answering
the reliable shortest path (RSP) queries in stochastic road
networks. We propose an efficient index-based solution called
NRP, which runs faster than state-of-the-art ones by orders
of magnitude. NRP stores non-dominated paths in the labels
and processes queries by simply looking up a limited number
of labels. The experiments conducted on three real networks
verified the superiority of NRP, which can answer each query
in around 100 µs on New York’s road network. For future
work, we may explore how to efficiently update the index
when the weight distributions of the edges frequently change.
We may also study some time-dependent reliability metrics.
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