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Abstract
In the literature of data mining, many different algorithms

for association rule mining have been proposed. However,
there is relatively little study on how association rules can aid
in more specific targets. In this paper, one of the applications
for association rules - maximal-profit item selection with cross
-selling effect (MPIS) problem - is investigated. The problem
is about selecting a subset of items which can give the max-
imal profit with the consideration of cross-selling. We prove
that a simple version of this problem is NP-hard. We propose
a new approach to the problem with the consideration of the
loss rule- a kind of association rule to model the cross-selling
effect. We show that the problem can be transformed to a
quadratic programming problem. In case quadratic program-
ming is not applicable, we also propose a heuristic approach.
Experiments are conducted to show that both of the proposed
methods are highly effective and efficient.

1 Introduction
Recent studies in the retailing market have shown a win-

ning edge for customer-oriented business, which is based on
decision making from better knowledge about the customer
behaviour. Furthermore, the behaviour in terms of sales trans-
actions is considered significant [6]. This is also called market
basket analysis. We consider the scenario of a supermarket or
a large store, typically there are a lot of different items offered,
and the amount of transactions can be very large. For exam-
ple [11] quoted the example of American supermarket chain
Wal-Mart, which keeps about 20 million sales transactions per
day. This growth of data requires sophisticated method in the
analysis.

At about the same time, association rule mining [3] has been
proposed by computer scientists, which aims at understanding
the relationships among items in transactions or market bas-
kets. However, it is generally true that the association rules in
themselves do not serve the end purpose of the business peo-
ple. We believe that association rules can aid in more specific
targets. Here we investigate the application of association rule
mining on the problem of market basket analysis. As pointed
out in [6], a major task of talented merchants is to pick the
profit generating items and discard the losing items. It may
be simple enough to sort items by their profit and do the se-
lection. However, by doing that we would have ignored a
very important aspect in market analysis, and that is the cross-
selling effect. The cross-selling effect arises because there can

be items that do not generate much profit by themselves but
they are the catalysts for the sales of other profitable items.
Recently, some researchers [17] suggest that association rules
can be used in the item selection problem with the consider-
ation of relationships among items. Here we follow this line
of work in what we consider as investigations of the appli-
cation of data mining in the decision-making process of an
enterprise.

In this paper, the problem of Maximal-Profit Item Selection
with Cross-Selling Considerations (MPIS) is studied. With
the consideration of the cross-selling effect, MPIS is the prob-
lem of finding a set ofJ items such that the total profit from
the item selection is maximized, whereJ is an input parame-
ter. This problem arises naturally since a store or a company
typically changes the products they carry once in a while. The
products that can generate the best profits should be retained
and poor-profit items can be removed, then new items can be
introduced into the stock. In this way the business can fol-
low the market needs and generate the best possible results
for both the business and the customers. In order to determine
the profit value of an item, one can rely on expert knowledge.
However, since this can be a highly complex issue especially
for a large store with thousands of products for sale, we can
try to apply data mining techniques, based on a history of cus-
tomer purchase records.

Hence the problem is how to determine a subset of a given
set of items based on a history of transaction records, so that
the subset should give the best profits, with considerationsof
the cross-selling effects. We show that a simple version of this
problem is NP-hard. We model the cross-selling factor with a
special kind of association rule calledloss rule. The rule is of
the formIa ! �d, whereIa is an item andd is a set of items,
and�dmeans any items ind. This loss rule helps to estimates
the loss in profit for itemIa if the items ind are missing after
the selection. The rule corresponds to the cross-selling effect
betweenIa andd.

To handle this problem, we propose a quadratic program-
ming method (QP) and a heuristics method called MPISAlg.
In QP, we express the total profit of the item selection in
quadratic form and solve a quadratic optimization problem.
Algorithm MPIS Alg is a greedy approach which uses an es-
timate of thebenefitsof the items to prune items iteratively
for maximal-profit. From our experiment, the profitabilities
of our two proposed algorithms are greater than that of naive
approach for all data sets. On average, the profitability of



both QP and MPISAlg is 1.33 times higher than the naive ap-
proach for the synthetic data set. In a real drugstore data set,
the best previous method HAP [26] gives a profitability that is
about 2.9 times smaller than MPISAlg. When the number of
items is large (as in the drugstore data set), the execution time
of HAP is 6.5 times slower than MPISAlg. These shows that
the MPISAlg is highly effective and efficient.

2 Problem Definition
Maximal-profit item selection (MPIS) is a problem of se-

lecting a subset from a given set of items so that the estimated
profit of the resulting selection is maximal among all choices.
Our definition of the problem is close to [26]. Given a data set
with m transactions,t1; t2; :::; tm, andn items,I1; I2; :::; In.
Let I = fI1; I2; :::; Ing. The profit of itemIa in transactionti is given byprof(Ia ; ti). 1 Let S � I be a set ofJ selected
items. In each transactionti, we define two symbols,t0i anddi, for the calculation of the total profit.t0i = ti \ S; di = ti � t0it0i set of items selected inS in transactiontidi set of items not selected inS in transactionti

Suppose we select a subsetS of items, it means that
some items inI1; :::; In will be eliminated. The transactionst1; :::; tm might not occur in exactly the same way if some
items have been removed beforehand, since customers may
not make some purchase if they know they cannot get some
of the items. Therefore, the profitprof(Ia; ti) can be af-
fected if some items are removed from the stock. This is
caused by the cross-selling factor. The cross-selling factor is
modeled bycsfactor(D; Ia), whereD is a set of items, and0 � csfactor(D; Ia) � 1. csfactor(D; Ia), is the fraction
of the profit ofIa that will be lost in a transaction if the items
in D are not available. Note that the cross-selling factor can
be determined in different ways. One way is by the domain
experts. We may also have a way to derive this factor from the
given history of transactions.

Definition 1 Total Profit of Item Selection: The total profit
of an item selectionS is given byP =Pmi=1PIa2t0i prof(Ia; ti)(1� csfactor(di; Ia))

We are interested in selecting a set ofJ items so that the
total profit is the maximal among all such sets.

MPIS: Given a set of transactions with profits assigned to
each item in each transaction, and the cross-selling factors,csfactor(), pick a setS of J items from all given items which
gives a maximum profit.

This problem is at least as difficult as the following decision
problem, which we call the decision problem for MPIS:

MPIS Decision Problem: Given a set of items and a set
of transactions with profits assigned to each item in each
transaction, a minimum benefitB, and cross-selling factors,

1This definition generalizes the case where profit of an item isfixed for all
transactions. We note that the same item in different transactions can differ
because the amount of the item purchased are different, or the item can be
on discount for some transactions and the profit will be reduced. If the profit
of an item is uniform over all transactions, we can setprof(Ia; ti) to be a
constant over alli.

csfactor(), can we pick a setS of J items such thatP � B?
In our proof in the following, we consider the very simple

version wherecsfactor(di; Ia) = 1 for any non-empty set ofdi. That is, any missing item in the transaction will eliminate
the profit of the other items. This may be a much simplified
version of the problem, but it is still very difficult.
2.1 NP-hardness
Theorem 1 The maximal-profit item selection (MPIS) deci-
sion problem wherecsfactor(di; Ia) = 1 for di 6= � andcsfactor(di; Ia) = 0 for di = � is NP-hard.

Proof sketch: We shall transform the problem of CLIQUE to
the MPIS problem. CLIQUE [9] is an NP-complete problem
defined as followd:

CLIQUE : Given a graphG = (V;E) and a positive integerK � jV j, is there a subsetV 0 � V such thatjV 0j � K and
every two vertices inV 0 are joined by an edge in E ?

The transformation from CLIQUE to MPIS problem is de-
scribed as follows: SetJ = K, B = K(K � 1). For each
vertex v 2 V , construct an item. For each edgee 2 E,
wheree = (v1; v2), create a transaction with 2 itemsfv1; v2g.
Setprof(Ij ; ti) = 1, whereti is a transaction created in the
above,i = 1; 2; :::; jEj, andIj is an item inti.

It is easy to see that this transformation can be constructed
in polynomial time. It is also easy to verify that when the
problem is solved in the transformed MPIS, the original clique
problem is also solved. Since CLIQUE is an NP-complete
problem, the MPIS problem is NP-hard.

3 Related Work
In recent years the problem of association rule mining has

received much attention. We are given a setI of items, and
a set of transactions. Each transaction is a subset ofI. An
association rulehas the formX ! Ij , whereX � I andIj 2I; the support of such a rule is the fraction of transactions
containing all items inX and itemIj ; the confidence for the
rule is the fraction of the transactions containing all items in
setX that also contain itemIj . The problem is to find all rules
with sufficient support and confidence. Some of the earlier
work include [22, 4, 21].
3.1 Item Selection Related Work

There are some recent works on the maximal-profit item se-
lection problem. PROFSET [8, 7] models the cross-selling
effects by frequent itemsets, which are sets of items co-
occurring frequently. Amaximal frequent itemsetis a frequent
itemset which does not have a frequent item superset. The
profit margins of maximal itemsets are counted in the total
profit. The problem is formulated as 0-1 linear programming
that aims to maximize the total profit.

However, PROFSET has several drawbacks as pointed out
in [26]. More details can be found in [26].

HAP [26] is a solution of a similar problem. It applies the
”hub-authority”profit ranking approach [23] to solve the max-
imal profit item-selection problem. Items are considered as
vertices in a graph. A link fromIi to Ij represents the cross-
selling effect fromIi to Ij . A nodeIj is a goodauthority
if there are many links of the formIi ! Ij with a strong



strength of the link. The HITS algorithm [18] is applied and
the items with the highest resulting authorities will be thecho-
sen items. It is shown that the result converges to the principal
eigenvectors of a matrix defined in terms of the links, confi-
dence values, and profit values.

However, HAP also has some weaknesses. (1) Problems of
dead ends or spider traps as illustrated in [25] can arise. For
example, if there is an isolated subgraph with a cycle while
other items are not connected, then the authority weight and
hub weight of all items in the cycle are accumulated and is in-
creased to an extremely high value, giving an over-estimating
ranking for these items. (2) In HAP, the authority weight of
an itemIj depends on the profit of any other itemIi with the
association ruleIi ! Ij . It is possible that some items with
low/zero profit gain very high authority weights, and are se-
lected by HAP. In fact the real data set we shall use in the
experiments exhibits this phenomenon, and HAP cannot give
a competitive solution.

4 Cross selling effect by Association Rules
In Section 2, we did not specify how to determine the cross-

selling effectcsfactor of some items for other items. In pre-
vious work [26], the concept of association rules is appliedto
this task. Here we also apply the ideas of association rules for
the determination ofcsfactor.

Let us estimate the possible profit from a given set of trans-
action. If all items are selected, the profit is the same as the
given profit. Suppose we have made a selectionS of J items
from the set of items. Now some transactions may lose profits
if some items are missing. Consider a transactionti in our
transaction history, suppose some items, saysIa, are selected
in S but some items are not selected (i.e.di). Then if we
have a rule that purchasingIa always ”implies” at least one
element indi then it would be impossible for transactionti to
exist after the selection ofS, sinceti containsIa and no ele-
ment indi after the selection. The profit generated byti fromIa should be removed from our estimated profit.

We can model the above rule by an association rule. In fact,
we can model the cross-selling factor in the total profit of item
selectioncsfactor(di; Ia) by conf(Ia ! �di), where�di is
given by the following:

Definition 2 Let di = fY1; Y2; Y3; :::; Yqg whereYi refers to
a single item fori = 1; 2; ::; q, then�di = Y1_Y2_Y3_ ::::_Yq.
The ruleIa ! �di is called aloss rule. The ruleIa ! �di in-
dicates that a customer who buys the itemIa must also buy at
least one of the items indi. If none of the items indi are avail-
able then the customer also will not purchaseIa. Therefore,
the higher the confidence of ”Ia ! �di”, the more likely the
profit of Ia in ti should not be counted. This is the reasoning
behind the above definition.

The total profit is to estimate the amount of profit we would
get from the set of transactiont1; :::tm, if the set of items is
reduced to the selected setS. From Definition 1, we have

Definition 3 Total Profit of Item Selection (association

rule based): The association rule based total profit of item
selectionS is given byP =Pmi=1PIa2t0i prof(Ia; ti)(1� conf(Ia ! �di))
For the special cases, if all items in transactionti are selected
in the setS, thendi is empty,ti will not be affected and so the
profit of transactionti would remain unchanged. If no item
in transactionti is selected, then the customer could not have
executed the transactionti, thent0i is an empty set, and the
profit of transactionti becomes zero after we have made the
selection.

The loss ruleIa ! �di is treated as an association rule. The
confidence of this rule is defined in a similar manner as for the
association rule:

Definition 4 conf(Ia ! �di) is computed as
no. of transactions containingIa and any element indi

no. of transactions containingIa
5 Quadratic Programming

Linear programming or non-linear programming has been
applied for optimization problems in many companies or busi-
nesses and has saved millions of dollars in their running [12].
The problem involves a number of decision variables, an ob-
jective function in terms of these variables to be maximized
or minimized, and a set of constraints stated as inequalities
in terms of the variables. In linear programming, the objec-
tive function is a linear function of the variables. In quadratic
programming, the objective function must be quadratic. That
means the terms in the objective function involve thesquare
of a variable or theproduct of two variables. Ifs is the
vector of all variables, a general form of such a function isP = fT s + 12sTQs wheref is a vector andQ is a symmet-
ric matrix. If the variables take binary values of 0 and 1, the
problem is called zero-one quadratic programming.

In this section, we propose to tackle the problem of MPIS
by means of zero-one quadratic programming. We shall show
that the problem can be approximated by a quadratic program-
ming problem. Lets = (s1s2:::sn)T be a binary vector repre-
senting which items are selected in the setS. si = 1 if item Ii
is selected in the output. Otherwise,si = 0. The total profit of
item selectionP can be approximated by the quadratic formfT s+ 12sTQswheref is a vector of lengthn andQ is ann bynmatrix in which the entries are derived from the given trans-
actions. The objective is to maximizefT s + 12sTQs, subject
to
Pni=1 si = J . The term

Pni=1 si = J means that there areJ items to be selected.

With a little overloading of the termti, we say thatti =(ti1ti2:::tin)T is a binary vector representing which items are
in the transactionti. tij = 1 if item Ij is in the transactionti.
Otherwise,tij = 0. Similarly, t0i is a binary vector represent-
ing which items are selected in S in the transactionti. di is
a binary vector representing which items are not selected inS
in the transactionti.

Then, we have the following. Fori = 1; 2; :::;m andj =1; 2; :::; n, t0ij = tij � sj anddij = tij � t0ij :



ni number of transactions containing itemIinij number of transactions containingIi andIjjIi1; :::Iijj number of transactions containingfIi1; :::; Iijg
Observation 1 The confidenceconf(Ij ! �di) can be ap-
proximated by1nj Pnk=1 diknjk.

The above observation is based on the principle of inclusion-
exclusion in set theory. To see this, let us consider the numer-
ator in Definition 4 and let it equal tog(Ia; di).
Definition 5 LetD � I, D = fY1; Y2; :::; Yqg andIx 62 D,
whereYi refers to a single item fori = 1; 2; ::; q.g(Ix;D) =P1�i�q jIxYij �P1�i<j�q jIxYiYjj+P1�i<j<k�q jIxYiYjYkj � :::+ (�1)n+1jIxY1Y2:::Yqj

wherejIxYiYj :::j is the number of transactions containing
the itemsIx, Yi, Yj, ....

We haveconf(Ij ! �di)= g(Ij ;di)
no. of transactions containing itemIj�min� P1�k�njIjIkj�dik

no. of transactions containing itemIj ; 1�=min� 1nj Pnk=1diknjk; 1�
The reason why the above approximation is acceptable is that
the number of transactions containing a set of itemsJ is typ-
ically smaller than the number of transactions containing a
subset ofJ . HencejIjIkIlj is typically much smaller thanjIjIkj, etc. From this approximation we can deduce the fol-
lowing theorem.

Theorem 2 The total profit of item selection can be approxi-
mated by the quadratic formP = fT s + 12sTHs wheref is
a vector of sizen andH is ann byn matrix.

Proof sketch:P�Pmi=1Pnj=1t0ijprof(Ij; ti)�1� 1nj Pnk=1 diknjk�=Pmi=1Pnj=1tijsjprof(Ij; ti)�1�Pnk=1(tik�t0ik)njknj �=fT s + 12sTHs
wheref=(fjjfj =Pmi=1tijprof(Ij; ti)(1� 1njPnk=1tiknjk)
for j = 1; 2; :::;n)TH=(hjk jhjk = 2njknj Pmi=1 tijprof(Ij; ti)tik
for j; k = 1; 2; :::;n)

Corollary 1 P can be approximated byP 0 = fT s + 12sTQs
whereQ is a symmetricn byn matrix.

The corollary follows becauseP = fT s+ 12 sTHs = fT s+ 12 sTQs
whereQ = (qij) andqij = 12 (hij + hji) for all i; j = 1; 2; :::;n

Since the value ofsi is either 0 or 1, from the above corol-
lary, we have approximated the problem of MPIS by that of
0-1 quadratic programming with the maximization ofP 0 and
an equality constraint of

Pi si = J :
MaximizeP 0 = fT s + 12sTQs
such that

Pni=1 si = J , andsi = 0 or si = 1 for i = 1; 2; ::;n
Any 0-1 quadratic programming problem is polynomially

reducible to an unconstrained binary quadratic programming
problem [16]. An unconstrained binary quadratic program-
ming problem can be transformed to a binary linear program-
ming problem (zero-one linear programming) [5]. More re-
lated properties can be found in [20] and [14]. Zero-one lin-
ear programming and quadratic programming are known to be
NP-complete [24]. However, there exist programming tools
which can typically return good results within a reasonable
time for moderate problem sizes. We shall apply such a tool
in our experiments which will be presented in Section 7.

6 Algorithm MPIS Alg
Since quadratic programming is a difficult problem, and ex-

isting algorithms may not scale up to large data sizes, we pro-
pose also a heuristical algorithm called Maximal-Profit Item
Selection (MPISAlg). This is an iterative algorithm. In each
iteration, we estimate a selected item set with respect to each
item based on its “neighborhood” in terms of cross-selling
effects, and hence try to estimate a profit for each item that
would include the cross-selling effect. With the estimated
profit we can give a ranking for the items so that some prun-
ing can be achieved in each iteration. The possible items for
selections will become more and more refined with the itera-
tions and when the possible set reaches the selection size, we
return it as the result.

There are some factors that make this algorithm desirable:
(1) We utilize the exact formula of the profitability in the it-
erations. This will steer the result better toward the goal of
maximal profits compared to other approaches [26] that do not
directly use the formula. (2) With the “neighborhood” consid-
eration, the item pruning at each iteration usually affect only
a minor portion of the set of items and hence introduce only
a small amount of computation for an iteration. Compared
to the HAP approach where the entire cross-selling matrix is
involved in each iteration, our approach can be much more
efficient when the number of items is large.

Before describing the algorithm, we define a few terms that
we use. If a transaction containsIk only, the transaction is
an individual transactionfor Ik. The individual count ck,
of an itemIk is the total number of individual transactions
for Ik. The individual count reflects the frequency of an item
appearing without association with other items.

LetZk be the set of transactions that containIk, theaverage
profit is given bypk = (Pti2Zkprof(Ik ; ti))=jZkj.
Definition 6 We definebP (A) to be the estimated profit as-
suming that the items in setA are selected:bP (A) =Pmi=1PIa2t0iprof(Ia; ti)(1� conf(Ia! �di))



The formulabP (A) is equal to that used in Definition 3. IfA = S, whereS is the output selection set,bP (A) is equal to
the final output estimated profit.ci individual count of itemIipi average profits of itemIibi Benefit of itemIiSi estimation set for itemIiei;j Estimated value of itemIj from itemIi;ei;j = pj � cj + (pj + pi)� support(Ii; Ij)
6.1 Overall Framework

In the algorithm MPISAlg, there are two phases - (1)
Preparation Phaseand (2)Main Phase. In the Preparation
Phase, the frequency and the individual count of each item and
the size 2 itemsets are returned. In the Main Phase, theben-
efit of each item is evaluated. Initially the result set contains
all items, a number of iterative steps of removing items with
minimum estimated benefit proceeds untilJ items remains.

Preparation Phase
1. count the number of occurrences of each item,n1; n2; :::; nn.

obtain the individual count for each item,c1; c2; :::; cn
2. generate all size 2 itemsets, with their counts.

Main Phase
1. Estimation Set Creation -

In this step, the estimation sets for all items,S1; S2; :::; Sn are computed.
For each itemIi, calculate theestimated valueof itemIj from item Ii: ei;j = pj � cj + (pj + pi) �support(Ii; Ij); wheresupport(Ii; Ij) is the support of
the itemsetfIi; Ijg. Among theseIj items, chooseJ�1
items with the highest estimated values. Put these items
into the estimation setSi for Ii.

2. Item Benefit Calculation - determine the estimated
benefitbi of each itemIi, bi  bP (Si [ fIig)

3. Item Selection and Item Benefit Update

Let I 0 be the set of items that has not been pruned.
(a) prune an itemIx with a smallest benefitbx value

among the items inI0
(b) for each remaining itemIi in I 0,

If Ix is in Si,
i. removeIx in the setSi. Choose the itemIk

which has not been selected yet inSi with the
greatest value ofei;k. InsertIk into the setSi.

ii. Calculatebi  bP (Si [ fIig)
4. Iteration - Repeat Step 3 untilJ items remain.

6.2 Enhancement Step
We can add a pruning step in between Step 1 and Step 2

in the above to enhance the performance. We call this the
Item Pruning step and it prunes items with apparently small
benefit. The basic idea is to compute both a lowest value and
an upper value for the profit of each item. These values are
generated by varying the estimated selection set for an item.

1. For each itemIi, calculateLi andHi, whereLi = bP(fIig) andHi = bP (Si [ fIig)� bP (Si)
2. Find theJ-th largest value (LJ ) among allLj
3. For eachIi, remove itemIi if Hi < LJLi is an estimate of the lowest possible profit contributed

by Ii; we assume that the selected set contains onlyIi. In
this case, the cross-selling effect may greatly reduce the profit
generated fromIi. Hi is the opposite ofLi; we assume that
as many as possible of the items related toIi are selected inSi. Hi is equal to the profit gain from adding itemIi to setSi. Hence the cross-selling effect will diminish the profit to a
much lesser extent.

For Ii, the initial profit is zero inbP (Si), since it is not inSi.
After Ii is included inSi, the profit fromIi should be greater
than or equal to the profit thatIi generates when it is the only
item selected, because of less cross-selling profit loss factors.
HenceHi andLi satisfy the following property:

Lemma 1 Hi � Li.
Item Ii is pruned ifHi is smaller than the values ofLj of
the firstJ items which have the highest values ofLj . The
rationale is thatIi has little chance of contributing more profit
than other items.

When this pruning step is inserted, Step 2 in the Main Phase
above will not need to compute the estimated benefit for all
items, only the items that remain (are not pruned) will be con-
sidered when computing the estimated benefits. However, the
setSi would be updated if it initially contains items that are
pruned.

Our experiments show that this step is very effective. In the
IBM synthetic data set, there are 1000 items. If the number
of items to be selected,J , is 500, there are only 881 remain-
ing items after the pruning step. Note that ifJ is large, this
enhancement step can be skipped.
6.3 Implementation Details

Here we describe how some of the steps are implemented.
Some sophisticated mechanisms such as the FP-tree tech-
niques are employed to make the computation efficient even
with a vast amount of items and transactions.
6.3.1 Reading transactions from an FP-tree

In a number of cases, the transactions in the database are ex-
amined for computation; for example, in the preparation step,
when we generate all size 2 itemsets; in the item benefit cal-
culation, to determine the profit of a selection. If we actually
scan the given database, which typically contains one record
for each transaction, the computation will be very costly. Here
we make use of the FP-tree structure [10]. We construct an
FP-treeFPT once for all transactions, setting the support
threshold to zero, and recording the occurrence count of item-
sets at each tree node. With the zero threshold,FPT retains
all information in the given set of transactions. Then we can
traverseFPT instead of scanning the original database. The
advantage ofFPT is that it forms a single path for transac-
tions with repeated patterns. In many applications, there exist
many transactions with the same pattern, especially when the
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Figure 1. An example of an FP-MPIS-tree

number of transactions is large. These repeated patterns are
processed only once withFPT . From our experiments this
mechanism can greatly reduce the overall running time.

6.3.2 Calculating Profit with the FP-MPIS-tree
In the definition of the profit of an item selectionbP (A) (see

Definition 6), we need to compute the number of transactions
containing some selected itemsIa and any item in setdi (the
value ofg(Ia; di)), whereIa 2 A anddi � I � A. This
is computed for many selections for each iteration, hence the
efficiency is important. For this task, we use the FP-MPIS-
tree data structure.

In the FP-MPIS-tree, we divide the items into two sets,I �A andA. SetA corresponds to items selected whileI � A
contains those not selected. The items in setI�A are inserted
into FP-MPIS-tree near to the root. Similar to the FP-tree, the
ordering of items in each set in the FP-MPIS-tree is based on
the frequencies of items. An example is shown in Figure 1. In
the figure, the set of selected items isA = fI3; I5; I6g and the
set of unselected items isI � A = fI1; I2; I4g.

To computeg(Ia; d), we first look up the horizontal linked
list (dotted links in Figure 1) of itemIa in the FP-MPIS-
tree. For each nodeQ in the linked list, we call the function
parseFPTree(Q; d). The function returns a count, we add up
all the counts returned from the nodesQ and it is the value ofg(Ia; d).

Function parseFPTree(N; d) computes the number of trans-
actions containing itemIa and at least one item ind in the
path from root of FP-tree toN . Starting from the nodeN ,
we traverse the tree upwards towards the root of the FP-tree
until we find a nodeM containing one element in setd or we
hit the root node. IfM exists, the count stored in nodeN is
returned. The call of function parseFPTree(N; d) is quite effi-
cient as we do not need to traverse downwards from nodeN .
This is because all nodes below nodeN are selected items, no
item ind will be found belowN .

A further refinement for the FP-MPIS-tree is to insert only
transactions that contain both selected and non-selected items.
For transactions with only selected items, the profit for each
selected item is simply given. For transactions with only non-
selected item, the profit contribution will be zero. This refine-
ment can greatly reduce the size of the FP-MPIS-tree. Note
also that the FP-MPIS-tree is built from the FP-treeFPT and
not from the original database.

6.3.3 Item Benefit Update
In each iteration, after we remove itemIx, we need to check

the selectionSi for each itemIi in I 0. If Si contains itemIx,
it should be updated because itemIx has been removed, also
a new itemIk will be selected to be included intoSi. AsSi is
changed, the benefitsbi also have to be updated.

Let S0i [ fIxg be the selection before we remove itemIx
whileS0i[fIkg be the selection after we have removed itemIx
and added itemIk in the selectionSi. We can do the item ben-
efit update by scanning only those transactionsT containing
at least one of itemIx and itemIk. Let bP 0(A; T ) be the profit
of the item selectionA generated by transactions inT . The
item benefit is updated:bi  bi+ bP 0(S0i[fIkg; T )� bP 0(S0i[fIxg; T ). The computation ofbP 0(A; T ) can be done in a sim-
ilar manner asbP (A) but bP 0(A; T ) considers only transactionsT , instead of all transactions. As there are fewer transactions
in T compared to the whole database, the update can be done
very efficiently.

7 Empirical Study
We use the Pentium IV 1.5 GHz PC to conduct our experi-

ment. Frontline System Solver is used to solve the QP prob-
lem. All algorithms other than QP are implemented in C/C++.
The profitability is in terms of the percentage of the total
profit in the data set. We compare our methods with HAP and
the naive approach. The naive approach simply calculates the
profits generated by each item for all transactions and select
theJ items with the greatest profits. Several synthetic data
sets and a real data set are to be tested in our experiments.

We have tried a number of quadratic programming tools,
including LINDO, TOMLAB, GAMS, BARON, OPTRIS,
WSAT, Frontline System Solver, MOSEK and OPBDP. We
choose Frontline System Solver (Premium Solver - Premium
Solver Platform) [1] because it performs the best out of these
solvers.
7.1 Synthetic Data Set

In our experiment, we use the IBM synthetic data generator
in [2] to generate the data set with the following parameters
(same as the parameters of [26]): 1,000 items, 10,000 trans-
actions, 10 items per transaction on average, and 4 items per
frequent itemset on average. The price distribution can be ap-
proximated by a lognormal distribution,as pointed out in [15].
We use the same settings as [26]. That is, 10% of items have
the low profit range between $0.1 and $1, 80% of items have
the medium profit range between $1 and $5, and 10% of items
have the high profit range between $5 and $10.
7.2 Real Data Set

The real data set is obtained from a large drug store in
Canada over a period of 3 month. In this data set, there are
26,128 items and 193,995 transactions. On average, each
transaction contains 2.86 items. About 40% of the transac-
tions contain a single item, 22% contain 2 items, 13% con-
tain 3 items, the percentages for increasing sizes decrease
smoothly, and there are about 3% of the transactions with
more than 10 items. The greatest transaction size is 88 items.
In this data set, the profit distribution of items is shown in the



following table.
Profit Range Proportion Profit Range Proportion

$0-$0.1 2.03% $5-$10 10.43%
$0.1-$1 25.05% $10-$100 7.75%
$1-$5 54.59% $100-$400 0.15%

7.3 Results for Synthetic Data
In the first experiment, we have the same setup as in [26]

but the profit follows lognormal distribution. The result is
shown in Figure 2. In the figure, it is noted that the profitabil-
ity lines for MPISAlg, QP and HAP are overlapping and the
execution-time line for HAP is slightly greater than that for
naive.

For profitability, we observe that, for the data set, the naive
approach gives the lowest profitability among all algorithms.
This is because the naive approach does not consider any
cross-selling effect. Naturally the profitabilities of allalgo-
rithms increase when the number of items selected increases.

From the graph of the execution time against the selection
size, the execution time of MPISAlg increases from 0% se-
lection, reaching a maximum when about half the items are
selected, and then decreases afterwards. Here the execution
time depends on two factors. The first factor is related to the
complexity of each iteration. If there are more items to be
selected, the benefit calculation is more complex and updates
to the benefit are more likely. The initial increase is related
to the first factor. The second factor is related to the number
of iterations in the algorithm. WhenJ , the number of items
selected, increases, the number of items to be removed in the
iteration step decreases. Thus, the number of iterations de-
creases ifJ is large compared withn. The first factor is dom-
inant when the selection is below 50% but the second factor
becomes dominant when the selection is larger than 50%.

The quadratic programming approach (QP) used in the cho-
sen Solver uses a variant of the Simplex method to determine
a feasible region and then uses the methods described in [13]
to find the solution. As the approach uses an iterative step
based on the current state to determine the next step, the exe-
cution time is quite fluctuating as the execution time is mainly
dependent on the problem (or which state the algorithm is in).

HAP is an iterative approach to find the authority weight of
each item. The formula for the update of the authority weight
is in the forma = Ma, wherea is a vector of dimensionn
representing the authority weight ofn items andM is ann�n
matrix used in HAP to update the authority weight. In our
experiment, we observed that the authority weights converge
rapidly.

QP takes the longest execution time compared with other al-
gorithms. Naive gives the shortest execution time as there are
only simple operations. HAP gives the second shortest exe-
cution time for this small synthetic data set. We note that the
number of iterations involved are quite small. MPISAlg has
the second greatest execution time, but it scales much better
with increasing number of items, where it can outform HAP
many folds (see the next subsection).

7.4 Results for Real Data Set
With the drug store data set, we have conducted similar ex-

periments as with the synthetic data. However, the Quadratic
Programming (QP) Solver [1] does not handle more than 2000
variables. In the real data set, there are 26,128 variables (i.e.
items), hence it is not possible to experiment with our QP tool.

The results of the experiments are shown in Figure 3. In the
results, HAP gives the lowest profitability. The reason is as
follows. In the dataset, there are some items with zero-profit
and high authority weight (described in Section 3), yielding a
low estimated total profit of the item selection. Suppose itemIi has zero profit, it is likely a good buy and hence can lead
to high support. If there are sufficient number of purchases of
other item, says itemIj , with item Ii and if itemIi usually
occur in the transactions containing itemIj , the confidence of
the ruleIj ! Ii is quite high. This creates a high authority
weight for itemIi. Items likeIi would lead to smaller prof-
itability for HAP.

MPIS Alg gives a greater profitability than naive approach
in the real data set. For instance, ifJ = 20; 902, the difference
in profitabilities between these two approaches is 2%. In the
real data set, the total profit is equal to $1,006,970. The dif-
ference in 2% profitability corresponds to $20,139.4, whichis
a significant value. If J=8709, the difference in profitabilities
between the two approaches is about 8%, which corresponds
to $80,557.6.

On average, the execution time of HAP is 6.5 times slower
than MPISAlg when the problem size is large. HAP requires
6 days to find the item selection while MPISAlg requires
about 1 day to find the solution. Since item selection is typi-
cally performed once in a while, only when a store should up-
date the types of products it carries, the execution time is ac-
ceptable. Though the naive method is much faster, the profit
gain consideration from MPISAlg would make it the better
choice for an application.

The execution time of HAP increases significantly when the
number of items increases compared with MPISAlg. In HAP,
a cross-selling matrixB is updated iteratively. The matrix is
of the ordern � n. For the real data setn = 26; 128, andn2 will be very large. Leta be then � 1 vector representing
the authority weight of each item. In HAP, there is a process
to updateMa iteratively, whereM = BTB. This matrix
multiplication of matrixM with vectora is highly costly. Let
us consider the memory required for matrixM . If double data
type (8 bytes) is used for storage of each entry, then the matrix
requires a memory size of about 5.08GB. If float data type (4
bytes) is required, then about 2.5GB memory is required. This
large matrix cannot fit into the physical memory, causing a lot
of disk accesses for virtual memory. Since the matrixM is
sparse, a hash data structure can be used, so that only non-zero
entries are stored. We have adopted the hash structure for the
real data set, and fouud that less than 5MB memory is needed.
Our results in Figure 3 are based on this enhanced hashing
approach. However, the computation with this reduced size is
still very massive.

We have also tried other sets of experiments where not all



the items are considered but only those above a minimum sup-
port threshold of 0.05% or 0.1% are considered. However, the
resulting profitabilities are much lower than those shown in
Figure 3. For instance, if J = 500 and min-support = 0.05%,
the profitability of naive and MPISAlg is about 1.3%. But, if
all items are considered, the profitability of those approaches
is about 25%. This is explained by the existence of items that
generate high profits but which are not purchased frequently
enough to be counted given the support thresholds.
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Figure 2. The Synthetic
Data Set
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Figure 3. The drug store
data set

8 Conclusion
One of the applications of association rule - the maximal-

profit item selection problem with cross-selling effect (MPIS)
is discussed in this paper. We propose a modeling by the loss
rule, which is used in the formulation of the total profit of the
item selection. We propose both a quadratic programming ap-
proach and a heuristical approach to solve the MPIS problem.
We show by experiments that these methods are efficient and
highly effective. We believe that much future work can be
done. The heuristical method can be enhanced with known
methodologies such as hill climbing. Expert knowledge can
be included in the methods, and the definition of the problem
can be changed in different ways to reflect different user envi-
ronments.
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