
Trend-MC: A Melody Composer by Constructing
from Frequent Trend-based Patterns

Cheng Long, Raymond Chi-Wing Wong, Raymond Ka Wai Sze
The Hong Kong University of Science and Technology

{clong, raywong, kwrsze}@cse.ust.hk

Abstract—Algorithmic composition refers to the process of
composing a melody automatically using algorithms. A bulk
of methods have been proposed for this task. Among them, a
novel idea is to utilize the correlation information between the
pitches of melodies and the tones of lyrics for melody composition.
Unfortunately, the existing method adopting this idea suffers from
several severe shortcomings and thus the merits of the above idea
are not fully utilized. In this paper, we propose a new technique to
capture the above correlation information based on the concepts
of pitch trends and tone trends. Based on this technique, we
design a new algorithm called Trend-MC for melody composition
which avoids the shortcomings. We also developed a software
with the Trend-MC algorithm as its core. We demonstrate that
the software could compose nice melodies with the input of lyrics.

I. INTRODUCTION

Algorithmic composition which refers to the process of com-
posing a melody automatically using algorithms has attracted
much attention in the literature [1-4]. The main idea of these
methods is to use the temporal correlation among all notes
(sounds) of the songs in an existing song database for melody
composition. They differ from one another by using different
models for capturing the correlation information.

More recently, [5] proposed a new idea for melody com-
position when a lyric is present. Given an inputted lyric, they
proposed to generate a melody for this lyric by utilizing the
correlation information between the notes of existing melodies
and the tones of the corresponding lyrics, which is shown to
commonly exist [6]. This idea [5] is nice since it utilized
an additional information source (i.e., lyrics) compared to
previous melody composition methods.

Unfortunately, the method developed in [5] that adopted this
idea has several shortcomings. The correlation information
between the notes of the melodies and the tones of the
lyrics is captured by frequent patterns called frequent s-
sequences. Then, these frequent s-sequences are used to build
a Probabilistic Automaton (PA) [7], and an execution of the PA
with the lyric as input corresponds to the melody composition
process. This method has the following shortcomings.
• Only those frequent patterns (i.e., s-sequences) that have a

fixed length equal to a user-given parameter l are allowed
to be used. This is not desirable since the knowledge
embedded in all other frequent patterns of lengths not
equal to l is wasted.

• During the melody composition process, the two frequent
patterns that are used adjacently have to overlap with each

other to a large degree (l−1 out of l) which poses a fairly
strict condition. When this condition cannot be satisfied,
the melody is composed more randomly which degrades
the quality of the resulting melody considerably.

• The PA used in [5] usually involves a tremendous number
of states, which incurs a fairly expensive computation
cost. Specifically, in the setting that we have m songs
each with ni (1 ≤ i ≤ m) pitches, the number of states
could be

∑m
i=1(ni − l + 1) in the worst case.

In this paper, we adopt the same idea of utilizing the
correlation information between the notes of melodies and the
tones of lyrics as in [5] but use a new technique for capturing
it. Instead of capturing the above correlation information with
sequences of absolute pitches and absolute tones (utilized by
[5]), we capture it with pitch trend (which contains a sequence
of differences between adjacent pitches) and tone trend (which
contains a sequence of differences between adjacent tones).
This new technique gives a better interpretation of melodies,
resulting in a better way of capturing the correlation infor-
mation between melodies and lyrics. Since a melody, by its
nature, is more like a sequence of changing pitch differences
(e.g., higher, lower or stay) which corresponds to a pitch trend
but not a sequence of absolute pitches. For example, for the
same melody, we can play it with Piano in different ways (e.g.,
C-major or G-major), which correspond to the same sequence
of pitch trends, but different sequences of absolute pitches.

Based on this new technique, we develop an algorithm
called Trend-MC for melody composition, which avoids all the
aforementioned shortcomings of [5] as illustrated as follows.

• All mined frequent patterns are allowed to be used in
the melody composition process. That is, there is no
restriction on the lengths of the frequent patterns and thus
the correlation knowledge could be fully utilized.

• In the melody composition process, there is no require-
ment for the two frequent patterns that are used adjacently
to be overlapped. We emphasize here that this feature
does not come with the sacrifice of the smoothness of
the composed melody since the frequent patterns used
are based on pitch trends but not absolute pitches.

• It is not based on a PA model and thus it does not suffer
from an expensive computation cost.

In the following, we introduce the Trend-MC algorithm in
Section II and the software developed based on Trend-MC in
Section III. We conclude the paper in Section IV.

II. THE TREND-MC ALGORITHM

A. Preliminaries

A song usually consists of two parts, a melody and a lyric.
A melody corresponds to a sequence of notes and each note
has its pitch (i.e., how high the frequency of the sound is)
and its duration (i.e., how long the sound lasts for). Note that
each pitch corresponds to a frequency value (a real number). In
this paper, we focus on the pitch part for illustration. Similar
techniques can be applied to the duration part. Thus, each
melody is associated with a sequence of pitches. In this paper,
we are interested in the pitch trend information of a melody.
Given a sequence of n pitches of a melody, (p1, p2, ..., pn),
we capture its pitch trend with a sequence of n − 1 “pitch
differences”, (p2 − p1, p3 − p2, ..., pn − pn−1).

In music theory, a common way of denoting pitches is to
use so-fa names (e.g., do, re, mi, fa, so, la and ti). Given two
so-fa names x and y, the pitch difference between x and y,
denoted by x − y, is measured by the number of semi-tones
between them (e.g., the pitch difference between do and re
is 2 semi-tones which we denote by re − do = +2, and the
pitch difference between re and do is still 2 semi-tones but
we denote by do− re = −2). For example, given a sequence
of pitches (mi, fa, so), we know that its corresponding pitch
trend is (+1,+2) (since fa−mi = +1 and so− fa = +2).
Thus, in this paper, we assume that each pitch trend could be
represented by a sequence of integers.

A lyric corresponds to a sequence of words, each of which
has several syllables (phonological “building blocks”). For
example, word “water” has two syllables: wa and ter. Each
syllable has a corresponding tone which means the pitch in
which the syllable is pronounced. Different languages have
different sets of tones. For example, in English, there are three
tones (i.e., primary stress, second stress, and non-stress) [5],
and in Mandarin, there are five tones. Thus, each lyric is
associated with a sequence of tones.

Similar to a melody which has a pitch trend, each lyric
has its tone trend, which corresponds to a sequence of “tone
differences” between adjacent tones in the sequence of the
tones of the lyric. Note that we can calculate the pitch of
each tone and capture the tone difference between two tones
with their pitch difference. For simplicity, we round each tone
difference to the nearest integral value. Thus, same as the
pitch trend, we safely assume that each tone trend could be
represented by a sequence of integers.

Each melody is composed of a number of sentences (or
formally phrases) (like sentences in an article). In this paper,
for illustration purpose, we regard the whole melody as a
single sentence. The techniques to be described can also be
easily extended to multiple sentences.

Next, we describe two kinds of pairs, namely a (cadence,
tone difference)-pair and a (pitch trend, tone trend)-pair.

1) (cadence, tone difference)-pair: The (cadence, tone
difference)-pair is used to describe the correlation between the
melody part and the lyric part at the end of the whole song.
In music theory, the ending two chords (or simply pitches) of

a melody is called the cadence of the melody. In other words,
each melody has a cadence. Given a cadence cad, we denote
its first pitch by cad[1] and its second pitch by cad[2], i.e.,
cad = (p1, p2) has cad[1] = p1 and cad[2] = p2.

It is a common knowledge in music theory that the cadence
part of a melody should not be composed in a relatively free
way as one does for the non-cadence part of the melody.
Instead, there exists a cadence pool from which the cadence of
a melody should come from. Motivated by this, in this paper,
we propose to first collect the set of common cadences as
the cadence pool and then use the “correlation information”
between the cadences of existing melodies and the ending tone
differences of corresponding lyrics for composing the cadence
part of a new melody. Before we introduce how to capture this
correlation information, we give the definition of “(cadence,
tone difference)-pair” first.

Definition 1 ((cadence, tone difference)-pair): A (cadence,
tone difference)-pair is a pair in the form of (cad,Mt) where
cad is a cadence and Mt is a tone difference.

In the following, for simplicity, we use “cadence-pair” to
refer to “(cadence, tone difference)-pair”.

Given a cadence-pair cp, we denote the cadence in cp by
cp.cad and the tone difference in cp by cp.toneDiff .

Let D be the song database and s be a song in D. We say
that s owns the cadence-pair (cad,Mt) if cad is the cadence
of s and Mt= tn − tn−1 where tn is the last tone of the lyric
of s and tn−1 is the second last tone of the lyric of s. Note
that a cadence could be owned by multiple songs.

Given a cadence-pair cp, we define its support, denoted by
sup(cp), to be the number of songs in D that own cp.

Now, we define the concept called “frequent cadence-
pair” which captures the correlation information between the
cadences of melodies and the ending tone differences of lyrics.

Definition 2 (Frequent Cadence-Pair): A cadence-pair cp
is said to be a frequent cadence-pair if sup(cp) ≥ τcp where
τcp is an integer and is a user-given parameter.

As will be illustrated in Section II-B, we mine all frequent
cadence-pairs for composing the cadence part of a melody.

2) (pitch trend, tone trend)-pair: The (pitch trend, tone
trend)-pair is used to describe the correlation between the
melody part and the lyric part at any non-end part of the
whole song. Each song has its melody associated with a
pitch trend and its lyric associated with a tone trend. In this
paper, we mine the “correlation information” between these
two trends, and then utilize it for composing the non-cadence
part of a melody. Before we introduce how to capture this
correlation information, we give the definition of “(pitch trend,
tone trend)-pair” first.

Definition 3 ((pitch trend, tone trend)-pair): A (pitch
trend, tone trend)-pair is a pair (P, T), where P is a pitch
trend and T is a tone trend with the same size as P .

In the following, for simplicity, we use “trend-pair” to refer
to “(pitch trend, tone trend)-pair”.

Let tp = (P, T) be a trend-pair. We say that the size of tp,
denoted by size(tp), is |P | (= |T |). Besides, we denote the
pitch trend of tp by tp.P and the tone trend of tp by tp.T .

Fig. 1. The architecture of Trend-MC

We denote by tp[i : j] (1 ≤ i < j ≤ size(sp)) the trend-
pair of (P [i : j], T [i : j]), where P [i : j] (T [i : j]) represents
the sub-sequence of P (T) that contains the elements between
the ith position and the jth position.

Given two trend-pairs sp1 = (P1, T1) and sp2 = (P2, T2),
we say that sp1 contains sp2, denoted by sp1 c sp2, if there
exists two integers i and j (1 ≤ i < j ≤ size(sp1)) such that
sp1[i : j] is exactly sp2, i.e., P1[i : j] = P2 and T1[i : j] = T2.

Given s ∈ D, we denote by etp(s) the embedded trend-pair
of s in the form of (P, T) where P is the pitch trend of the
melody of s and T is the tone trend of the lyric of s.

Let tp = (P, T) be a trend-pair. We define the support
of tp denoted by sup(tp), to be the number of songs in D
each of which has its embedded trend-pair containing tp, i.e.,
sup(tp) = |{s ∈ D|etp(s) c tp}|.

Now, we are ready to define the concept of “frequent trend-
pair” which captures the correlation information between the
pitch trends of melodies and the tone trends of lyrics.

Definition 4 (frequent trend-pair): A trend-pair tp is said
to be a frequent trend-pair if sup(tp) ≥ τtp where τtp is an
integer and is a user-given parameter.

As will be illustrated in Section II-B, we mine all frequent
trend-pairs for composing the non-cadence part of a melody.

B. The Trend-MC Algorithm

Trend-MC involves two phases. The first phase is called
Frequent Pattern Mining which mines two types of frequent
patterns from the song database. Roughly speaking, these
frequent patterns correspond to the correlation information
between pitch trends (from existing melodies) and tone trends
(from existing lyrics). The second phase is called Melody
Composition which takes a (new) lyric as input and composes
a melody for this lyric by using the frequent patterns mined in
the first phase. Figure 1 shows the architecture of Trend-MC,
which will be described in detail next.

1) Phase I: Frequent Pattern Mining: In this phase, we
mine two types of frequent patterns: frequent cadence-pairs
and frequent trend-pairs.

Before the mining procedures, we first collect a set T of
trend-pairs each of which is embedded by a song in D as
follows. We initialize T to be ∅ at the beginning. Then, for
each song s ∈ D, we extract the pitch trend of the melody of s
as P and extract the tone trend of the lyric of s as T , and then
add a trend-pair (P, T) into T . The task of extracting the pitch
trend of a melody is easy and all we need do is to compute the

pitch differences between adjacent pitches in the sequence of
the pitches of the melody. The task of extracting the tone trend
of a lyric could be done with three steps. First, we construct a
sequence of syllables corresponding to the sequence of words
in the lyric by utilizing a “language dictionary”. Second, we
construct a sequence of tones corresponding to the constructed
sequence of syllables by utilizing a “syllable-tone mapping
table” which maps each syllable to a tone and could be
collected from the Web. Third, we construct a sequence of
tone differences by computing the pitch differences between
adjacent tones in the constructed sequence of tones by utilizing
a “tone-pitch mapping table” which maps each tone to a pitch
value and could also be collected from the Web.

We then mine two types of frequent patterns using T .
Frequent Cadence-Pairs Mining. Let C denote the set of
frequent cadence-pairs to be mined, which is initialized as ∅
at the beginning. For each song s ∈ D, we do two steps. First,
we retrieve the cadence-pair cp that is owned by s (this could
be easily done with the knowledge of T). Second, we have
two cases. Case 1: cp /∈ C. We add cp into C and set sup(cp)
to be 1. Case 2: cp ∈ C. We increment sup(cp) by 1. At the
end, we remove from C those cadence-pairs whose supports
are below the parameter τcp and return the resulting C as the
set of mined frequent cadence-pairs.
Frequent Trend-Pairs Mining. It is to mine the set of all
frequent trend-pairs, denoted by T P . This task can be done
by a frequent subsequence/substring mining algorithm [8]. Due
to page limit, we omit the details here.

2) Phase II: Melody Composition: In this phase, we com-
pose a melody based on the inputted lyric by using the mined
frequent patterns in Phase I.

Let M be the sequence of pitches to be composed. We have
four steps which we introduce next.
Step 1: Tone Trend Extraction. This step is to extract the
tone trend of the inputted lyric, which could be done similarly
as we extract the tone trend of the lyric of each song in D (in
Section II-B1). Let T be the resulting tone trend and n = |T |
(i.e., there are n+1 tones in the lyric and thus there are n+1
pitches to be composed in M).
Step 2: Cadence Part Composition. This step is to compose
the cadence part of the melody (i.e., M [n : n+1]). The main
idea is to utilize the correlation information between cadences
and the ending tone differences, which is captured by the set
of frequent cadence-pairs C. Specifically, we select a cadence
from a “cadence pool” CAD probabilistically to act as the
cadence part of the melody. CAD is a set of cadences in all
cadence-pairs cp in C whose tone differences are the ending
tone difference in T (i.e., T [n]), i.e.,

CAD = {cp.cad|cp ∈ C, cp.toneDiff = T [n]}

Besides, we associate with each cadence cad ∈ CAD a sup-
port, denoted by sup(cad), which is set to be sup(cp) where
cp is its corresponding cadence-pair in C (i.e., cp.cad = cad
and cp.toneDiff = T [n]). Let cad∗ be the cadence part of
the melody to be composed, i.e., we have M [n] = cad∗[1]

and M [n + 1] = cad∗[2]. We select a cadence from CAD as
cad∗ by using the following probability distribution.

Pr(cad∗ = cad) = sup(cad)∑
cad′∈D sup(cad′) (1)

Step 3: Non-Cadence Pitch Trend Construction. This step
is to construct the pitch trend of the non-cadence part of the
melody (i.e., M [1 : n − 1]), denoted by P [1 : n − 1]. The
main idea is to construct P [1 : n− 1] (which is a pitch trend)
based on T [1 : n − 1] (which is a tone trend) by utilizing
the correlation information between the pitch trends and the
tone trends of the songs in D, which is captured by the set of
frequent trend-pairs T P .

Specifically, we construct P [1 : n−1] sequentially from the
end to the beginning with an iterative process (the reason for
this reverse chronological order is that the cadence which is
at the end has been composed already (at Step 2) and starting
from the cadence makes the melody smooth). We maintain
a variable end which indicates that P [1 : end] has not been
constructed yet during the process. At the beginning, end is
initialized to be n − 1. Then, we proceed with iterations. At
each iteration, we have four steps.

First, we construct a “pitch trend pool” Ppool which corre-
sponds to a set of pitch trends that could be used to construct
a suffix of P [1 : end] (i.e., P [i : end] where 1 ≤ i ≤ end).
Ppool contains the pitch trends of those frequent trend-pairs
in T P each of which has its tone trend matching a suffix of
T [1 : end] (i.e., T [i : end] where 1 ≤ i ≤ end). Formally,

Ppool = {tp.P |tp ∈ T P and ∃i ∈ [1, end]
such that tp.T = T [i : end]} (2)

Besides, we associate with each P ′ in Ppool a support, denoted
by sup(P ′), which is set to be the support of its corresponding
trend-pair in T P , i.e., sup(P ′) = sup(tp) where tp ∈ T P
with tp.P = P ′ and tp.T = T [i : end] for a i ∈ [1, end].

Second, we pick a pitch trend P ∗ from Ppool falling the
probability distribution as defined in Equation 3.

Pr(P ∗ = P ′) = sup(P ′)∑
P ′′∈Ppool

sup(P ′′) (3)

Third, we specify the portion of P [i : end] to be P ∗ where
i = end− |P ∗|+ 1.

Fourth, we update end to be i−1. We stop the above process
if end = 0 and continue to the next iteration otherwise.

At the end, P [1 : n− 1] has been constructed completely.

Step 4: Non-Cadence Part Composition. This step is to com-
pose the non-cadence part of the melody (i.e., M [1 : n− 1]).
It is done by using the pitch trend P [1 : n− 1] constructed at
Step 3 and Equation (4) (by definition of a pitch trend).

M [i] =M [i+ 1]− P [i] for i = n− 1, n− 2, ..., 1 (4)

Finally, the melody (i.e., M [1 : n+1]) is composed completely.

III. SOFTWARE

We developed a software with the Trend-MC algorithm as
its core, which is called Trend-MC as well for convenience.

Fig. 2. The main interface of Trend-MC
A. User Interface

The main interface of Trend-MC is shown in Figure 2.
Trend-MC supports a rich set of functionalities related to
melody composition. Some examples include lyric manage-
ment (e.g., alignment, input and tone exaction), music pa-
rameter specification (e.g., key signature, time signature and
instrument), melody management (composition, edit, play and
representation) and some other utilities that provide many
options of displaying, playing and editing melodies/lyrics.
Some of these functionalities would be illustrated in the
demonstration part in Section III-B.

B. Demonstration
We shot a video of using Trend-MC to compose a

piece of melody based on a prepared lyric, which demon-
strates many of the functionalities of Trend-MC. The com-
posed melody sounds nice. This demo could be found at
http://www.cse.ust.hk/~raywong/demo/demo.avi.

IV. CONCLUSION

In this paper, we proposed a new idea of capturing the corre-
lation information between melodies and lyrics by trend-based
frequent patterns. Based on this idea, we designed a melody
composition algorithm called Trend-MC which avoided the
shortcomings of previous methods. Besides, we developed a
software with the Trend-MC as its core.

ACKNOWLEDGEMENT

We are grateful to the anonymous reviewers for their con-
structive comments on this paper. The research was supported
by VPRGO15EG10.

REFERENCES

[1] G. Nierhaus, Algorithmic composition: paradigms of automated music
generation. Springer Verlag Wien, 2009.

[2] F. P. Brooks, A. Hopkins, P. G. Neumann, and W. Wright, “An experiment
in musical composition,” Electronic Computers, IRE Transactions on,
no. 3, pp. 175–182, 1957.

[3] F. Lerdahl, R. Jackendoff, and R. S. Jackendoff, A generative theory of
tonal music. The MIT Press, 1996.

[4] D. Cope, Experiments in musical intelligence. AR Editions Madison,
WI, 1996, vol. 1.

[5] C. Long, R. C.-W. Wong, and R. K. W. Sze, “T-music: A melody
composer based on frequent pattern mining,” in ICDE, 2013.

[6] S. Qin, S. Fukayama, T. Nishimoto, and S. Sagayama, “Lexical tones
learning with automatic music composition system considering prosody
of mandarin chinese,” in Second Language Studies: Acquisition, Learning,
Education and Technology, 2010.

[7] M. O. Rabin, “Probabilistic automata*,” Information and control, vol. 6,
no. 3, pp. 230–245, 1963.

[8] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu, “Sequential pattern mining
using a bitmap representation,” in KDD, 2002.

