
Mining Top- K Itemsets over a Sliding Window Based on Zipfian Distribution

Raymond Chi-Wing Wong, Ada Wai-Chee Fu
Department of Computer Science and Engineering

The Chinese University of Hong Kong
cwwong,adafu@cse.cuhk.edu.hk

Abstract

Frequent pattern discovery in data streams can be very
useful in different applications. In time critical applica-
tions, a sliding window model is needed to discount stale
data. In this paper, we adopt this model to mine theK
most interesting itemsets, or to estimate theK most fre-
quent itemsets of different sizes in a data stream. In our
method, the sliding window is partitioned intobuckets. We
maintain the statistics of the frequency counts of the item-
sets for the transactions in each bucket. We prove that our
algorithm guarantees no false negatives for any data distri-
butions. We also show that the number of false positives re-
turned is typically small according to Zipfian Distribution.
Our experiments on synthetic data show that the memory
used by our method is tens of times smaller than that of a
naive approach, and the false positives are negligible.

1 Introduction
Data mining processing is typically time-consuming.

However, there are some recent demands on real-time data
mining for unbounded data stream arriving at high speed.
Examples include financial data monitoring and network
monitoring. The mining process becomes much more dif-
ficult because it requires not only the handling of massive
unbounded data stream but also the ability to return the re-
sults within a short time.

With limited memory storage, it is natural to devise
methods to store some kinds of statistics or summary of
the data stream. Until now, most research work consider
all data read so far. However, in many applications, old data
are less important or not relevant, compared with more re-
cent data. There are two common approaches to deal with
this issue. The first one isaging [11, 5], where each data is
assigned a weight, with more weight for more recent data
(e.g. exponential-decay model). Another approach is to use
asliding window[2, 4, 8, 3, 9], so that only the most recent
W data elements in the data stream is considered, whereW
is the width of a sliding window. In this paper, we adopt the
second approach.

For association rule mining, the difficult subproblem of
frequent itemset discovery has been the focus of research
for some time. Many motivating examples are given in [12]
for the mining of frequent itemsets in data streams. A major
issue with mining frequent itemsets is that user has to define
a support or frequency thresholds on the resulting itemsets,
and without any guidance, this is typically a wild guess. In
some previous study [6, 7], it is found that, in different data
sets, or even with different subsets of the same data set, the
proper values ofs can differ by an order of magnitude. In
most previous work of data stream mining a major concern
is to minimize the error of the false positive to a small frac-
tion of s. However, if the thresholds is not appropriate in
the first place, such a guarantee is quite pointless.

Therefore, it is of interest to replace the requirement of
a frequency threshold to that of the simpler threshold on
the amount of results. It is much easier for users to specify
that say the 20 most frequent patterns should be returned.
Some previous work assumed that such a threshold can be
applied to itemsets of all sizes. However, there is a major
pitfall with such an assumption. It is that it implies a uni-
form frequency threshold for itemsets of all sizes. It is ob-
vious that small size itemsets have an intrinsic tendency to
appear more often than large size itemsets. The result from
this assumption is that smaller size itemsets can dominate
and hide some interesting large size itemsets. The mining
of closed patterns does not help much. For example, an in-
teresting closed itemsetsX of size 4 may have a frequency
of 0.01, while many smaller size closed itemsets have fre-
quencies above 0.l, and henceX cannot hope to reach the
top K frequency. Therefore, some previous work has pro-
posed to mine theK most frequent itemsets of sizel, for
eachl that is within a range of sizes specified by user. We
shall focus on this mining problem for data streams.

Let us call an itemset of sizel anl-itemset. Our problem
is about miningK l-itemsets with the greatest frequencies
(supports) for eachl up to a certainL. We shall tackle this
problem for a data stream with a sliding window of size
m (containsm transctions). In our approach, the sliding
window is divided intonB partitions, calledbuckets. Each



bucket corresponds to a set of transactions and we maintain
the statistics for the transactions in each bucket separately.
The window is slided forward one bucket at a time. When
the window is advanced, the oldest bucket is discarded and
a newly generated bucket is appended to the sliding win-
dow. At the same time, the candidate topK interesting
itemsets are adjusted. Our method have some guarantees
for the results. It gives no false negatives for any data dis-
tribution. Given a Zipfian data distribution with Zipfian pa-
rameterθ and an error parameterǫ > 0, it outputs no more
thanK[(1 + ǫ)1/θ − 1] false positives. The memory usage

of our algorithm is bounded byO(
n

1+2/θ

B
m1/θK

ǫ1/θ ). From our
experiment, we found that error in frequency of false pos-
itives is very small, and the proposed method can achieve
memory usage that is many times less than a more naive
approach.

2 Problem Definitions and Terminologies
In this section we introduce the problem definition and

also other terminologies.
Problem Definition: The data stream is considered a

sequence ofequisized data buckets withsB transactions
each. The most recentnB full buckets in the data stream
is considered as the sliding window. Given two positive
integersK andL. For eachl, wherel ≤ L, and let the
K-th highest frequency among alll-itemsets in the sliding
window bef(l), find all l-itemsets with frequencies greater
than or equal tof(l) in the sliding window. These are
called the topK l-itemsets.

Note that in the above definition, at any time, there will
be a most recent bucketB, which may or may not be full.
A bucket is full when it containssB transactions. When a
transactionT arrives at the data stream, it will be inserted
into B if it is not full; otherwise, a new bucket contain-
ing only T will be created and becomes the most recent
bucketB. Let m = nB × sB. Hence the size of the sliding
window is m (number of transactions). The sliding win-
dow contains bucketsB1, B2, ...,BnB , in chronological or-
der, where bucketBnB represents the most recently created
bucket.

In our algorithm we need to process itemsets of sizesl,
1 ≤ l ≤ L. Without loss of generality let us consider size
l itemsets, for a certainl. We are going to find the topK
l-itemsets.

Let l-itemset denote itemset of sizel. Each bucketBi

stores a list of entries(e, f), wheree is one of the topK ′

i,l ≥

K l-itemsets andf is the frequency ofe in the bucket.1

We usefi,e to denote the frequency ofe in bucketBi. We
say thatfi,e is recorded ife is among the topK ′

i,l itemsets.

1Note thatK ′

i,l
can be different for differentl and will be determined

by our algorithm automatically.

Therefore, each bucket stores information about the topK ′

i,l

frequent itemsets.
Let fi,min be the frequency of theK ′

i,l-th frequentl-
itemset in bucketBi. For entrye in bucketBi, fi,e ≥
fi,min. We definemin(e) and max(e). min(e) =∑

Bi and fi,e

is recorded

fi,e and max(e) =
∑

Bi and fi,e

is recorded

fi,e +
∑

Bi and fi,e

is not recorded

(fi,min − 1).

When we sum up all recorded frequenciesfi,e of itemset
e in different bucketsBi, this value should be the least pos-
sible frequency of itemsete. However, in some bucketsBi,
there may be no recorded frequencies. The itemsete may
appear in those buckets. To estimate the maximum possible
frequency, we assume the maximum possible frequency for
itemsetse with no recorded frequency, and this frequency
is fi,min − 1 for bucketsBi. Thereforemin(e) is the mini-
mum possible frequency of itemsete in the sliding window
while max(e) is the maximum possible frequency of item-
sete in the sliding window. Letfe be the frequency ofe in
the sliding window. Thus,min(e) ≤ fe ≤ max(e).

We define f(1) = maxe{min(e)}, which is the
greatest value ofmin(e) among all e. We de-
fine Ml = minBi{fi,min}, which is the minimum
value of fi,min among all buckets. We also define
△max,l =

∑
Bi

fi,min − Ml.

3 Algorithm
Let the size of the sliding window bem (there arem

transactions). There arenB buckets in the sliding window.
So, the bucket sizesB is ⌈m/nB⌉. For each full bucket we
store a list of entries (e, f ). The 2 major steps of our algo-
rithm will be introduced in this section. At the beginning
of the algorithm, we process the first full bucket containing
the transactions at the beginning of the data stream in Step
1. For each new bucket, we need to accumulatesB trans-
actions in the memory temporarily. After receiving thesB

transactions, we process the transactions with Step 2. Every
time a bucket leaves the sliding window, the bucket and its
entries will be removed.

There are two major parameters in our algorithm - (1)θ
and (2)ǫ. (1) θ is a Zipfian parameter in a Zipfian distribu-
tion. The greater the value ofθ, the greater the skewness of
the distribution. The Zipfian parameterθ ≥ 1 is commonly
used in the Zipfian distribution in previous research on data
streams[12, 10]. In [12],θ = 1.25; and [10] setsθ to be
1.0, 1.25 and 1.5. In our real data set, we found that the
distribution is quite skew, which also corresponds toθ ≥ 1.
(2) ǫ is an error parameter. The smaller the value ofǫ is,
the more accurate the algorithm is. However, with a small
value ofǫ, the memory consumption will be great. So,ǫ is a
user input parameter of our algorithm. It can determine the
storage and the accuracy of our algorithm. The the accuracy
bound and storage bound can be found in Corollaries 1 and



2, respectively in Section 4.
The major steps of our algorithm are described as fol-

lows.

1. After receiving the first bucket of transactions at the
beginning of the data stream, we do the following. Let
r0 = [nB(nB−1)( 1

2Kθ(1+1/ǫ)
+nB−1

m )−1]1/θ, 2 where
θ is the Zipfian parameter andǫ is an error parameter.
If r0 is greater than the number of possible itemsets,r0

is assigned to be the number of possible itemsets.

(a) find topr0 itemsets of sizel
For this task, we can use an existing algorithm
for mining topK itemsets (e.g. [7]).

(b) store the entries(e, s) of the itemsets found

2. After the first bucket, we can process other bucketsBi

in the following way. We definemax′(e) with the
same definition ofmax(e) but max′(e) is evaluated
with the scope of all buckets in the current sliding win-
dow except for the bucketBi.

(a) find theK-th largest value ofmin(e) of itemset
e of sizel, Kmin,l, within the current bucketBi

and all previous buckets in the sliding window

(b) Determine the rankri,e of eache in bucketBi.
Find the greatest rankri,e, say r̃i, in order that
max′(e) + fi,e ≥ Kmin,l andri,e ≤ r0. Store
all entries of itemsetse of sizel with ri,e ≤ r̃i.
Again we can make use of the existing algorithm
in [7].

(c) calculate△̃max,l =
f(1)

2Kθ(1+1/ǫ)
. If △max,l >

△̃max,l, then store the additional next top fre-
quent itemsets in the bucket (if any) until
△max,l ≤ △̃max,l.

3

3. We continue our process in Step 2. Whenever a bucket
leaves the sliding window, we can remove the entries
in that bucket and the bucket itself.

4. We output the result on demand. We find theK-th
largest value ofmin(e) of itemsete of size l, say
Kmin,l, for all buckets in the sliding window. Then,
we output all itemsetse of sizel with max(e) greater
than or equal toKmin,l.

Theorem 1 For any data distribution, the proposed algo-
rithm gives no false negatives.

2We shall see in Section 4 thatr0 is a bound on the ranks of itemsets
that we keep in all buckets.

3Storing more top frequent itemsets can lead to a smaller value of
fi,min and thus△max,l.

Proof: In the algorithm, theK-th largest value ofmin(e)
(i.e. Kmin,l) is found. In this step, we make sure that we
have foundK l-itemsetse wheremin(e) ≥ Kmin,l. Also
these are at leastK itemsets found in the algorithm, which
have the chance to become the topK itemsets.

The possible values of frequency of an itemsete are in
the range betweenmin(e) and max(e). Hence the only
other itemsetse which have the chance to become the top
K itemsets are those withmax(e) ≥ Kmin,l. Thus, the
entries withmax(e) ≥ Kmin,l are in the output. This
ensures that no topK l-itemset will be missed, for alll.

The above theorem shows the correctness. It is quite easy
to understand all steps in our algorithm except for Step 2b
and Step 2c. The purpose of Step 2b is to store as few entries
as possible. Meanwhile, the accuracy can be maintained.
We prune all entriese with ri,e > r̃i even though the entries
satisfymax(e) ≥ Kmin,l. After pruning those entries, we
can save a lot of space and can still maintain the accuracy.
Step 2c is to maintain the inequality△max,l ≤ △̃max,l

by making△max,l smaller and smaller. When△max,l is
smaller,fi,min is also made to be smaller at the same time.
This implicitly means that more itemsets are stored and a
smaller value ofmax(e) which depends onfi,min is cal-
culated. Whenmax(e) is smaller, the number of possible
frequencies of each itemset in the range betweenmin(e)
andmax(e) is smaller, leading to a higher accuracy of our
algorithm. Thus, the number of false positves in the output
can be reduced.

4 Analysis
In this section, we are going to analyze our algorithm,

and show some useful properties.
We first consider the number of false positives. From our

analysis, we have the following theorem.

Theorem 2 The frequency difference between anyl-itemset
which is a false positive returned by the algorithm and the
K-th frequentl-itemset is at most2△̃max,l.

Recall that△̃max,l =
f(1)

2Kθ(1+1/ǫ) . The following table

shows△̃max,l for some particular values off(1), K andǫ.

In the following table, we observe that̃△max,l is small rel-
ative tof(1). By Theorem 2, The frequency difference be-
tween anyl-itemset which is a false positive returned by the
algorithm and theK-th frequentl-itemset is small, which
can be shown in Table 1 (a).

In the remaining discussion of this section we assume
that thel-itemsets in the sliding window follow the Zipfian
distribution. We have derived the following theorem and
corollary.

Theorem 3 Our algorithm outputs the itemsets of ranksr



f(1) K ǫ △̃max,l
1,000 20 0.5 8.33
1,000 20 1 12.50
1,000 10 1 25.00
10,000 20 1 125.00

(a)

θ ǫ Max. No. of False Positives
1 1 K

1 0.5 0.5 × K

2 1 0.41 × K

0.5 1 3 × K

(b)

K nB ǫ θ m Max. No. of Entries
20 10 0.5 1 500,000 107,767
20 10 1 1 500,000 71,896
20 10 1 2 500,000 3,741
20 20 1 1 500,000 606,157

(c)

Table 1. Some values of the theoretical bound

Table 2.1
Stream Algorithm BOMOL
Structure Recent

Bucket
Structure Sliding

Window

Ratio

1 810K 400K 8M 40M 39.66
3 2665K 400K 8M 40M 15.66
5 4667K 400K 8M 40M 9.47
7 6867K 400K 8M 40M 6.60

Table 2.2
Stream Algorithm BOMO

sB Structure Recent
Bucket

Structure Sliding
Window

Ratio

2K 5979K 80K 1.6M 8M 1.58
4K 5799K 160K 3.2M 16M 3.22
6K 6069K 240K 4.8M 24M 4.56
8K 5744K 320K 6.4M 32M 6.33
10K 5735K 400K 8M 40M 7.82

Table 2.3
Stream Algorithm BOMOK
Structure Recent

Bucket
Structure Sliding

Window

Ratio

1 4595K 400K 8M 40M 10.01
10 5680K 400K 8M 40M 7.89
20 5735K 400K 8M 40M 7.82
50 5769K 400K 8M 40M 7.78
100 5780K 400K 8M 40M 7.77

Table 2. Synthetic Data Set: Memory Usage (Default ǫ = 1, L = 6, K = 20, sB = 10K and nB = 100)

within the sliding window with the following bound.
r ≤ K(1 + ǫ)1/θ

Corollary 1 The number of false positives returned by our
algorithm is no more thanK[(1 + ǫ)1/θ − 1].

Table 1 (b) gives the bound of false positives for some
values ofθ andǫ.

Next, we are going to analyze the storage capacity in
each bucket and in the whole sliding window. Additionally,
we have proved that there is a bound of the entries stored in
buckets in the following theorem and corollary.

Theorem 4 Each bucket stores entries of ranks smaller
than or equal tor, where

r ≤ [nB(nB − 1)( 1
2Kθ(1+1/ǫ)

+ nB−1
m )−1]1/θ

Note thatr0 = [nB(nB −1)( 1
2Kθ(1+1/ǫ)

+ nB−1
m )−1]1/θ.

Corollary 2 Our algorithm stores at mostnB[nB(nB −
1)( 1

2Kθ(1+1/ǫ)
+ nB−1

m )−1]1/θ entries in all buckets. The

memory required isO(
n

1+2/θ

B
m1/θK

ǫ1/θ ).

Proof: By Theorem 4, each bucket should store at
most [nB(nB − 1)( 1

2Kθ(1+1/ǫ)
+ nB−1

m )−1]1/θ entries.
As there arenB buckets, the total storage is at most
nB[nB(nB − 1)( 1

2Kθ(1+1/ǫ) + nB−1
m )−1]1/θ entries. The

memory requirement is thusO(
n

1+2/θ

B
m1/θK

ǫ1/θ ).

The above theorem shows that the memory usage of our
algorithm is very small. Table 1 (c) shows the number of
entries for some particular values ofnB, ǫ andθ. We ob-
serve that more buckets, a smaller value ofǫ and a smaller
value ofθ require more storage space.

Theorem 5 The memory usage used in our algorithm is
bounded by

O
(
nB[nB(nB − 1)( 1

2Kθ(1+1/ǫ)
+ nB−1

m )−1]1/θ
)

+

memory for the transactions stored in the most recent
bucket

5 Empirical Study
The experiment was conducted with a Pentium IV

1.5GHz PC with 512MB memory on the Linux platform.
We compare our algorithm with BOMO. BOMO mines the
topK itemsets of at most sizeL in all transactions of in the
sliding window. Thus, BOMO has to store all such trans-
actions. Our algorithm and the BOMO algorithm are im-
plemented in C/C++. The code of the BOMO algorithm
is provided by [7]. We make use of the BOMO algorithm
in our algorithm to obtain topK ′ itemsets in the bucket.
Synthetic data sets are tested. We have conducted some ex-
periments to study the memory usage, the amount of false
positives and the execution time, by varying three factors in
our algorithm - (1)L, the largest size of the itemsets to be
mined and (2) Bucket Size.

We adopt the IBM synthetic data set[1]. The data set is
generated with the following parameters (same as the pa-
rameters of [9]): 1,000 items,3×106 transactions, 10 items
per transaction on average, and 4 items per frequent item-
set on average. We apply the same methodology as [9] to
scramble the item-number mapping, in order to simulate the
seasonal variations. For every five buckets, we permutate
200 items. In all experiments, we setθ = 1. In most previ-
ous work,θ was set greater than 1. However, from the anal-
ysis of our algorithm, the worst case for the false positives
and memory usage occurs whenθ is the smallest. Hence
we choose a small value for the experiments. For each mea-
surement, we have repeated the experiments 5 times and
taken the average.

The experimental results of memory usage with the study
of the factors ofL, bucket sizesB andK are shown in Table
2. The ratio measured is the ratio of the memory usage
of BOMO over that of our algorithm. The ratio shows our
algorithm uses much less memory.

The experimental results of the number of false positives
over the number of itemsets returned are shown in Table 3.
For the number of false positives found in the experiment,
we observe that the numbers in the above tables are smaller
thanK[(1+ǫ)

1
θ −1] as predicted in Theorem 3. That means



Table 3.1
L\l 1 2 3 4 5 6 7

1 0.00
3 0.00 0.00 0.38
5 0.00 0.00 0.38 0.35 0.74
7 0.00 0.00 0.38 0.35 0.74 0.33 0.71

Table 3.2
sB\l 1 2 3 4 5 6
10K 0.00 0.00 0.31 0.29 0.67 0.23
20K 0.00 0.00 0.26 0.33 0.69 0.33
30K 0.00 0.00 0.29 0.33 0.73 0.29
40K 0.00 0.00 0.38 0.30 0.71 0.29
50K 0.00 0.00 0.38 0.35 0.74 0.33

Table 3.3
K \l 1 2 3 4 5 6

1 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.09 0.09 0.33 0.23 0.63
20 0.00 0.00 0.38 0.35 0.74 0.33
50 0.00 0.00 0.35 0.38 0.39 0.82
100 0.00 0.00 0.27 0.45 0.84 0.64

Table 3. Synthetic Data Set: Fraction of False Positives (Default ǫ = 1, L = 6, K = 20, sB = 10K and
nB = 100)

Figure 1. Graph of Execution Time of Algorithms against L

(e=1, s_B=10K, K=20 and n_B=100)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 2 4 6 8

L

E
x
e
c
u

ti
o

n
T

im
e
/s

Data Stream

BOMO

Figure 2. Graph of Execution Time of Algorithms against Bucket

Size (e=1, L=6 K=20 and n_B=100)

0

2000

4000

6000

8000

10000

12000

14000

16000

0 2000 4000 6000 8000 10000 12000

Bucket Size

E
x
e
c
u

ti
o

n
T

im
e
/s

Data Stream

BOMO

Figure 3. Graph of Execution Time of Algorithms against K (e=1,

L=6, s_B=10K and n_B=100)

0

5000

10000

15000

20000

25000

0 20 40 60 80 100 120

K

E
x
e
c
u

ti
o

n
T

im
e
/s

Data Stream

BOMO

the experimental results give a verification of our analysis.
The experimental results of the execution time are shown

in Figures 1, 2 and 3. We observe that our Data Stream algo-
rithm runs much faster than BOMO algorithm. This is be-
cause the process of finding top K itemsets in our algorithm
is more efficient due to a smaller data set in each bucket. Be-
sides, the overhead of the combination of different resultsin
different buckets is small. One more reason is that for every
bucket to be processed, our data stream algorithm needs to
manipulate one bucket only but BOMO requires to handle
all buckets in the sliding window. Thus, our algorithm runs
much faster.

Let us take a closer look at the false positives in our ex-
periments. When we examine the frequencies of the false
positives, they have actually a very small differences from
theK-th frequent itemset in all cases. For example, in the
experiment by varyingL (the largest size of the itemsets to
be mined), ifK = 20, the actual count of theK-th frequent
4-itemset is 1733. Although there are 11 false positives in
the output in Table 3, all their frequencies are greater than
1730, which means that the frequency difference is at most
3. The small frequency difference holds for all cases. The
bound in Theorem 2 is only a worst-case upper bound. In
practice, the count difference did not reach this bound.

6 Conclusion
In this paper, we address the problem of mining theK

most frequent itemsets in a sliding window in a data stream.
We propose an algorithm to estimate theseK itemsets in
the data stream. We prove that our algorithm gives no
false negatives for any data distribution. It outputs at most
K(1 + ǫ)1/θ top frequent itemsets and stores a small num-
ber of entries for the Zipfian data distribution. We have con-
ducted experiments to show that our algorithm can manipu-
late the data stream efficiently and both the memory usage

and the execution time are many times smaller compared
with a naive approach.

Acknowledgements We thank Y.L Cheung for providing us the coding of

BOMO. This research was supported by the RGC Earmarked Research Grant of

HKSAR CUHK 4179/01E, and the Innovation and Technology Fund(ITF) in the

HKSAR [ITS/069/03].

References

[1] R. Agrawal. Ibm synthetic data generator,
http://www.almaden.ibm.com/cs/quest/syndata.html.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models
and issues in data stream systems. InPODS, 2002.

[3] B. Babcock, M. Datar, R. Motwani, and L. O’Callaghan. Maintaining
variance and k-medians over data stream windows. InSIGMOD,
2003.

[4] C.-R. Lin C.-H. Lee and M.-S. Chen. Sliding-window filtering: An
efficient algorithm for incremental mining. InIntl. Conf. on Informa-
tion and Knowledge Management, 2001.

[5] J. H. Chang and W. S. Lee. Finding recent frequent itemsets adap-
tively over online data streams. InSIGKDD, 2003.

[6] Y.-L. Cheung and A. W.-C. Fu. An fp-tree approach for mining n-
most interesting itemsets. InSPIE Conference on Data Mining, 2002.

[7] Y.-L. Cheung and A. W.-C. Fu. Mining frequent itemsets without
support threshold: With and without item constraints. InIEEE Trans.
on Knowledge and Data Engineering, to appear 2004.

[8] M. Datar, A. Gionis, P. Indyk, and R. Motwani. ”maintaining stream
statistics over sliding windows”. InSIAM Journal on Computing,
2002.

[9] C. Giannella, J. Han, J. Pei, X. Yan, and P.S. Yu. Mining frequent
patterns in data streams at multiple time granularities. InNext Gen-
eration Data Mining, 2003.

[10] P. B. Gibbons and Y. Matias. New sampling-based summarystatistics
for improving approximate query answers. InSIGMOD, 1998.

[11] A. Gilbert, Y. Kotidis, and S. Muthukrishnan. Surfing wavelets on
streams: One-pass summaries for approximate aggregate queries. In
VLDB, 2001.

[12] G. S. Manku and R. Motwani. Approximate frequency counts over
data streams. InVLDB, 2002.


