
Selective Sampling on Probabilistic Data

Peng Peng∗ Raymond Chi-Wing Wong∗

Abstract

In the literature of supervised learning, most existing studies as-
sume that the labels provided by the labelers aredeterministic,
which may introduce noise easily in many real-world applications.
In many applications like crowdsourcing, however, many labelers
may simultaneously label the same group of instances and thus the
label of each instance is associated with a probability. Motivated
by this observation, we propose a new framework where each label
is enriched with a probability. In this paper, we study an interac-
tive sampling strategy, namely,selective sampling, in which each
selected instance is labeled with a probability.Specifically, we flip
a coin every time when we read a new instance and decide whether
it should be labeled according to the flipping result. We prove that
in our setting the label complexity can be reduced dramatically. Fi-
nally, we conducted comprehensive experiments in order to verify
the effectiveness of our proposed labeling framework.

1 Introduction

Selective Sampling[16] has been studied extensively in the
literature. In most circumstances, when unlabeled instances
are read sequentially, selective sampling allows us to savethe
cost of labeling in supervised learning and learn a classifier
which is as good as those learned with many more labeled
instances. We aim at showing that the labeling cost can be
further reduced when the classifier is learned based on the
training dataset with probabilistic labels.

Consider a binary classification problem. Traditionally,
the training dataset used for supervised learning containsde-
terministic labelsonly. Given an instance, we say that its la-
bel isdeterministicif this instance has a label exactly equal
to either 0 or 1. However, we can useprobabilistic labelsfor
learning a classifier as well. That is, instead of labeling an
instance with a 0-1 label, we could label an instance with a
probability value which denotes the probability that its label
is 1. In many cases, probabilistic labels can be obtained eas-
ily. In crowdsourcing applications where each label is given
by multiple labelers [12], the proportion of labelers giving
a particular label corresponds to the probability that the in-
stance has this label. In the medical diagnosis application,
a patient’s disease is diagnosed as Coronary Heart Disease
with 50%-60% probability by a doctor based on the result of
an electrocardigogram (ECG) test [25]. In the galaxy image
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recognition application, an existence of a volcano is deter-
mined with 60% probability by an astro-researcher based on
the observation that “the surface shown in the image contains
no summit visible but with evidence of flanks or circular out-
line” [27]. In natural language processing, due to multiple
meanings of some frequent words (e.g., 7.8 meanings on av-
erage for each of the 121 frequent words) [1], some existing
studies [21] which make use ofword sense disambiguation
(WSD)to reduce some possible meanings of a word give the
75.2% accuracy for estimating the meaning of a word.
Probabilistic Labels: In this paper, we propose to learn
a classifier from an “enriched” version of labels called
probabilistic fractional scores(or fractional scoresin short).
Consider a binary classification with two classes, class 0 and
class 1. Each instance is associated with a fractional score
(instead of 0/1 labels) which denotes the probability that this
instance belongs to class 1. We consider an active learning
algorithm which delicately selects an “informative” instance
for labeling in each round in terms of a probability which
is related to the corresponding fractional score and finds
an accurate classifier based on these selected “informative”
instances.

There are two major challenges for designing a super-
vised learning algorithm. The first challenge is whether a
tight theoretical bound on thelabel complexity, which is de-
fined to be the minimum number of instances used for clas-
sification, can be derived for an accurate algorithm/classifier
whoseerror is at most an error parameterǫ whereǫ ∈ [0, 1].
Most existing studies [4, 13, 18, 5] focus on finding this the-
oretical bound in either arealizablesetting or anagnostic
setting. Both settings are defined in terms of the distribu-
tion which generate the label of a given instance. The re-
alizable setting corresponds to such a group of distributions
that always return the same label for a given instance, which
is quite optimistic, while the agnostic setting corresponds to
a group of distributions which may generate the label of a
given instance arbitrarily, which is quite pessimistic. We
say that there is no noise in the realizable setting, while
it could be very noisy in the agnostic setting. However,
in many real-life applications, we obtain a dataset sampled
from a distribution which containswell-behavednoise. In
[30], the authors found that the well-behaved noise can be
described by themarginassumption (which will be discussed
in this paper). Under this assumption, there is a distribution-
dependent parameterγ which is a non-negative real number



used to describe the well-behaved noise. Due to its advan-
tage to tighten the theoretical bound, This assumption has
been commonly adopted in a lot of studies [28, 26, 6, 19].
For example, [28] considering this assumption showed afast
rate of theconvergenceof an SVM model. Some other
examples considering this assumption include the decision
tree [26], the least square regression [3] and the regularized
boosting [6]. In this paper, we derive our theoretical bound
based on this assumption in active learning.

The second challenge is whether the algorithm is
tractableand thus can be executed efficiently. Firstly, it is
very usual that an algorithm with a very good theoretical
bound is intractable. To the best of our knowledge, both the
passive learning algorithm [30] and the active learning al-
gorithm [19] considering the margin assumption which have
the best-known theoretical bounds are intractable and thus
are inefficient. Secondly, it is also usual that an algorithm
which is tractable does not give a tight theoretical bound.
To the best of our knowledge, there is only one tractable se-
lective sampling strategy (importance weighted active learn-
ing [5]) considering the margin assumption but it does not
result in a “good” theoretical bound.

In this paper, we consider the importance weighted
active learning algorithm learned from a probabilistic dataset
such that these two challenges can be addressed. That is,
the algorithm has a tight theoretical bound on the label
complexity, while it is still tractable. Specifically, the
algorithms in [30] and [19], though with good theoretical
bounds, are not tractable. Although [5] is tractable, the
label complexity of [5] (i.e.,O(ǫ−2)) is higher than that of
our algorithm (i.e.,O(ǫ−

4
2+γ )) sinceǫ−2 ≥ ǫ−

4
2+γ for any

γ ≥ 0.
It is worth mentioning that a lot of recent studies

[10, 22, 24, 31] can use our theoretical bound on the label
complexity of the classifier studied in the paper for their la-
bel complexity analysis so that their approaches can have
solid theoretical guarantees. For example, in [31], the au-
thors proposed a novel SVM model which learns a classifier
based on the scenario that only a portion of labels of the in-
stances in the dataset are known. Since the objective func-
tion in their optimization algorithm belongs to a regularized
empirical risk minimization, which is similar to ours, our
technique can also be used to derive the label complexity of
their proposed SVM model. The difference between the min-
imization function in our paper and that in their paper is that
other than the model complexity, the regularizer in their ob-
jective function also includes the difference between the true
label proportion and the estimated label proportion, whichis
more complicated for the analysis. In [10], the authors inves-
tigated the conditions of a proper loss function for estimating
the posterior probability from partially labeled data. We can
naturally plug their strategy into our algorithm for findinga
proper loss, and derive the error bounds based on the discov-

ered proper loss. In [22], the authors studied the problem of
estimating labels from label proportions from multiple dif-
ferent perspectives, proposing variant strategies for solving
this problem. Even though they have already analyzed the
convergence bounds for their probability estimators, our the-
oretical analysis is rather different from theirs, which may
provide a supportive evidence on their theoretical results. In
[24], the authors studied the problem of learning fromgroup
probabilities, which is referred to the posterior probabilities
for a subset of the whole dataset. Since they did not provide
a theoretical guarantee on their estimated probabilities on the
whole dataset, our theoretical analysis can be adaptively used
for analyzing their problem as well.
Contributions: There are the following contributions.
Firstly, to the best of our knowledge, we are the first to study
the active learning algorithm from a training set with prob-
abilistic labels. Secondly, we propose an active sampling
strategy by leveraging the probabilistic information in the
training dataset. The major idea of the sampling strategy
follows the rule ofuncertainty sampling, but we compute
the uncertainty from the fractional scores. Thirdly, we show
that there is a theoretical bound on the label complexity of
our proposed algorithm. In particular, this result is better
than the traditional result in the same setting in most cases.
Fourthly, experiments were conducted to show its superior
performance over the traditional active learning framework.

The remainder of our paper is organized as follows.
We give the problem definition in Section 2. In Section 3,
we propose our Fractional Score-based Active Learning
(FSAL) algorithm, which outputs a classifier with the help
of fractional scores. In Section 4, we show the experimental
results. In Section 5, we present the related works. Finally,
we conclude our work and discuss some future works in
Section 6.

2 Problem Definition

Traditional Setting: Consider a binary classification with
two classes 0 and 1. In thetraditional setting, we are
given a training datasetS called a deterministic dataset
containingn instances, namelyI1, I2, ..., In. Each instance
Ii is associated with a feature vector and a target attribute
wherei = 1, 2, ..., n. LetX be the set of all possible feature
vectors. Note that there are two possible values, namely 0
and 1, in the target attribute. Given an instanceIi where
i = 1, 2, ..., n, the content of its feature vector is denoted by
xi ∈ X and the content of its target attribute is denoted by
yi ∈ {0, 1}. A classifierh(·) is defined to be ahypothesis
or a function which takes a feature vectorx as an input and
outputs either 0 or 1. In the following, for clarity, in some
cases, we simply denoteh(·) by h.

Following [2, 4, 13, 18], we assume the process of data
generation as follows. LetX andY be the random variables
denoting the feature vector and the target attribute of an



instance, respectively. All instances are generated according
to an underlying joint distribution on two random variables
X andY , denoted byP (X,Y ). Given a feature vectorx,
the conditional probabilityP (Y = 1|X = x) is denoted by
η(x). We also assume that the data points in the dataset are
identically independently distributed (i.i.d.)when the joint
distribution is considered.

Given a classifierh, the expected errorof h, denoted
by err(h), is defined to beP(x,y)∼P (X,Y )(y 6= h(x)).
The Bayes classifier, denoted byh∗, is defined to be the
classifier which gives the minimum expected error. Note
thath∗ = Iη(x)≥0.5. Given a classifierh, theexcess errorof
h is defined to be the difference between its expected error
and the expected error ofh∗. That is, theexcess errorof h,
denoted byE(h), is equal toerr(h) − err(h∗). Note that
E(h) must be non-negative.
Our Setting: In our setting, we are given aprobabilistic
datasetSf instead of adeterministic dataset. Similar to
the traditional setting,Sf containsn instances, namely
I1, I2, ..., In. Each instanceIi is associated with a feature
vector and afractional score(instead of a target attribute)
wherei = 1, 2, ..., n. This fractional score is a real number
ranging from 0 to 1 and corresponds to the likeliness that this
instance belong to class 1. If this score is near to 1, then it
is likely that this instance belongs to class 1. If it is near
to 0, then it is unlikely that this instance belongs to class 1
and instead, it is likely that this instance belongs to class0.
This score can be obtained by labelers and some statistical
information (e.g., the medical statistical history) described
in Section 1. Given an instanceIi where i = 1, 2, ..., n,
the content of its feature vector is denoted byxi ∈ X and
the content of its fractional score is denoted byfi ∈ [0, 1].
Note that if eachfi is equal to either 0 or 1 wherei =
1, 2, ..., n, then the probabilistic dataset is equivalent to the
deterministic dataset.

Consider an instance with its featurex and its fractional
scoref . Sincef is obtained by labelers and some statistical
information, it can be regarded as an “observed” version
of η(x), and thus it may deviate fromη(x). Following
some existing studies [23], we model the deviation with
the Gaussian white noise. Specifically, theGaussian white
noise is represented in form of the Gaussian distribution
N (0, σ2) whereσ is a standard deviation of this distribution.
With this noise condition, each fractional scorefi in the
training dataset follows the distribution ofN (η(x), σ2).
Note that it is possible that a value randomly sampled from
the distributionN (η(x), σ2) is out of the range between 0
and 1. In this case, the value can be truncated accordingly.
Specifically, if this value is smaller than 0, then it can be
assigned to 0. If this value is larger than 1, then it can
be assigned to 1. However, in our theoretical analysis, we
simply adopt the distribution ofN (η(x), σ2) in order to
simplify our theoretical analysis. Considering the truncation

method is also possible but yields uninteresting and tedious
“boundary” cases.
Problem FSAL: Our problem is calledFractional Score-
based Active Learning (FSAL)on the probabilistic training
dataset as follows. Given a probabilistic training dataset
Sf , we want to learn a classifierh such that whenever we
see a new instanceI which has the information about its
featurex but no information about its fractional scoref ,
we can calculate theestimatedvalue of η(x), denoted by
η̂(x), and thus we can determine whether we should obtain
the fractional score of instanceI from an expert accordingly.

There are three issues to be addressed in this problem.
The first issue is how to calculate the estimated valueη̂(x).
The second issue is how to determine whether we should
obtain the fractional score of a given instance from an expert
accordingly. The third issue is how to design a classifier
which sovles problem FSAL.

3 Methodology

As we discussed before, there are three issues to be ad-
dressed. In this Section, we give the solutions to these issues
in Section 3.1, Section 3.2 and Section 3.3.

3.1 Formulation of Fractional Score Estimation In this
section, we give the formulation of the estimated fractional
score by usingGaussian Process Regression. The reason
why we choose Gaussian Process Regression is that it is
a popular nonparametric estimator [23], which can give an
accurate estimation via perfectly combining the information
from the training dataset and the prior knowledge. In order
to simplify our discussion, we just give the simplest version
of Gaussian Process Regression as an example to estimate
the fractional score. There are many recent studies about
more complicated versions of Gaussian Process Regression
focusing on the scalability issue with large datasets. Consid-
ering the scalability issue with more complicated versionsis
an orthogonal issue in this paper.

In the following, in order to give an accurate estimation
of the fractional score, in addition to the estimated value of
η(x), we find thevarianceof this estimated value, denoted
by Var(x). As we will see in the algorithm to be shown
later, we leverage both the estimated value and its variance
to decide whether we should obtain the fractional score of an
instance from an expert or not.

We use Gaussian process regression to findη̂(x) and
V ar(x) given a feature vectorx.

Consider the first prior stage. Theprior of the Gaussian
process is specified by two components. The first component
is the prior mean function, denoted bym(·), which takes the
features of an instance as an input and returns a real number
between 0 and 1 as an output. The second component is
the prior covariance function, denoted byk(·, ·), which takes
two features as inputs and returns a positive real number as



an output. Formally, the prior of the Gaussian Process is
represented in form ofGP(m(·), k(·, ·)).

In this stage, we need to setm(·) andk(·, ·). We setm(·)
to 0.5, because 0.5 corresponds to a random guess when we
have no prior knowledge. In the following, we are studying
the Gaussian Process in form ofGP(0.5, k(·, ·)).

We adopt the Radial Basis Function (RBF), one of the
most commonly used kernels, as the covariance function
k(·, ·). With the Radial Basis Function (RBF), we define an
n × n matrix denoted byK where the entry at thei-th row
and at thej-th column inK is k(xi,xj) for i ∈ [1, n] and
j ∈ [1, n].

Consider the second posterior stage. We define the
posterior mean function(i.e., η̂(x)) based onSf as follows.

Let f be ann-dimensional vector containingn real
numbers which is equal to{fi}ni=1 andI be then×n identity
matrix. We denotek(·, ·) to be thecovariance function
which takes two features as inputs and returns a positive real
number as an output. We define matrixK of ordern × n
where the entry at thei-th row and at thej-th column inK
is k(xi,xj) for i ∈ [1, n] andj ∈ [1, n]. According to [23],
we can expresŝη(x) as follows.

η̂(x) = αT
k(x) + 0.5.(3.1)

whereα is ann-dimensional vector containingn real num-
bers, which is equal to(K + σ2

I)−1(f − 0.5), andk(x) is
ann-dimensional vector containingn covariance functions,
which is equal to{k(x,xi)}ni=1. Let α = (α1α2...αn)

T

whereαi is a real number fori ∈ [1, n]. We denote‖α‖ to
be theL2-normof α. Given an instance with its featurexi

wherei = 1, 2, ..., n, we callk(x,xi) as aninstance-based
kernel function. In the above form of̂η(x), we can regard
η̂(x) as aweighted linear combinationof n instance-based
kernel functions where each valueαi in the vectorα is re-
garded as aweight.

Due to the nice property that̂η(x) can be expressed as
a weighted linear combination, we define thefunction class,
denoted byF , to be used later in this paper. It contains all
possible functions each of which maps the feature spacex

of any instanceI to a real number ranging from 0 to 1 and
is expressed in a weighted sum ofn instance-based kernel
functions. That is, for each function̂η(·) ∈ F , it can be
written asαT

k(x), whereα is ann-dimensional vector of
R

n. In this paper, we consider all functions in the function
class where theα vector associated with each function has
its L2-norm value at most a given valueA whereA is a
positive real number given by users.A can be regarded as
a parameter describing the complexity of the function class.
If A is larger, then the complexity of this class is higher.

Similarly, Var(x) can be expressed as follows [23].

Var(x) = k(x,x)− k(x)T (K + σ2
I)−1k(x)(3.2)

Note thatη̂(x) is dependent on the fractional scores (i.e.,f )

but Var(x) is not.

3.2 Strategy In the previous section, we know the formu-
lation of the estimated fractional score,η̂(x) (or η̂ in short),
and the variance of this estimated value, Var(x) (or Var in
short). In this section, we are ready to address the second
issue. That is, we present a strategy to decide whether we
should obtain the fractional score of a given instance with its
featurex from an expert.

Note that η̂ and Var are used to estimate the trueη,
and their formulations are independent ofsamplingused in
the algorithm. Next, we introduce another estimated value
η̂t ∈ F whose formulation is dependent on sampling for
t ∈ [1, n]. η̂t is called thesample-based estimated valueand
is used for sampling.

Before we describe how to find this sample-based esti-
mated value, we define theprobabilistic regularized empir-
ical error, an error measurement of a given sample-based
estimated valuêηt. Then, we want to find this sample-based
estimated valuêηt which has the smallest probabilistic regu-
larized empirical error.
Probabilistic Regularized Empirical Error: Let t be an
integer in the range of [1,n]. Consider that we are determin-
ing whether the fractional score of thet-th instance should
be obtained. Let̂ηt(x) (or η̂t in short) be thesample-based
estimated value (or fractional score)of an instancewhenwe
are determining whether the fractional score of thet-th in-
stances are obtained. We denote the sampling probability of
thet-th instance bypt for t ∈ [1, n]. We also denote a vari-
ableQt which is equal to 1 if the fractional score of thet-th
instance is obtained and is equal to 0 otherwise fort ∈ [1, n].

We define theprobabilistic regularized empirical error
as follows. Given a sample-based estimated valueη̂t, the
probabilistic regularized empirical errorof η̂t, denoted by
J ′[η̂t], is defined as follows.

J ′[η̂t] =
σ2

2 ‖η̂t‖2H + 1
2

∑t−1
i=1

Qi

pi
(fi − η̂t(xi))

2(3.3)

where‖η̂t‖2H =
∑t−1

i=1

∑t−1
j=1 αiαjk(xi,xj) is the norm in

the Reproducing Kernel Hilbert Space (RKHS) [23]. It is
easy to verify that the expected value of the functionalJ ′[η̂]
is exactly the same as that of the original functionalJ [η̂] for
anyη̂.
Finding η̂t with Minimum Empirical Error: After we de-
fine this empirical error, we obtain the sample-based esti-
mated valuêηt for t ∈ [1, n] by minimizing the empirical
error. That is,

η̂t = argminη̂∈F J ′[η̂](3.4)

Strategy: Before we introduce the strategy, we define the
following notations first. We assume that the trueη follows
the distribution ofN (η̂,Var). Given a real numberv,

the probability thatη = v is equal toexp (− (v−η̂)2

2Var ).



Given a real numberu, thecumulative distribution function
of the distribution, denoted byCD(u, η̂,Var), is equal to
∫ u

−∞
exp (− (v−η̂)2

2Var )dv.
Specifically, given an instance, after we derive its esti-

mated valuêη and its variance Var described in Section 3.1,
we will obtain its fractional score from an expert with a
sampling probabilitywhich is calculated based on these two
terms together with the sample-based estimated valueη̂t.
The principle of our sampling strategy is based onuncer-
tainty sampling. If the sample-based estimated valueη̂t (de-
pending on sampling) is very different from the estimated
valueη̂ (independent of sampling), its fractional score must
be obtained with a high probability. Suppose that they are
similar. We consider the following strategy. Ifη̂ is close to
0.5, then it is very likely that the trueη is near to 0.5 and this
instance is very uncertain. In this case, its fractional score
will be obtained with a higher probability. If Var is very
small, then it is very likely that the trueη is equal toη̂. In
this case, its fractional score will be obtained with a lower
probability since our estimation is very accurate and thereis
no need to obtain the fractional score of this instance.

Based on the above strategy, we define the sampling
probability, denoted byλ(η̂,Var), as follows.

λ(η̂,Var) =

{

CD(0.5, η̂,Var) if η̂t ≥ 0.5
1− CD(0.5, η̂,Var) otherwise

In some cases, we want to guarantee that the fractional
score of each instance should be obtained with at least a
certain probability. We introduce asmoothing parameter
denoted bypmin which is a non-negative real number and
corresponds to the minimum probability of obtaining the
fractional score of a given instance. Whenpmin is con-
sidered, the sampling probability is the maximum value be-
tweenλ(η̂,Var) andpmin.

3.3 Algorithm Our proposed algorithm for FSAL can be
found in Algorithm 1. In this algorithm, we introduce
variableSt for t ∈ [1, n] denoting the training dataset which
contains all instances with fractional scores after we have
seent instances so far. Besides, for initialization, we define
three variables, namelyS0, η̂0(·) and Var0(·), which are
initialized to ∅, 0.5 and k(·, ·), respectively. During the
process of the algorithm,St, η̂t(·) and Vart(·) are updated
based onSt−1, η̂t−1(·) and Vart−1(·). Detailed steps can be
found in Algorithm 1.

It is easy to verify that our proposed algorithm is
tractable because Gaussian Process Regression, the basic
component in our algorithm, is tractable, and other opera-
tions in our algorithm can also be done in linear time.

3.4 Theoretical Analysis Concepts and Notations:
Based on the function classF , we define thehypothesis
space, denoted byH, to be{ĥ : ĥ = Iη̂≥0.5, η̂ ∈ F}. Let d

Algorithm 1 Algorithm for Fractional-Score-based Active
Learning
Input: an unlabeled dataset{x1, ...,xn}, a noise parameterσ, a kernel function

k(·, ·), a smoothing parameterpmin

Output: a classifierh, a training datasetSf

1: S0 ← ∅; η̂0(·)← 0.5; Var0(·)← k(·, ·)
2: for t = 1 to n do
3: calculate the sampling probability, i.e.,pt = λ(η̂t−1,Vart−1)
4: flip a coin with two possible outcomes 0 and 1 where P(outcome =1) =pt

5: letQt be the outcome of the coin flip
6: if Qt = 1 then
7: obtain the fractional scoreft of xt

8: St ← St−1 ∪ {(xt, ft)}
9: update η̂t(·) according to Equation (3.4); update Vart(·) according to

Equation (3.2)
10: else
11: St ← St−1; η̂t ← η̂t−1; Vart ← Vart−1

12: end if
13: ht(·)← Iη̂t(·)≥0.5

14: end for
15: return hn andSn

be the VC dimension ofH. Note that0 < d < ∞.
Given a functionη̂ ∈ F and an instance-score pair

(x, f) wherex ∈ X andf ∈ [0, 1], we define thesquare
lossof η̂ with respect to this pair, denoted byℓη̂(x, f), to be
(η̂(x) − f)2.

Let X be a random variable denoting the feature of an
instance andF be a random variable denoting the fractional
score of an instance. Following [2, 4, 13, 18], we assume that
all instances are generated according to the joint distribution
on two random variablesX andF , denoted byP (X,F ).

Given η̂ ∈ F , we define theexpected lossof η̂, denoted
by EL(η̂), to beE(x,f)∼P (X,F )[ℓη̂(x, f)]. Let η̂∗ be the op-
timal function inF . That is,η̂∗ = argminη̂∈F EL(η). Fol-
lowing [17, 23], we assume thatEL(η̂∗) = 0 in order to sim-
plify the proof to be shown later. This assumption is similar
to the Bayes classifier assuming that there is no classification
error for the classifier. Relaxing this assumption is left asa
future work.

In order to give a tight theoretical bound on the error, we
capture thedistributionof all fractional scores in the dataset
by theMargin Assumption[30] which is commonly adopted
in the literature [19, 3, 28, 26]. Intuitively, this assumption
states that it is not likely that a fractional score is near to1

2 .
Let P (X) be the distribution on the random variableX that
the features of the instances in the dataset follow.

DEFINITION 1. (MARGIN ASSUMPTION) For any real
numberω where0 < ω ≤ 1, there exist two constantsγ > 0
andc > 0 such that

Pr
x∼P (X)(|2η(x) − 1| < ω) ≤ c · ωγ(3.5)

Both c andγ are the parameters for describing the distribu-
tion which the fractional scores in the dataset follow. The
margin assumption can be explained as follows. Suppose



that c andγ are known. Note thatη(x) is in the range be-
tween 0 and 1. Ifω is near to 0, then the inequality in the
assumption states that the probability thatη(x) is close to1

2
is very small. Ifω is near to 1, then the inequality means that
the probability thatη(x) is close to either 0 or 1 is very large.

As we described before,c andγ are used to describe the
distribution of the fractional scores. Ifc is smaller, then it is
less likely that a fractional score is near to1

2 . If γ is smaller,
thenωγ will be larger (whenω ∈ (0, 1)). In this case, it is
more likely that a fractional score is near to12 (which can
be considered that there is more noise in the dataset). Thus,
if c is very small andγ is very large, it is less likely that a
fractional score is near to12 .
Theoretical Results:In the following, we show our theoret-
ical result.

THEOREM 3.1. (LABEL COMPLEXITY) Given a con-
fidence parameterδ ∈ (0, 1) and an error parameter
ǫ ∈ (0, 1), if the excess error of the classifier returned by
Algorithm 1 is at mostǫ, then with probability at least1− δ,
the expected number of instances whose fractional scores
are obtained in Algorithm 1, denoted byT , satisfies the
following inequality.

T ≤ θ

ǫ
4

2+γ

∨ (c ·
∑n

t=1(1 ∧ ( θ
pmint

))γ/2)

where θ = 128 ·
lnM(ǫ/32,F)+ln 2

δ

pmin
+ 2σ4A2 and

M(ǫ/32,F) = O(1ǫ ).

If γ is smaller (i.e., there is more noise in the dataset),
then ǫ−

4
2+γ is larger (sinceǫ ∈ (0, 1)). Thus, the label

complexity is larger. Ifǫ is smaller, then it is obvious that
the label complexity becomes larger.

As we described before, our proposed algorithm can
address the two challenges mentioned in Section 1. That
is, our proposed algorithm is tractable. Besides, its label
complexity is lower than the label complexity of the best-
known tractable active learning algorithm [5].

4 Experiments

Experimental Setup: We conducted experiments on a
workstation with 1.60GHz CPU and 3.06GB RAM. We con-
sider two types of real datasets in our experiments. The first
type of real datasets are used for regression originally, while
the second type of real datasets are used for classification
originally.

The first type of real datasets comes from regression
datasets. We used four regression datasets, namely “breast-
cancer”, “housing”, “wine-red” and “wine-white”, from the
UCI repository [15]. Note that each real dataset is associated
with feature attributes and a target attribute in the regression
problem. It is obvious that in our problem setting, the
feature attributes originally used for regression corresponds

to the feature attributes for our problem. The normalized
value of the target attribute of each instance originally used
for regression, ranging from 0 to 1, corresponds to the
probability that the instance belongs to class 1. For example,
in dataset “wine-red”, the target attribute denotes the quality
of the wine, ranging from 1 to 10, in the regression problem.
In our problem, the normalized value corresponds to the
probability that an instance (wine) has a good quality (which
corresponds to class 1). Each dataset containing these
feature attributes and the probabilities corresponds to the
probabilistic datasetSo without any noise. This can be
regarded as the ground-truth dataset in our problem setting.
However, as we described in Section 2, we are only given
an “observed” version of the probabilistic dataset, saysSf .
Thus, we generateSf by adding a noise value randomly
picked fromN (0, σ2) to each probability. Each added value
corresponds to a fractional score inSf . Note that if the added
value is greater than 1, we re-set this value to 1. If it is
smaller than 0, we re-set this value to 0. We set the maximum
budget for these four datasets be 100.

Besides, we employ a movie review dataset [20] as an
example of the second type of real classification datasets.
Each movie corresponds to an instance where its feature
attributes are the vocabularies from the reviews provided by
the IMDb users, its fractional score is the average normalized
user rating and its target attribute is the sentiment porality
of the movie reviews. This dataset was originally used
for Movie Review Sentiment Classification. We picked
30000 movies each of which has over 20 thousands ratings
in IMDb.com from the original dataset for training, where
7500 movies are labeled as “positive” and the remaining
are labeled as “negative”. According to the concept of
crowdsourcings, the average rating based on a large number
of movie fans is rather close to the probability that a person
has a positive impression on this movie. Thus, no noise
is added to the dataset because we consider that it is an
accessible way to gather accurate fractional scores. We set
the maximum budget for the dataset be 10000, which means
that we sample at most one-third of the movies from the
whole dataset.

We denote our proposed algorithm in Algorithm 1 based
onSf by FSAL. In this algorithm, we adopt the Radial Basis
Function (RBF), one of the most commonly used kernels, as
the covariance function.

We comparedFSALwith two other traditional tractable
algorithms, namelyPassiveand Active. We did not com-
pare the intractable algorithms (e.g., the passive learning [30]
with the best-known theoretical bound and the active learn-
ing [19] with the best-known theoretical bound) since they
are not efficient. Note that since the two traditional tractable
algorithms are based on the deterministic dataset, according
to So, we generate the corresponding deterministic dataset
Sc by setting the target attribute value of each instance to 0/1
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Figure 1: The average accuracy ofPassive, ActiveandFSAL

 0

 0.03

 0.06

 0.09

 0.12

 0  10  20  30  40  50  60  70  80  90  100

p-
va

lu
e

number of fractional scores/labels obtained

FSAL vs Passive
FSAL vs Active

(a) breast-cancer

 0

 0.025

 0.05

 0  10  20  30  40  50  60  70  80  90  100

p-
va

lu
e

number of fractional scores/labels obtained

FSAL vs Passive
FSAL vs Active

(b) housing

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  10  20  30  40  50  60  70  80  90  100

p-
va

lu
e

number of fractional scores/labels obtained

FSAL vs Passive
FSAL vs Active

(c) wine-white

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100

p-
va

lu
e

number of fractional scores/labels obtained

FSAL vs Passive
FSAL vs Active

(d) wine-red

Figure 2: The p-value of two paired t-tests: (FSALvsPassive) and (FSALvsActive)

labels randomly according to the probabilities inSo. Pas-
sivecorresponds to a passive learning approach which finds a
classifier based on the target attribute values ofall instances
in Sc. We set the sampling probability in our proposed al-
gorithm FSAL to 1 for implementingPassive. Activecorre-
sponds to a traditional passive learning approach which finds
a classifier based on the target attribute values ofsomese-
lected instances inSc. We adopted the importance weighted
active learning algorithm [5] for this purpose becauseActive
used a similar sampling algorithm asFSALbut it is based on
Sc instead ofSf .

We set the noise parameterσ = 0.2 and the smoothing
parameterpmin = 0.2 in the experiments.

We performed a 10-foldcross-validationfor each algo-
rithm. In particular, the training setSf was randomly parti-
tioned into 10 pieces, each of which was held out for testing
in one of the ten folds, while the remaining nine pieces were
collected for training. In the training phase, we did not ter-
minate the algorithm until 100 fractional scores/labels were
obtained. In the testing phase, we evaluated the performance
of a classifier in terms of its average accuracy on the held-out
test set. We repeated the cross-validation four times for each
algorithm, so each reported value was an average of 20 re-
sults when a certain number of fractional scores/labels were
obtained.
Experimental Results: Figure 1 shows our result on dif-
ferent regression training datasets when the number of frac-
tional scores/lables obtained changes. It is obvious that the
average accuracy ofFSALis much higher than that ofPassive
becauseFSAL chooses some “informative” instancesdeli-
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Figure 3: Performance of different classifiers on the movie
review dataset

catelybut Passivechoose all instances. Besides,FSALalso
performs better thanActivein most circumstances since frac-
tional scores inSf used byFSALhave more informative in-
formation about probabilities compared with 0/1 labels inSc

used byActive. Figure 2 shows the result of the paired t-test,
denoted by “FSALvsA”, for the experiments used for Fig-
ure 1 to compare the significance of the “difference” between
the accuracy ofFSALand the accuracy of another traditional
algorithmA where the p-value is a measurement in the t-
test. When the p-value is close to 0, we say thatFSAL is
better thanA in a statistical significance. In the figure, we
can find thatFSALis much better thanPassivein all of our
experiments, whileFSALis better thanActivein most cases.

Furthermore, Figures 3(a) and 3(b) shows our result
on the second-type dataset. The same notations mentioned
in the previous results are employed in the figures. As
the effect of active learning becomes less significant when
the size of the training dataset increases, the advantage
of Active compared withPassivebecomes less significant.



However, in Figure 3(a), we can see thatFSALstill performs
better than bothPassiveandActive. Since as we described
before, the fractional scores in the dataset are quite close
to the underlying conditional probabilities, it is reasonable
that FSAL remains its leading superiority when the size
of the training dataset increases. The correspondingp-
values are presented in Figure 3(b). When the number of
fractional scores obtained increases, the p-values become
smaller. When the number of fractional scores obtained is
large (e.g., at least 1000), the p-values are smaller than 0.1
in most cases, which means thatFSAL is much better than
PassiveandActivein most cases.

5 Related Work

Selective sampling has been developed for a long time [11],
but strict theoretical analysis on its superior performance
over passive learning appears until recent years [13, 18,
8]. In general, we can divide the related studies into
three categories. They areRealizable Active Learning,
Noise-based Active LearningandAgnostic Active Learning.
These three kinds of studies analyzed the asymptotic result
on either the label complexity or the rate of convergence
in active learning according to different assumptions on
data generation. Lastly, we describe some practical active
learning algorithms.

The strongest result on the improvement of the sample
complexity in active learning comes from the realizable
setting. In this setting, an intuitive algorithm developedby
[11] only selects those instances which enable the hypothesis
space to be shrunk after their labels are observed. In the
realizable setting, the label complexity foractive learning
which is O(ln(ǫ−1)) is exponentially faster than that for
passive learning which isO(ǫ−1).

Since the realizable setting is impractical in real life, it
is interesting to know whether learning based on selective
sampling is also strictly better than passive learning when
an arbitrary noise is allowed to appear in the training dataset.
Agnostic active learning [4], a conservative labeling strategy,
shrinks the hypothesis space only after enough labels are
observed. In particular, this algorithm removes a hypothesis
from the current space after knowing that this hypothesis
is suboptimal with high confidence. [18] further gives a
strict proof on the sample complexity of the agnostic active
learning. [18] showed that the sample complexity critically
depends on a quantity, called thedisagreement coefficient.
When this term is bounded, an exponential reduction towards
the label complexity can be achieved.

The realizable setting and the agnostic setting discussed
above are two extreme cases, where the former istoo op-
timistic and the latter istoo pessimistic. Therefore, some
researchers proposed to make an assumption on the noise
condition in the process of data generation. It is possible
to bridge the gap between these two extreme cases by us-

ing a parametric model to describe the noise condition. Tsy-
bakov’s margin assumption [30] is one of the most prevalent
noise conditions considered in passive learning, assuming
that a data point has less chance to be generated around the
decision boundary resulting in a large margin which helps
to accelerate the learning rate. Based on Tsybakov’s mar-
gin condition, [19] proved the rate of convergence, which is
faster than that in passive learning. Other noise conditions
includebracketing entropy, uniform noise, benign noiseand
so on. In this paper, our work is based on the Tsybakov’s
margin condition, but our results shows that a even faster rate
of convergence is possible based on the probabilistic dataset.

Lastly, there are many practical active learning algo-
rithms [7, 9, 29, 32, 33] in the literature. In [29], the authors
designed three different query strategies based on the con-
cept ofmargin, which can be computed via SVMs. However,
their work is based on a noise-free setting. In [32] and [33],
the authors formulated the active learning problem in terms
of transductive experimental design, which can effectively
explores the information of unlabeled data. Since we focus
on utilizing the information of probabilistic labels, explor-
ing the information of unlabeled data is not the major focus
of our paper. In [9], the authors proposed an optimal exper-
imental design approach, which simultaneously considered
the discriminant and the geometrical structures in the process
of active learning. Similarly, [7] also discovered the discrim-
inant and geometrical structure together in the active learn-
ing process, whereas the algorithm in [7] was performed in
the manifold adaptive kernel space. Both studies [9, 7] for-
mulated active learning as an optimization problem, whereas
they did not show any theoretical guarantee on the rate of
convergence in active learning. After modifying the above
algorithms properly, we may apply these algorithms to the
probabilistic setting studied in our work, which is considered
as an interesting future work.

6 Conclusion

In this paper, we consider the scenario that labels are prob-
abilistic, and propose to learn a classifier from probabilistic
training dataset, which is more informative than the tradi-
tional one. We not only propose an supervised learning al-
gorithm with a selective sampling strategy, which selectively
obtains the fractional scores of newly observed instances,
but also prove the theoretical bound on the label complex-
ity, which is better than the traditional result. We empir-
ically show that the algorithm outperforms both the tradi-
tional passive learning algorithm and the traditional active
learning algorithm which learn from the traditional training
dataset. In short, our work associates the theoretical aspect of
active learning with a practical consideration, promotingac-
tive learning to perform efficiently with a theoretical guaran-
tee. In the future, a lot of potential novel works can be stud-
ied according to the framework of probabilistic labels. For



example, our framework can be further extended to transfer
learning, where the prior knowledge on the probabilistic in-
formation collected from the other learning tasks conducted
before can be partially applied for solving a new learning
task quickly. Moreover, in case that the label of each in-
stance is given by multiple labelers, the labelers’ expertise
model can be considered.
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