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ABSTRACT
Finding shortest paths is a fundamental operator in spatial
databases. Recently, terrain datasets have attracted a lotof attention
from both industry and academia. There are some interestingissues
to be studied in terrain datasets which cannot be found in a tradi-
tional two-dimensional space. In this paper, we study one ofthe
issues called a slope constraint which exists in terrain datasets. In
this paper, we propose a problem of finding shortest paths with the
slope constraint. Then, we show that this new problem is moregen-
eral than the traditional problem of finding shortest paths without
considering the slope constraint. Since finding shortest paths with
the slope constraint is costly, we propose a new framework called
surface simplification so that we can compute shortest pathswith
the slope constraint efficiently. Under this framework, thesurface
is “simplified" such that the complexity of finding shortest paths
on this simplified surface is lower. We conducted experiments to
show that the surface simplification is very efficient and effective
not only for the new problem with the slope constraint but also the
traditional problem without the slope constraint.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and GIS; I.3.5
[Computational Geometry and Object Modeling]: Geometric
algorithms, languages, and systems

General Terms
Algorithms, Designs, Experimentation, Performance, Measure-
ment

Keywords
shortest path, spatial databases, terrain, land surface, surface sim-
plification, triangular irregular network (TIN) model

1. INTRODUCTION
Recently, terrain datasets have attracted a lot of attention from

both industry and academia [27]. In industry, Microsoft andGoogle

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11,June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

launched tools to display maps with terrain in “Bing Maps for
Enterprise” (previously called “Microsoft Virtual Earth”) in Sept
2009 and “Google Earth” in 2005, respectively. In academia,the
database community [7, 6, 23, 27] has started to pay attention to
studying how to perform some spatial queries over terrain datasets.
One example issurface kNN (skNN) queries. Given a source point
s and a setQ of pre-defined points on the surface, a surface kNN
query returns a setQ′ containingk objects which are nearest to
s. That is, for each pointqi in Q′ and each pointqj in Q − Q′,
|s, qi| ≤ |s, qj |. Note that, in the context of terrain,|s, q| corre-
sponds to the length of the shortestsurface pathbetweens andq
instead of theEuclidean distancebetweens andq. Figure 1 shows
a terrain in Bearhead area in Washington State wheres andt are
two points on the surface. In this figure,pe is a straight line be-
tweens andt whose length corresponds to the Euclidean distance
betweens andt, andps corresponds to the shortestsurface pathbe-
tweens andt. For clarity, in the following, when we writepaths(or
shortest paths), we meansurface paths(or shortest surface paths).

There are some interesting issues to be studied in terrain datasets
which cannot be found in a traditional two-dimensional space. In
this paper, we study one of the issues called aslope constraint
which exists in terrain datasets. Consider Figure 2 wheres and
t are two points on the surface. Pathp1 corresponds to the shortest
path froms to t. Note thatp1 involves asteeproute froms to the
top of the mountain and it is difficult for people to travel viaa steep
route. However, pathp2 and pathp3 are smoother and do not in-
volve any steep route. We say that these two paths satisfy theslope
requirement. We define aslope parameterθm ∈ [0, π/2] to denote
whether a path is steep. Intuitively, ifθm is set to 0, then the path
must be flat without any inclination. Ifθm is π/2, then the path can
have any inclination. Different applications have different values of
θm. For example, the steepest road in UK (which is in Ffordd Pen-
llech, Harlech) has a slope of 0.331 (in radian) (i.e., 19.0o) and the
steepest non-rack railway in Portugal has a slope of 0.13 (inradian)
(i.e., 7.69o) [18]. Informally speaking, given a slope parameterθm,
a pathp is said to satisfy the slope requirement if theslopeof path
p is at mostθm. We will give a formal definition for the slope of
a path later in Section 3. We also call the path satisfying theslope
requirement thegentle path. In Figure 2, pathp2 and pathp3 are
gentle but pathp1 is not.

In the following, we study the following problem. Given a source
point s and a destination pointt on the surface, we want to find the
shortest gentle path froms to t on the surface. We call this problem
finding shortest gentle paths (FSGP). Note that problem FSGP is
more general than thetraditional problemof finding shortest path
on the surface adopted in the literature [1, 7, 6, 23, 27] (which does
not consider any slope requirement). This is because, whenθm is
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Figure 1: Terrain illustrating a surface path
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Figure 3: Terrain showing the
challenge for problem FSGP

set toπ/2, there is no slope requirement. Then, problem FSGP
becomes the traditional problem.

Problem FSGP is more challenging than the traditional problem.
Consider Figure 3 wheres andt are two points on the surface and
A is an area on the surface. Pathp1 is the traditional shortest path
from s to t. Pathp2 is the shortest gentle path froms to t. Infor-
mally speaking, due to the slope requirement, a gentle path passes
through areaA multiple times. However, a traditional path passes
throughA once only. Obviously, the length of the gentle pathp2 is
much larger than the length of the traditional pathp1. Thus, prob-
lem FSGP is at least as hard as the traditional problem.

Obviously, one can adapt some existing algorithms in the litera-
ture or design new algorithms (e.g., breadth-first search algorithm)
for problem FSGP. However, it is expected that the computation
costs of these algorithms arehigh as illustrated in Figure 3. Let
the algorithm which finds the shortest gentle path froms to t on
a surfaceS be A(s, t|S). In our experiment on the real terrain
dataset of Bearhead area in Washington State, if we setθm = 0.3,
we found that an algorithm for problem FSGP took about 3 days to
find the shortest gentle path of length about 0.5km-1.0km. Even if
we do not consider the slope requirement (i.e.,θm = π/2), then
the best-known algorithm [1] for the (traditional) problemran for
about 3 days to find the shortest path of length about 7.0km. In
many applications, time is a critical factor. One example issome
emergency situations (e.g., natural disaster). Quick evacuations in
a natural disaster are needed as in the Australian fires in Feb2009
and the Californian fires in Oct 2007. Besides, in a large-scale
natural disaster such as the earthquake in China in May 2008,dis-
tributing relief supplies and rescuing are time-critical.Some other
applications are military planning and robot path planning[25].

Motivated by the above observation that the computation cost for
problem FSGP is high, instead of developing a new algorithm for
problem FSGP, in this paper, we propose a new framework called
surface simplificationover a terrain. In the literature [7, 6, 23,
27], the surface of a terrain is usually represented by the Trian-
gular Irregular Network (TIN) model. The TIN model involvesa
number of non-overlapping triangles which are arranged in athree-
dimensional space. Figure 4a shows an example of the terrainin
Figure 3 represented by the TIN model. Note that for illustration
purpose, Figure 4a involves alimited number of triangles. If the
number of triangles used in the model is larger, then the surface of
the terrain represented by this model becomes smoother. Under the
surface simplificationframework, given the original surfaceS, we
simplify or approximateS (Figure 4a), and generate a simplified
surfaceS̃ (Figure 4b) such that the number of triangles on the sim-
plified surfaceS̃ is smaller than that on the original surfaceS. We
run an algorithmA for problem FSGP to find the shortest gentle
path p̃ on this simplified surfacẽS, as shown in Figure 4b. Then,
we mapthis pathp̃ on S̃ to a pathp on S as shown in Figure 4c.
We call this stepPath Mapping.

Surface simplification has its advantage to speed up the computa-
tion of finding shortest gentle paths. Intuitively, since itminimizes
the number of triangles on the surface, the algorithm for problem
FSGP can run in a shorter period of time. Although it can speedup
the computation, there are the following two challenges.

Firstly, the mapped pathp on S may not satisfy the slope re-
quirement. For example, the mapped pathp in Figure 4c does not
meet the slope requirement. Consider the trianglef1. The pathp
in f1 is quite steep. In order to address this issue, in this paper,we
study how to construct a mapped pathp onS which can satisfy the
slope requirement given a gentle pathp̃ found on a given simplified
surfaceS̃.

Secondly, even though the mapped pathp onS satisfies the slope
requirement,p may be extremely long compared with the shortest
gentle pathpo (or theoptimal path) found on the original surfaceS.
Clearly, surface simplification loses some surface information and
thus the length of the mapped (gentle) path onS is larger than that
of the optimal path. This motivates us to introduce an additional
requirement, thedistance requirement, in addition to the slope re-
quirement. Let|p| be the length of a pathp on S. The distance
requirement specifies that, given adistance error parameterε ≥ 0,
the length of the (mapped) pathp found should be bounded byε.
That is,|p| ≤ (1 + ε)|po| wherepo is the optimal path onS. In
this paper, we study how to simplify the surface such that, given
any source points and any destination pointt on surfaceS, the
mapped (gentle) path froms to t satisfies the distance requirement.

Surface simplification speeds up the computation with the dis-
tance guarantee. If we setε = 0.1 andθm = 0.3, experiments
shows that the total time to find a gentle pathp between two ran-
domly chosen vertices under the surface simplification model is
174 seconds. However, the time to find the shortest gentle path
po on the original surface is 1482 seconds. Thus, the speedup in
execution time is about 8.5 times if we sacrifice the length bya fac-
tor of at most 10% only. Surface simplification is very usefulnot
only for problem FSGP but also the traditional problem. If weset
θm = π/2, problem FSGP becomes the traditional problem. In
this case, if we setε = 0.1, we have the speedup in execution time
by 138 times even if we sacrifice the length by a factor of at most
10% only.

Our contributions are summarized as follows. (1) To the best
of our knowledge, we are the first to study how to find a shortest
path which satisfies both the slope requirement and the distance re-
quirement. (2) To the best of our knowledge, we are the first to
propose a novel idea to simplify the surface of a terrain suchthat
the length of the path found is bounded (regardless of whether there
is a slope requirement). The surface simplification has its advan-
tages to speed up the computation of finding shortest gentle paths
because it minimizes the total number of triangles on the surface.
(3) We present a systematic performance study using both real and
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synthetic datasets to verify the effectiveness and the efficiency of
our surface simplification framework.

The rest of the paper is organized as follows. Section 2 reviews
the previous work. Section 3 formulates the problem FSGP. Sec-
tion 4 and Section 5 describe the proposed algorithms. Section 7
evaluates the proposed techniques through extensive experiments
with real datasets. Section 8 concludes the paper.

2. RELATED WORK
We classify the related works into two categories, finding short-

est paths and surface simplification.

2.1 Finding Shortest Paths
Finding shortest paths has been extensively studied in two-

dimensional spatial databases [8, 20]. Dijkstra’s algorithm [8] is
the well-known algorithm for finding shortest paths. Some other al-
gorithms are the Bellman-Ford algorithm, the A* search algorithm
and the Floyd-Warshall algorithm.

Finding shortest paths is a fundamental operator in a lot of spatial
queries likek nearest neighbor searches. Some studies like [2, 17,
21] propose nearest neighbor searches in two-dimensional spaces.

Finding shortest paths on the surface of a terrain has also been
studied by [16, 1]. [16] extends the idea of Dijkstra’s algorithm
and solves the problem of finding shortest paths on the surface in
O(n2 log n) time wheren is the total number of triangles in the
TIN model. [1] discovers a spatial property calledone-angle-one-
split and makes use of this property to design an efficient algorithm
which improves the running time toO(n2) time.

In the context of terrain, finding shortest paths is also involved
in other spatial queries [5, 6, 23, 27]. One example is surface kNN
(skNN) queries which were first studied by [5, 6]. [5, 6] propose
a filter and refinement strategy for this kind of queries. However,
as pointed out by [23], the results returned by this strategy[5, 6]
are not guaranteed to be correct. Motivated by this observation,
[23] proposes an approach based on the Voronoi diagram for the
skNN queries and guarantees that the results returned are correct.
Another example of spatial queries related to finding shortest paths
is the continuous skNN queries which were proposed recentlyby
[27]. [27] studies to find thek nearest neighbors when the objects
on the surface are moving.

However, most of the existing works, including the studies which
propose to find shortest paths on the surface of a terrain, do not
consider thesloperequirement which appears in a terrain.

Some studies [13, 15, 11, 26] proposeapproximatealgorithms
for finding shortest paths. However, since they are originally de-
signed for the traditional problem of finding shortest pathsand thus
do not meet the slope requirement, it is not easy to adapt their pro-
posed algorithms to our problem.

2.2 Surface Simplification
Surface simplification, a fundamental technique in the literature

of computer graphics, is widely used in multi-resolution modeling.
It was first proposed to accelerate the rendering speed of complex
3D models. In the multi-resolution model, an object can be repre-
sented in different levels of details (LOD). Surface simplification

is a special case of multi-resolution modeling. There are several
methods for surface simplification in the literature of graphics. One
is vertex decimation[22, 24]. Under vertex decimation, a vertexv
is selected for removal as shown in Figure 6a. After this vertex is
removed, all of its incident edges are removed and a new polygon
is formed as shown in Figure 6b. The resulting polygon istriangu-
latedas shown in Figure 6c such that the polygon is partitioned into
a number of triangles.Triangulationis a process which partitions a
given polygon into a number of triangles. There are a lot of meth-
ods for triangulation. In this paper, we adopt the method proposed
by [9]. Other surface simplification methods includeedge contrac-
tion [10], vertex clustering[19] andsimplification envelopes[3].

Note that the focus of this paper is different from the above stud-
ies about surface simplification. Our focus is to simplify the surface
such that the mapped path on the original surface satisfies both the
slope requirement and the distance requirement. However, the fo-
cus of the above studies is to simplify the surface of an object such
that the simplified surface “looks” similar to the original surface.

3. PROBLEM DEFINITION

3.1 Notation
Each pointq in the three-dimensional space has an x-coordinate,

a y-coordinate and a z-coordinate, denoted byq.x, q.y andq.z, re-
spectively.q.z corresponds to theelevationof point q.

A terrain is the graph of a continuous function that assigns every
point on a horizontal plane to an elevation [4]. In the literature
[7, 6, 23, 27], the surface of a terrain is usually represented by the
Triangular Irregular Network (TIN) modelconsisting of a number
of disjoint triangles. Each triangle is represented by three corners
calledverticesand three lines connecting these three corners called
edges. In the literature, a triangle is also referred to as aface. In the
following, we use term “triangle” and term “face” interchangeably.
Note that each vertex is also a point in a three-dimensional space.
If an edge is located at the boundary of a terrain, it isownedby only
one triangle. For example, in Figure 4c, edgee2 at the boundary
is owned by facef3 only. Otherwise, it issharedby two triangles.
For example, in Figure 4c, facef1 and facef2 share an edgee1.
Figure 4a shows an example of the terrain in Figure 3 represented
by the TIN model. LetS be the surface of the terrain represented
by the TIN model. LetH be a (virtual) horizontal plane located at
the sea level of the terrain. We define the z-coordinate of each point
on planeH to be 0.

Consider Figure 7a showing a terrain with a horizontal planeH .
In the following, we follow the convention that the points onthe
horizontal planeH are denoted bycrosspoints and symbolized by
underlinedvariables while the points on the surface of a terrain are
denoted bydotpoints and symbolized bynon-underlinedvariables.
For example, the cross points is on the planeH and the dot point
s is on surfaceS. Following the terrain model [4], we assume that
any vertical line must intersect with the surface at only onepoint.

Given a source points and a destination pointt on the surface, a
pathp from s to t is defined to be a sequence ofline segmentson
the surface which starts froms and ends att. Each line segment can
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also be regarded as a path. For example, in Figure 7a,p′ is the path
from point s to point t on the surface. Pathp′ is a sequence of 4
line segments, namely (1) the segment froms to a, (2) the segment
from a to b, (3) the segment fromb to c and (4) the segment fromc
to t. Thelengthof a line segmentpi from a pointa to another point
b, denoted by|pi|, is defined to be the Euclidean distance between
a andb. The lengthof pathp, denoted by|p|, is defined to be the
sum of the lengths of all line segments ofp.

Given a pointq on the surface, theshadowof q, denoted byq, is
defined to be a point on the planeH such thatq.x = q.x, q.y = q.y
and q.z = 0. Given a pathp on the surface, theshadowof p,
denoted byp, is defined to be the shortest path on planeH covering
the shadow of any point alongp. For example, in Figure 7a, point
s is the shadow of points and the line segment froms to a is the
shadow of the line segment froms to a. Given a facef , theshadow
of f is defined to be the minimal region on planeH covering the
shadow of any point on facef .

Consider a line segmentpi on the surface. We define theslopeof
pi to be the acute angle (in radians) betweenpi and the shadow of
pi. Figure 5a shows that the slope of line segmentpi is equal toθ.
Theslopeof a pathp is defined to be the greatest possible slope of a
line segment of a path. Theslopeof a facefi, denoted byφ(fi), is
defined to be the angle (in radians) (or formally the dihedralangle)
between the plane covering facefi and the horizontal planeH .
Figure 5b shows that the slope of facefi is equal toφ(fi).

3.2 Finding Gentle Path
As described in Section 1, we propose theslope requirementto

capture the steepness of a path by introducing a slope parameter
θm ∈ [0, π/2]. For the sake of illustration, in the following, we
assume thatθm > 0. That is,θm is not equal to 0. This assumption
avoids complicated and uninteresting discussions. If thisassump-
tion does not hold, we can setθm to be a very small positive value
close to 0. With this parameter, we study problem FSGP. Let the al-
gorithm which finds the shortest gentle path froms to t on a surface
S for this problem beA(s, t|S).

A natural question may be raised for problem FSGP:Does there
exist a gentle path from a given source points to a given destination
point t on the surface?For the sake of clarity, we first assume that
there exists a gentle path from any source point to any destination
point. In Section 6, we will describe how we relax this assumption.

In this paper, we propose a framework calledsurface simplifica-
tion which simplifies the original surfaceS (Figure 4a) to surfacẽS
(Figure 4b) such that the number of faces onS̃ is smaller than that
on S. Figure 8a shows an overview of the surface simplification.
In Section 5, we will study this process.

Figure 8b shows an overview to find the shortest gentle path from
a source points to a destination pointt on surfaceS by using the
simplified surfacẽS. We first construct a point̃s and another point
t̃ on the simplified surfacẽS by setting̃s (t̃) to be a point oñS with
the same shadow ass (t). For example, in Figure 7a,s andt are the

source point and the destination point, respectively. We constructs̃
andt̃ on S̃ with the same shadow ass andt, respectively, as shown
in Figure 7b. Then, we run algorithmA(s̃, t̃|S̃) to find the shortest
gentle path̃p from s̃ to t̃ on this simplified surfacẽS (Step I). Then,
we map this pathp̃ on S̃ to a pathp on S (Step II) such that this
mapped path satisfies the slope requirement. In Section 4, wewill
study how to perform this path mapping.

Since the mapped path may introduce errors, we consider the
distance requirementin this paper by introducing a distance error
parameterε ≥ 0.

PROBLEM 1 (SURFACE SIMPLIFICATION ). Given the origi-
nal surfaceS of a terrain, generate a new surfacẽS such that (1)
the total number of faces oñS is minimized and (2) foranysource
point s and any destination pointt on S, the mapped path on the
original surfaceS satisfies both the slope requirement and the dis-
tance requirement.

Note that Step I used in the step of finding shortest gentle paths
involves algorithmA. Our contribution is the proposal of surface
simplification over the terrain dataset with the guarantee of both the
slope requirement and the distance requirement. Any algorithmA
which finds the shortest gentle path (or the optimal path) (e.g., a
breadth-first search algorithm and a best-first search algorithm) can
also be used in our framework. In our experiment, we adopt the
breadth-first search strategy for algorithmA. A brief description of
this algorithm can be found in Section 7.

For the sake of illustration, we follow the notation convention
that all notations used in the simplified surface are symbolized with
∼ which appears at the top of the notations (e.g., points̃ and path̃p
on the simplified surfacẽS in Figure 7b) while all notations used in
the original surface are not (e.g., points and pathp′ on the original
surfaceS in Figure 7a).

In the following, we first describe Step II in Section 4. Then,in
Section 5, we describe how we perform surface simplification.

4. PATH MAPPING

4.1 Algorithm
Let p̃ be the shortest gentle path on the simplified surfaceS̃

found in Step I (See Figure 8b). In this section, we study Step
II (i.e., how to map̃p on S̃ to a pathp onS).

The major idea of path mapping is based on thecommon shadow
of the pathp̃ found onS̃ and the mapped pathp to be found on
S. Intuitively, after we findp̃ on S̃, we generate the shadow ofp̃.
Then, we generate a temporary pathp′ on the original surfaceS
which has the same shadow asp̃. We call p′ the pseudo pathof
p̃. Since pathp′ may violate the slope requirement, we perform an
additional step calledpath adjustingto adjust pathp′ to pathp (on
surfaceS) such thatp satisfies the slope requirement.
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Specifically, we propose a three-step algorithm called algorithm
Path Mappingto map a path̃p found onS̃ to a pathp on S. We
denote the relationship betweenp̃ andp by a path mapping function
PM such that

p = PM(p̃) (1)

Step 1 (Shadowing):We find the shadow of̃p. For example, Fig-
ure 9 shows the shortest gentle pathp̃ from s̃ to t̃ on S̃ which in-
volves (1) the line segment from̃s to b̃ and (2) the line segment
from b̃ to t̃. The shadow of̃p is p̃ which involves (1) the line seg-

ment froms̃ to b̃ and (2) the line segment from̃b to t̃. Note that̃b is
a point connecting two line segments of pathp̃ on the surface. The
reason whỹb appears in path̃p is that path̃p passes through edge
Ẽ via point b̃. Thus, this leads to the existence of ashadowpoint b̃
on theshadowpathp̃.

Step 2 (Segmentation):We generate a pseudo pathp′ on the orig-
inal surfaceS which has the same shadow asp̃. For instance,
shadowp′ shown in Figure 10 (forS) is the same as shadow̃p

shown in Figure 9 (for̃S). Note that shadowp′ involves (1) the
line segment froms to b and (2) the line segment fromb to t. Path
p′ shown in Figure 10 is the pseudo path. Although the shadow
involves asingle line segment froms to b, we have to divide this
line into twosegments, namely (1) the segment froms to a and (2)
the segment froma to b, due to the existence of edgeE. Thus, in
Step 2, in addition to creating pathp′ with the same shadow as̃p,
we have to dividep′ into a number of line segments such that each
line segment does not pass across any edge on the original surface.
After Step 2, we obtainp′ which involvesk line segments, namely
p′
1, p

′
2, ..., p

′
k. For example, in Figure 10, we have 4 line segments

of p′ and thusk is equal to 4.

Step 3 (Path Adjusting): After we obtain a pseudo pathp′ from
Step 2, we perform a step calledpath adjustingand generate path
p such thatp satisfies the slope requirement. Assume that the final
pathp containsk continuous (sub-)pathsp1, p2, ..., pk. For each
line segmentp′

i of p′ (obtained in Step 2) with the source pointa
and the destination pointb wherei ∈ [1, k], if it satisfies the slope
requirement, we setpi to bep′

i. Otherwise, we execute algorithm
A(a, b|S) to find the shortest gentle path froma to b on the original
surfaceS and assign it topi. The combination of the resulting (sub-
)pathsp1, p2, ..., pk is called theadjusted pathof pathp′, which is
the path in the output.

Intuitively, each line segment (or path) violating the slope re-
quirement will be adjusted accordingly such that the final adjusted
(sub-)path satisfies the slope requirement. Thus, we give the fol-
lowing theorem.

THEOREM 1 (SLOPE REQUIREMENT). Let p̃ be the shortest
gentle path on the simplified surfacẽS. The pathp on the original
surfaceS mapped from̃p by algorithmPath Mappingsatisfies the
slope requirement.

4.2 Theoretical Analysis
In the following, we focus on analyzing the distance bound ofa

path segment instead of the distance bound of the whole path.This
is because once the distance bound of a path segment is found,the
distance bound of the whole path also holds.

4.2.1 Distance Analysis for a Particular Path Seg-
ment

Consider a path̃p from s̃ to t̃ on surfacẽS returned byA(s̃, t̃|S̃)
(in Step I).

In the previous section, we learned that we can performPath
Mappingto map a path̃p to a pseudo-pathp′ (by Step 1 and Step 2)
and then adjustp′ to the final pathp (by Step 3). In our algorithm,
according to Step 3, we generatek sub-paths in the final pathp,
namelyp1, p2, ..., pk. In the example shown in Figure 7a,k is equal
to 4. Let the correspondence pseudo-path line segments onS be
p′
1, p

′
2, ..., p

′
k. For example, in Figure 7a, the line froma to b is an

example of a line segmentp′
i of p′. In order to perform analysis

for the distance requirement, we also find the correspondingline
segment̃pi of p̃ which has the same shadow as line segmentp′

i of
p′ for i ∈ [1, k]. For instance, in Figure 7b, the line from̃a to b̃ is
an example of a line segmentp̃i of p̃ which has the same shadow
asp′

i.
In the following, we want to analyze the ratio of|pi| to |p̃i| (i.e.,

|pi|/|p̃i|) for eachi ∈ [1, k] when we map agivengentle line seg-
mentp̃i to pi. We call this ratio themapping ratio of a particular
gentle path̃pi.

Note thatpi is generated from̃pi via a pseudo-path line segment
p′

i. Thus, in the following, we calculate the mapping ratio with|p′
i|.
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Figure 11: Illustration of the proof of Lemma 2

Specifically, we have

|pi|

|p̃i|
=

|pi|

|p′
i|

×
|p′

i|

|p̃i|
(2)

In the following, we will derive|p′

i
|

|p̃i|
from Step 1 and Step 2, and

derive |pi|
|p′

i
|

from Step 3.

Consider Step 1 and Step 2. After Step 2, we obtain a pseudo-
pathp′ on S which has already been segmented. Consider a line
segmentp′

i of p′.
Supposep′

i is on facef and p̃i is on facef̃ . Sincep′
i and p̃i

have the same shadow, we derive that facef and facef̃ have an
overlappingshadowX.

Let the slope ofp′
i and the slope of̃pi beθ′

i andθ̃i, respectively.
Define the relationship betweenθ′

i and θ̃i by functionAM such
that

θ′
i = AM(θ̃i) (3)

We have the following lemma.

LEMMA 1 (DISTANCE BOUND). Let p̃i be a line segment of
path p̃. Let p′

i be a line segment of the pseudo path ofp̃. Let θ′
i

and θ̃i be the slope ofp′
i and the slope of̃pi, respectively. We have

|p′

i
|

|p̃i|
= cos θ̃i

cos θ′

i

.

Proof: Since line segmentp′
i is a line, the shadow ofp′

i is also a
line. Consider Figure 5a wherepi is set top′

i. It is easy to verify that
the length of the shadow ofp′

i is |p′
i| cos θ′

i. Similarly, the length
of the shadow of̃pi is |p̃i| cos θ̃i. Sincep′

i and p̃i has the same
shadow, we have the following equation:|p′

i| cos θ′
i = |p̃i| cos θ̃i.

By changing the subject to|p
′

i
|

|p̃i|
, we have|p′

i
|

|p̃i|
= cos θ̃i

cos θ′

i

.

Consider Step 3. For each line segmentp′
i, we perform a path

adjusting step and create a (sub-)pathpi (which satisfies the slope
requirement). We have the following lemma.

LEMMA 2 (DISTANCE BOUND). Let p′
i be a line segment of

the pseudo path. Letpi be the adjusted path ofp′
i. Let θ′

i be the

slope ofp′
i. We have|pi|

|p′

i
|
≤

sin(max{θ′

i
,θm})

sin θm
.

Proof: Consider two cases.Case 1:θ′
i ≤ θm. According to Step

3 (Path Adjusting), sincep′
i satisfies the slope requirement,pi is

equal top′
i. Thus,|pi| = |p′

i| and |pi|
|p′

i
|
= 1 ≤

sin(max{θ′

i
,θm})

sin θm
.

Case 2: θ′
i > θm. Consider a line segmentp′

i from a to b on
facef as shown in Figure 11. Sinceθ′

i > θm, according to Step 3,
we need to execute algorithmA to find the shortest gentle pathpi

from a to b. Consider two sub-cases.Case (a):There exists two
line segments on facef , namely the line segment froma to c, and

the line segment fromc to b (as shown in Figure 11), such that the
slopes of both segments are equal toθm. Let the Euclidean distance
between a pointa and another pointb bed(a, b). Note that each of
these two line segments can be regarded as a sub-path whose length
(equal tod(a, c)+d(b, c)) is at least the length of the adjusted path
pi because the adjusted pathpi is the optimal gentle path froma to
b. Thus, we have

|pi| ≤ d(a, c) + d(b, c) (4)

Without loss of generality, we assume thata is on the planeH such
that H crosses facef into two parts. Consider the upper part of
facef . Let l1 be the line segment froma to c. We construct a
virtual pointe by prolonging line segmentl1 starting atc such that
d(c, e) = d(b, c). Thus, we construct a virtual line connectingc
ande. Since we prolongl1 whose slope isθm, the slope of this
virtual line is also equal toθm. It is easy to verify that the trapezoid
with pointsb, b, c andc is equivalent to the trapezoid with points
e, e, c andc. Thus, we haved(b, b) = d(e, e). Consider the triangle
with pointsa, b andb. We have

sin θ′
i = d(b,b)

d(a,b)
= d(b,b)

|p′

i
|

(5)

Consider the triangle with pointsa, e ande. We have the following
equation:sin θm = d(e,e)

d(a,e)
. Sinced(e, e) = d(b, b) andd(a, e) =

d(a, c) + d(c, e) andd(c, e) = d(b, c), we re-write the equation as
follows.

sin θm = d(b,b)
d(a,c)+d(b,c)

By Equation (4) and Equation (5), we have the following inequal-

ity: sin θm ≤
|p′

i
| sin θ′

i

|pi|
. By changing the subject to|pi|

|p′

i
|
, we have

|pi|
|p′

i
|
≤

sin θ′

i

sin θm
=

sin(max{θ′

i
,θm})

sin θm

Case (b): There does not exist two line segments on facef ,
namely the line segment froma to c, and the line segment fromc
to b (as shown in Figure 11), such that the slopes of both segments
are equal toθm.

We know that Case (b) should not happen (and thus Case (a) hap-
pen) if facef has anextremely largearea (with respect to a pseudo-
pathp′

i with a short length). Case (b) occurs when facef has a
limited area (with respect to a pseudo-pathp′

i with a long length).
In Case (b), we can transform Case (b) to Case (a) easily by chop-
ping line segmentp′

i into a number of sub-pathsp′
i,1, p

′
i,2, ..., p

′
i,l

(with shorter lengths) such that, for eachp′
i,j wherej ∈ [1, l], there

exists two line segments forp′
i,j on facef such that the slopes of

both segments are equal toθm. For eachp′
i,l wherej ∈ [1, l],

we can find the correspondence mapped pathpi,l (by using sim-
ilar derivations from Case (a)). Thus, it is easy to verify that
|pi|
|p′

i
|
≤

sin(max{θ′

i
,θm})

sin θm
.

By Lemma 1 and Lemma 2, we re-write Equation (2) as follows.

|pi|

|p̃i|
≤

sin(max{θ′
i, θm})

sin θm

×
cos θ̃i

cos θ′
i

Note thatpi is on facef and p̃i is on facef̃ . The right hand
side of the above inequality corresponds to the upper bound of the
mapping ratio of a single gentle path segment. We denote it by
MRS(< pi, f >, < p̃i, f̃ >). That is,

MRS(< pi, f >, < p̃i, f̃ >) =
sin(max{θ′

i, θm})

sin θm

×
cos θ̃i

cos θ′
i

(6)

wherepi is a mapped path of̃pi.



4.2.2 Distance Analysis for an Arbitrary Path Seg-
ment

Note thatX is a region on planeH . LetGP (f̃ , X) be a set of all
possible gentle paths on facẽf which shadows are insideX. Note
that, from Equation (1), we havepi = PM(p̃i). The greatest pos-
sible mapping ratio of anarbitrary gentle path (segment), denoted
by MR(f, f̃), is equal to

max
∀p̃i ∈ GP (f̃ , X)

wherepi = PM(p̃i)

MRS(< pi, f >, < p̃i, f̃ >) (7)

The above termMR(f, f̃) can be regarded as the greatest pos-
sible mapping ratio of an arbitrary gentle pathp̃i when we map a
gentle path (segment)̃pi on asimplifiedface f̃ to a pathpi on an
original facef . This above term can be in fact expressed in terms
of the coordinates of all the vertices off and f̃ . Details can be
found in [14].

In general, the above term can begeneralizedas follows. Con-
sider two different surfacesS andS′ each of which represents the
same terrain (in the above derivation,S is the original surface and
S′ is the simplified surface). Given a facef onS and another face
f ′ on S′ with an overlapping shadowX, MR(f, f ′) can be re-
garded as the greatest possible mapping ratio of an arbitrary gentle
pathp′ when we map a gentle path (segment)p′ on facef ′ to a path
p on facef . With this reasoning, in addition toMR(f, f̃), we can
also defineMR(f̃ , f) similarly (i.e., the greatest possible ratio of
an arbitrary gentle pathpi when we map a gentle path (segment)pi

on anoriginal facef to a path̃pi on asimplifiedfacef̃ ).
With the above definition ofMR(f, f ′), we have the following

lemma.

LEMMA 3 (DIST. BOUND FORARBITRARY PATH SEGMENT).
Let S and S′ be two different surfaces each of which represents
the same terrain. Letf be a face onS andf ′ be another facef ′

onS′ such thatf andf ′ have an overlapping shadowX. Suppose
that p′ is the shortest gentle path (segment) onf ′. If algorithm
Path Mappingmapsp′ on facef ′ to a sub-pathp on facef , then
we have |p|

|p′|
≤ MR(f, f ′).

5. SURFACE SIMPLIFIER
In this section, we present an algorithm calledSurface Simplifier

to simplify surfaceS to surfaceS̃ such thatany mapped pathp
found by algorithmPath Mappingsatisfies the distance requirement
(in addition to the slope requirement).

Let p be the mapped path on surfaceS (obtained in Step II in
Figure 8b). Letpo be the optimal path (i.e., the shortest gentle
path) on surfaceS. The distance requirement specifies that, given
a distance error parameterε ≥ 0, we have|p| ≤ (1 + ε)|po| or
|p|
|po|

≤ 1 + ε. We define thedistance error ratioof pathp, denoted

by ER(p), to be |p|
|po|

. Note thatER(p) ≥ 1 since|p| ≥ |po|. If p

is the optimal path, thenER(p) = 1.
Obviously, if surfaceS̃ is exactly the same as the original sur-

faceS, then any mapped pathp found must be optimal and thus
ER(p) = 1. This is because the mapped pathp onS is exactly the
same as the path̃p found onS̃ which is considered as the shortest
gentle path oñS.

However, if surfacẽS is different from the original surfaceS,
then it is likely that a mapped pathp found is not optimal and thus
ER(p) > 1. Besides, intuitively, if the “difference” betweenS and
S̃ is greater, then it is more likely thatER(p) is greater wherep

is a mapped path. In order to satisfy the distance requirement, we
want that the “difference” betweenS andS̃ should not be too large.

The “difference” betweenS and S̃ is denoted by4(S, S̃). In
Section 5.1, we will describe an exact formula for4(S, S̃) such
that the following property holds.

PROPERTY1 (SURFACE BOUND). LetS be the original sur-
face andS̃ be the simplified surface. If4(S, S̃) ≤ 1 + ε, then for
any mapped pathp, ER(p) ≤ 1 + ε.

5.1 Formula for 4(S, S̃)

LetCS(S, S̃) be a set of all possible pairs(f, f̃) wheref is a face
on S and f̃ is a face onS̃ such thatf and f̃ have an overlapping
shadow. We defineλ andλ′ as follows.

λ = max(f,f̃)∈CS(S,S̃) MR(f, f̃) (8)

λ′ = max(f,f̃)∈CS(S,S̃) MR(f̃ , f) (9)

With the notationsλ andλ′, we define4(S, S̃) as follows.

DEFINITION 1. 4(S, S̃) = λ × λ′

With this definition, we have the following lemma for the cor-
rectness of Property 1.

LEMMA 4. Let S be the original surface and̃S be the simpli-
fied surface. If4(S, S̃) ≤ 1 + ε, then for any mapped pathp,
ER(p) ≤ 1 + ε.

Proof: Let p̃ be a path found in Step I andp be a path found in Step
II. Since p̃ is returned byA(s̃, t̃|S̃), p̃ is the shortest gentle path
from s̃ to t̃ on S̃. We have the following inequality. For any gentle
pathg̃ from s̃ to t̃ on S̃,

|g̃| ≥ |p̃| (10)

We adopt the notations used in Section 4.2.1 here. Specifically,
in algorithm Path Mapping, according to Step 3, we generatek
sub-paths in the final pathp, namelyp1, p2, ..., pk. Let the corre-
spondence pseudo-path line segments onS bep′

1, p
′
2, ..., p

′
k. All of

these line segments form a pseudo-pathp′. Besides, let̃pi be the
correspondence line segment ofp̃ which has the same shadow as
line segmentp′

i of p′ for i ∈ [1, k].
Consider a sub-pathpi and a line segment̃pi wherei ∈ [1, k].

Suppose thatpi is on facef andp̃i is on facef̃ . By Lemma 3, we
have

|pi|
|p̃i|

≤ MR(f, f̃)

Since each line segmentp̃i of p̃ has the above inequality with the
sub-pathpi of p wherei ∈ [1, k], by some simple derivations, it is
easy to verify the following.

|p|
|p̃|

≤ max(f,f̃)∈CS(S,S̃) MR(f, f̃) (11)

With Equation (8), we have

|p|
|p̃|

≤ λ (12)

Let po be the optimal path onS (i.e., the shortest gentle path onS).
Consider that we apply algorithmPath Mappingto mappo on the
original surfaceS to generate a path̃po on the simplified surfacẽS.
Similar to the derivation for Inequality (11), by Lemma 3, wehave

|p̃o|
|po|

≤ max(f,f̃)∈CS(S,S̃) MR(f̃ , f)



Thus, with Equation (9), we have

|p̃o|
|po|

≤ λ′ (13)

Note thatp̃o on S̃ generated by algorithmPath Mappingis agentle
path onS̃ (by Theorem 1). Thus, from Inequality (10), we have the
following inequality: |p̃o| ≥ |p̃|. With this inequality, we re-write
Inequality (12) as: |p|

|p̃o|
≤ λ. With Inequality (13), we re-write this

inequality as: |p|
|po|

≤ λ × λ′. SinceER(p) = |p|
|po|

, we have

ER(p) ≤ λ × λ′ (14)

Note that, from the condition of Property 1, we have4(S, S̃) ≤
1 + ε. By Definition 1, we derive thatλ × λ′ ≤ 1 + ε. Thus,
Inequality (14) can be re-written as:ER(p) ≤ 1 + ε.

5.2 Algorithm Simplifier
In this section, we describe an algorithm calledSurface Simpli-

fier which adopts one of the methods for surface simplification dis-
cussed in Section 2.2. Any existing methods about surface simpli-
fication reducing the number of faces in the literature of graphics
can also be adopted in our algorithm provided that the simplified
surfaceS̃ is generated such that (1)4(S, S̃) ≤ 1 + ε and (2)
the shadow of the boundary ofS is the same as the shadow of the
boundary ofS̃.

In this paper, we use the techniques described in [22, 24] forsur-
face simplification. Specifically, in [22, 24], surface simplification
involves a number of iterations. Initially, we create a new surface
S̃ which is equal to the original surfaceS. It is being updated over
iterations and finally represents the simplified surface we want. For
each iteration, we select a vertex to be removed fromS̃ (See Fig-
ure 6a) such that̃S will be updated after vertex decimation (See
Figure 6c) and the distance requirement is satisfied for thisupdated
S̃. We continue the above step until we cannot find any vertex to
be removed such that the distance requirement is satisfied.

It is easy to verify the following theorem.

THEOREM 2. Algorithm Surface Simplifier generates surface
S̃ such that4(S, S̃) ≤ 1 + ε.

In our implementation, we design an efficient method for our al-
gorithmSurface Simplifierwhich takesO(|V | log |V |) time where
|V | is the total number of vertices on the original surface. For the
sake of space, we give this method in [14].

6. DISCUSSION
In Section 3, we assume that there exists a gentle path from any

source point to any destination point. In this section, we relax this
assumption. We will introduce a termreachablefor a point q to
describe whetherq is reachable or not. In this section, we will
show that if both the source points and the destination pointt are
reachable, then there exists a gentle path froms to t.

6.1 Reachability
Given two distinct pointsq andq′ on a surface,q is said to be

reachable fromq′ if and only if there exists a gentle path fromq′ to
q. q is said to beunreachable fromq′ if q is not reachable fromq′.

Given a pointq on a surface,q is said to bereachableif and
only if there exists another pointq′ on the surface such thatq is
reachable fromq′. q is said to beunreachableif q is not reachable.

Given a vertexq, a facef is said to beadjacentto q if one of the
corners off is q.

LEMMA 5 (UNREACHABILITY ). A point q on a surface is
unreachable if and only ifq is a vertex andq is unreachable from
any point on all of the faces adjacent toq.

Proof: Firstly, we want to prove that, ifq is a vertex andq is un-
reachable from any point on all of the faces adjacent toq, thenq is
unreachable. We prove by contradiction. Suppose thatq is reach-
able. That is, there exists another pointq′ on the surface such that
q is reachable fromq′. Consider two cases.Case 1:q′ is on one of
the faces adjacent toq. This leads to a contradiction.

Case 2: q′ is not on all of the faces adjacent toq. Sinceq is
reachable fromq′, there exists a gentle path fromq′ to q. Let F be
the set of all faces adjacent toq. We know that pathp must pass
through one of the faces inF , saysf . Let q′′ be a point along path
p on facef . Thus,q is reachable fromq′′ (which is on one of the
faces adjacent toq). This leads to a contradiction.

Secondly, we want to prove that, ifq is unreachable, thenq is
a vertex andq is unreachable from any point on all of the faces
adjacent toq. We prove by contradiction. Consider two cases.
Case 1: q is a vertex and there exists another pointq′ on one of
the faces adjacent toq such thatq is reachable fromq′. Thus,q is
reachable, which leads to a contradiction.Case 2:q is not a vertex.
That is,q is a non-vertex point on a facef . There exists another
pointq′ onf such thatq′.z = q.z. Thus,q is reachable fromq. So,
q is reachable, which leads to a contradiction.

The above lemma suggests that all unreachable points come from
vertices on the surface. Thus, we just need to check whether each
vertex(instead of all possible points on the surface) is unreachable
or not. How to check whether a vertex is unreachable or not effi-
ciently will be discussed in Section 6.2.

LEMMA 6 (SOURCE/DESTINATION REACHABILITY ). If a
source points and a destination pointt are reachable, thent is
reachable froms.

Proof: From the proof of Lemma 5, it is easy to verify that, if a
vertexq on facef is reachable, for any pointq′ onf , q is reachable
from q′. For the sake of space, we omit the proof here. There exists
a sequence of adjacent faces, namelyf1, f2, ..., fl, such thats is on
facef1, t is on facefl and, for eachi ∈ [1, l−1], facefi is adjacent
to facefi+1. Let ei be the edge shared by facefi and facefi+1 for
i ∈ [1, l − 1]. By the first claim in this proof, we know that there
exists a non-vertex pointt1 on edgee1 such thatt1 is reachable
from s. Similarly, we know that there exists a non-vertex pointt2
on edgee2 such thatt2 is reachable fromt1. In general, there exists
a non-vertex pointti on edgeei such thatti is reachable fromti−1

for i ∈ [2, l − 1]. At the final step, similarly, we know thatt is
reachable fromtl−1 (by the first claim in the proof). Sincet1 is
reachable froms, ti is reachable fromti−1 wherei ∈ [2, l − 1],
andt is reachable fromtl−1, we conclude thatt is reachable from
s.

6.2 Algorithm
In this general setting, algorithmSurface Simplifierwill be

changed as follows. The basic idea of the change is based on the
following two properties.Property 1:For each vertex onS which
is unreachable, the algorithm still keeps the original vertexv on S̃.
Property 2:Whenever the algorithm generatesS̃, it makes sure that
it does not introduce any new vertex which is unreachable.

Intuitively, if all vertices are unreachable, then we cannot sim-
plify the surface. If there are only rare unreachable vertices, then
we can simplify the surface aggressively.



Since algorithmSurface Simplifiermaintains Property 1 and
Property 2, it is easy to verify that there exists a gentle path onS

if and only if there exists a corresponding gentle path onS̃. Thus,
algorithmPath Mappingis kept intact in this problem setting.

Efficiency: In algorithm Surface Simplifier, we have to check
whether a vertex is unreachable or not. The following lemma helps
us to perform this checking step efficiently.

Let V be a set of vertices on a surfaceS. Consider thatv is in
V . LetN(v, V ) be a set of vertices inV/{v} each of which shares
an edge withv. For example, in Figure 6a,N(v, V ) is equal to
{v1, v2, v3, v4, v5}.

LEMMA 7 (REACHABILITY ). Consider a vertexv and a sur-
faceS. Let V be a set of vertices onS. Let Y = N(v, V ). v
is reachable if one of the following conditions holds.Condition
(1): there exists two vertices inY , namelyvi and vj , such that
vi.z ≥ v.z andvj .z ≤ v.z, or Condition (2):there exists an edge
e with an endpoint equal tov such that the slope ofe is at mostθm.

Proof: Consider the first condition. Since there exists two ver-
ticesvi andvj such thatvi.z ≥ v.z andvj .z ≤ v.z, we deduce
that there exists a facef adjacent tov such thatf has two cor-
ners/vertices, namelyva andvb, whereva, z ≥ v.z andvb.z ≤ v.z.
Thus, there exists a pointq on facef whereq.z = v.z such thatv
is reachable fromq.

Consider the second condition. Since the edge has its slope at
mostθm, there exists a pointq on this edge such thatv is reachable
from q.

With the above lemma, if one of the two conditions is satisfied,
we are sure that a vertex isreachable. Otherwise, it can be either
reachable or unreachable. In our implementation, we can remove
any vertex which falls in the former case (i.e., it is found tobe
reachable by this lemma). But, we keep each vertex which falls in
the latter case. This implementation does not violate Property 1 and
Property 2. We found that only 0.22% of vertices fall in the latter
case in our experiment whereθm is set to 0.3.

The efficiency of checking whether a vertex is reachable can be
improved by using this lemma. For each vertexv, we check Con-
dition (1) and Condition (2) in the lemma. If one of the conditions
holds, thenv is reachable. It is easy to see that performing the
checking step with Condition (1) can be done inO(|Y |) time and
performing the checking step with Condition (2) can be done in
O(|Y |) time.

7. EMPIRICAL STUDY
In this paper, we used two real terrain datasets adopted in

previous studies [7, 6, 23, 27]. (1)Eagle Peak (EP) area in
Wyoming State:This dataset covers an area around 10.7km×14km
which contains about 3,200,000 faces, and (2)Bearhead (BH)
area in Washington State:This dataset covers an area around
9.7km×13.7km which contains about 2,600,000 faces. Both
datasets can be downloaded from http://data.geocomm.com.We
also created synthetic datasets as follows. Each syntheticdataset
contains a terrain bounded by a 10km×10km square horizontal
plane. On this horizontal plane, we randomly pick four points as the
centers of the mountains. Then, the elevation of all points with re-
spect to the center of each mountain is modeled by a 2-dimensional
Gaussian distribution denoted by meanm and standard derivation
σ. The meanm of each distribution (corresponding to the eleva-
tion of the center of the mountain) is randomly generated from 0
to 10000. The standard derivationσ is an input parameter. Since

each point belongs to four mountains with different elevations, we
take the greatest elevation among the four distributions asthe final
elevation of the point. The datasets generated contain 600,000-
1,000,000 faces. The default values ofθm, ε, the total number of
faces on the surface andσ are 0.3, 0.1, 600,000 and 0.1, respec-
tively.

All programs were written in C/C++ and executed on CentOS
linux platform on a 2xQuad Core 3GHz server with 32GB RAM.
Our proposed algorithm returns a path denoted byp which satisfies
the distance requirement and the slope requirement. We imple-
mented a simple breadth-first algorithmA for finding shortest gen-
tle paths (FSGP) on a given terrain, whose basic idea is as follows:
Note that there may be multiple shortest gentle paths (SGP) in this
problem. We proved that one of them must pass through asimple
face sequence. A face sequenceis a sequence of faces while asim-
ple face sequenceis a face sequence which contains no duplicate
faces. So, starting from the face that contains sources, we generate
all possible simple face sequences in a breadth-first manneruntil
destinationt is reached. In order to speed up, those unnecessary
face sequences that are impossible to be used for finding SGP are
pruned. In each simple face sequence, the length of the SGP can be
represented by afunctionof the coordinates ofs, t and all the ver-
tices of the triangles in this face sequence. We can also specify a set
of slope constraintsalong all faces in the face sequence in a similar
way by using the coordinates of these vertices andθm. Then, we
took the advantage of any existing optimization tool such asMAT-
LAB, ALGLIB, OOL and IOptLib to find the minimum value of
this function subject to the constraints. For each unprunedsimple
face sequence, we obtain the corresponding SGP. Finally, among
all SGP’s obtained from all unpruned face sequences, we select the
shortest one as the final SGP. The detailed description of thealgo-
rithm can be found in [14]. Besides, we compared our proposed
algorithm with the baseline algorithm that finds the shortest gentle
path denoted bypo on the original surfaceS.

Note that one may think out an algorithm based on the short-
est traditional path onS as follows. Specifically, this algorithm
finds the shortest traditional path onS (without considering the
slope constraint) and perform a path adjusting step (described in
Section 4) such that the final adjusted path satisfies the slope re-
quirement. However, it is possible that the final adjusted path does
not satisfy the distance requirement. We denote the final adjusted
path bypc.

All experiments were conducted 100 times by randomly gener-
ating 100 queries where each query involves a random source point
and a random destination point. We took the average for the results.

For real datasets, we study the performance of algorithms with
the following two parameters, namely (1)θm and (2)ε.

We evaluate our algorithms in terms of five measurements. (1)
Preprocessing time:Preprocessing time corresponds to the execu-
tion time to run algorithmSurface Simplifier, (2)Number of faces:
We measured the number of faces on the original surface and the
number of faces (remained) on the simplified surface. (3)Mem-
ory consumption:Memory consumption corresponds to the stor-
age size to store all faces on a surface (which can be derived from
the number of faces measured above). (4)Path finding time:Path
finding time of our proposed algorithm under surface simplifica-
tion which finds pathp corresponds to the execution time to run
Step I and Step II. Path finding time of each of the baseline al-
gorithms corresponds to the execution time of the correspondence
whole algorithm. (5)Path length:The length ofp, po andpc are all
measured.

7.1 Real Datasets
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Figure 12: Effect of θm (Eagle Peak whereε = 0.1)
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Figure 13: Comparison between the exact algorithm and the approximation algorithm (Eagle Peak whereε = 0.1)
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Figure 14: Effect of ε (Eagle Peak whereθm = 0.3)
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Figure 15: Effect of ε (Eagle Peak whereθm = π/2)
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Figure 16: Results of surface simplification (Bearhead whereθm = 0.3)
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Figure 17: Effect of θm (Bearhead whereε = 0.1)



We conducted experiments on two real datasets, Eagle Peak and
Bearhead. The results for Eagle Peak can be found in Figure 12,
Figure 13, Figure 14 and Figure 15.

Effect ofθm: In Figure 12a, whenθm increases, the preprocessing
time increases. This is because, whenθm is larger, intuitively, the
slope requirement is weaker and thus we can remove more vertices
in algorithmSurface Simplifier. If there are more vertices removed,
then the time to simplify the surface (in the preprocessing step) is
larger. In Figure 12b, the number of vertices remained (and thus
the memory consumption of the surface) decreases whenθm in-
creases. In Figure 12c, whenθm increases, the time for findingp
decreases. Sinceθm is larger, the total number of faces remained
is smaller. Thus, the time for findingp is shorter. Besides, the
time for findingpo is much longer than the time for findingp. In
particular, ifε = 0.1 andθm = 0.3, on average, our proposed al-
gorithm which findsp takes 174s but the optimal algorithm which
find po needs 1482s. Thus, the speedup is 8.5 times. Ifθm is set
to 0.1, the speedup is 1.6 times. The time for findingpc is shorter
than the time for findingpo and the time for findingp. Note that
pathpc does not have any guarantee on the distance requirement
(which will be described later). Besides, whenθm is set to 0.3, we
analyzed that the proportion of path segments (obtained after seg-
mentation) which undergo the process of path adjusting is 26.5%.
This suggests that it is not quite frequent to execute path adjust-
ing in Step II. In Figure 12d, we denote an additional curve called
“Worst-case bound" to denote the greatest theoretical error bound
according to the length ofpo. This value is equal to(1 + ε)|po|. In
this figure, the length ofpo decreases whenθm increases. Besides,
the length ofp is smaller than the worst-case bound but the length
of pc is larger than the worst-case bound. In particular, ifε = 0.1
andθm = 0.3, the ratio of the length ofp to the length ofpo is
1.099 but the ratio of the length ofpc to the length ofpo is 2.45.

In our proposed framework, we need to simplify a surface as a
preprocessing step. In order to study how this preprocessing step
benefits our algorithm for finding a gentle path over the simplified
surface, we did the following experiments. In this experiment, we
compare two algorithms, namely anapproximation algorithmand
an exact algorithm. Theapproximation algorithmcorresponds to
the algorithm for findingp while theexact algorithmcorresponds
to the algorithm findingpo. We define theaccumulated timeof an
algorithm as follows. Consider a query workloadQ containingx
queries wherex is a non-negative integer. The accumulated time
of an approximation algorithm is defined to be the sum of the pre-
processing time and the total time of finding all (approximate) gen-
tle paths among all queries inQ by the approximation algorithm.
The accumulated time of an exact algorithm is defined to be the
total time of finding all (exact) gentle paths among all queries in
Q by the exact algorithm. Figure 13a shows that the accumulated
times of the two algorithms increase with the number of queries
in Q whenθm = 0.1 andε = 0.1. WhenQ contains fewer than
3 queries, the accumulated time of the exact algorithm is smaller
than that of the approximation algorithm. However, when there are
more than 3 queries inQ, the accumulated time of the exact algo-
rithm is greater than that of the approximation algorithm. In other
words, the approximation algorithm needs only 3 queries to com-
pensate the preprocessing cost. We conducted other experiments
whenθm = 0.3, 0.5 and 0.7, which can be found in Figure 13b,
Figure 13c and Figure 13d, respectively. We find that 23 queries,
50 queries and 46 queries are needed to compensate the preprocess-
ing cost whenθm = 0.3, 0.5 and 0.7, respectively.

Effect ofε: Figure 14a shows that the preprocessing time increases
with ε. This is because the number of faces removed increases with
ε and thus algorithmSurface Simplifierneeds more time to simplify
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Figure 18: Effect of dataset size (Synthetic datasets)

the surface. In Figure 14b, the number of faces removed increases
with ε. In Figure 14c, the time to find pathp decreases whenε
increases. This is because the total number of faces remained is
smaller if ε is larger. For example, whenε = 0.1, the time to
find pathp is 60s but the time to find pathpo is about 505s. The
speedup of finding pathp (compared with finding pathpo) is about
8.42 times. Whenε = 1.0, the speedup is nearly to 31,562.5 times.
We conclude that whenε increases, the speedup increases. In Fig-
ure 14d, similarly, the length ofp is smaller than the worst-case
bound. Note that the worst-case bound increases linearly with ε but
the length ofp does not increase linearly withε. Instead, the dif-
ference between the length ofp and the worst-case bound becomes
larger whenε increases. For instance, the distance error is still kept
at most 10% whenε increases from 0.1 to 1.0.

Effect for Traditional Problem:We studied our proposed frame-
work, surface simplification, for the traditional problem which does
not consider any slope constraint (Figure 15). In this experiment,
we adopt the implementation of Chen and Han’s algorithm [12]
(which is originally designed for the traditional problem)for algo-
rithm A in our proposed framework. The original implementation
of [12] needs to find all the shortest paths from a given sourcepoint
s to all the other vertices. We modified the implementation such
that once the path to agivendestination pointt is found, the algo-
rithm terminates immediately. The results are also similarto Fig-
ure 14 but the preprocessing time and the time for findingp (po) are
shorter. In particular, our proposed algorithm to find pathp takes
489s with 10% distance error guarantee. However, the optimal al-
gorithm takes more than 67,527 seconds to findpo. The speedup
is 138 times. In addition, interestingly, whenε = 0, the time for
finding p is smaller than the time for findingpo becauseSurface
Simplifiermerges some adjacent faces with the same slope which
speeds up the computation.

Effect on Surface Simplification:Figure 16 shows the results of
our surface simplification on the real dataset, Bearhead, where
θm = 0.3. For the sake of illustration, we only focus on a por-
tion of this dataset with dimension 420m x 420m, which is shown
in Figure 16a. Figures 16b, c and d show the simplified surface
when we setε to 0.1, 0.25 and 0.5, respectively. The number of
triangles on the simplified surfaces decreases whenε increases.

We also did the experiments for Bearhead to study howθm and
ε affect the performance of the algorithms and study how the pro-
posed algorithm works well for the traditional problem. Theresults
are also similar to those obtained from Eagle Peak. For the sake of
space, we just show the results for parameterθm in Figure 17.

7.2 Synthetic Datasets
We also conducted experiments with synthetic datasets. In addi-

tion to the two parameters studied in real datasets (i.e.,θm andε),
dataset sizeis also used to study the performance of the proposed
algorithm over synthetic datasets where dataset size corresponds to
the total number of faces on the surface.
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Figure 19: Effect of θm (Synthetic datasets)
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Figure 20: Effect of ε (Synthetic datasets)

Effect of Dataset Size:In Figure 18a, the preprocessing time in-
creases with the dataset size. Figure 18b shows that, when the
dataset size increases, the number of remaining faces keepsnearly
unchanged. This is because when the dataset size is large, the num-
ber of vertices on a given fixed surface will be larger. However,
since the surface generated by the synthetic data generatoris nearly
the same when the dataset size is larger, after surface simplification,
it is likely that the given surface contains nearly the same number
of faces (when the dataset size increases).

Effect ofθm andε: Figures 19 and 20 shows the results when we
varyθm andε, respectively. The trends for the effect ofθm andε on
the synthetic datasets are similar to the trends on the real datasets.

Conclusion: Our proposed algorithm runs efficiently if we sacri-
fice the length of the path a little bit. The largerθm (ε) is, the
faster our algorithm runs. In particular, ifε = 0.1 andθm = 0.3,
our proposed algorithm runs 8.5 times faster than the optimal al-
gorithm which finds the optimal path onS if the path found by
our algorithm is at most 10% longer than the optimal path. If we
setθm = π/2, our proposed problem becomes the traditional prob-
lem. Our proposed algorithm runs 138 times faster than the optimal
algorithm with 10% distance guarantee.

8. CONCLUSION
We study a fundamental operator in spatial databases, finding

shortest paths on the surface of a terrain. In this problem, we con-
sider the slope requirement such that the path is not too steep. Since
solving this problem is more challenging than solving the tradi-
tional problem, we propose a new framework called surface sim-
plification. Under this framework, we can compute shortest gen-
tle paths efficiently. We conducted the experiments to show that
our proposed framework is very efficient and effective not only for
problem FSGP but also for the traditional problem.

There are a lot of promising research directions. Firstly, it is in-
teresting to consider other popular spatial queries such ask nearest
neighbors queries and range queries on the surface with the slope
constraint. Secondly, another interesting direction is tostudy the
real time spatial queries such as continuousk nearest neighbors in
our problem setting, which have been studied extensively recently.

Acknowledgements: We are grateful to the anonymous review-
ers for their constructive comments on this paper. The research is

supported by HKRGC GRF 621309 and Direct Allocation Grant
DAG11EG05G.

9. REFERENCES
[1] J. Chen and Y. Han. Shortest paths on a polyhedron. InSCG ’90:

Proceedings of the sixth annual symposium on Computational
geometry, pages 360–369, New York, NY, USA, 1990. ACM.

[2] H.-J. Cho and C.-W. Chung. An efficient and scalable approach to
cnn queries in a road network. InVLDB, 2005.

[3] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal,
F. Brooks, and W. Wright. Simplification envelopes. InSIGGRAPH,
1996.

[4] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars.
Computational Geometry: Algorithms and Applications. Springer,
Berlin, 3rd ed. edition, 2008.

[5] K. Deng and X. Zhou. Expansion-based algorithms for finding single
pair shortest path on surface. InW2GIS, pages 151–166, 2004.

[6] K. Deng, X. Zhou, H. T. Shen, Q. Liu, K. Xu, and X. Lin. A
multi-resolution surface distance model for k-nn query processing.
The VLDB Journal, 17(5):1101–1119, 2008.

[7] K. Deng, X. Zhou, H. T. Shen, K. Xu, and X. Lin. Surface k-nnquery
processing. InICDE, 2006.

[8] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1(1):269–271, December 1959.

[9] S. Fortune. A sweepline algorithm for voronoi diagrams.In
Algorithmica 2(2), 1987.

[10] M. Garland and P. S. Heckbert. Surface simplification using quadric
error metrics. InSIGGRAPH, 1997.

[11] T. Kanai and H. Suzuki. Approximate shortest path on polyhedral
surface based on selective refinement of the discrete graph and its
applications. InGMP, 2000.

[12] B. Kaneva and J.O’Rourke. An implementation of chen & han’s
shortest paths algorithm. Inthe 12th Canadian Conference on
Computational Geometry, 2000.

[13] M. A. Lanthier, A. Maheshwari, and J.-R. Sack. Approximating
weighted shortest paths on polyhedral surfaces. InProc. 13th ACM
Symp. on Computational Geometry, 1997.

[14] L. Liu and R. C.-W. Wong. Finding shortest gentle path (technical
report). Inhttp://www.cse.ust.hk/∼raywong/paper/
findingShortestGentlePath-technical.pdf, 2011.

[15] C. S. Mata and J. S. B. Mitchell. A new algorithm for computing
shortest paths in weighted planar subdivisions. InProc. 13th ACM
Symp. on Computational Geometry, 1997.

[16] J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou. The
discrete geodesic problem.SIAM J. Comput., 16(4):647–668, 1987.

[17] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query processing in
spatial network databases. InVLDB, 2003.

[18] G. W. Records.Guinness: World Records 2010. Guinness, 2009.
[19] J. Rossignac and P. Borrel. Multi-resolution 3d approximations for

rendering complex scenes. InIn Geometric Modeling in Computer
Graphics, pages 455–465, 1993.

[20] H. Samet.Foundations of Multidimensional and Metric Data
Structures. Morgan Kaufmann Publishers Inc., 2005.

[21] H. Samet, J. Sankaranarayanan, and H. Alborzi. Scalable network
distance browsing in spatial databases. InSIGMOD, 2008.

[22] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decimation of
triangle meshes. InSIGGRAPH, 1992.

[23] C. Shahabi, L.-A. Tang, and S. Xing. Indexing land surface for
efficient knn query.PVLDB, 1(1):1020–1031, 2008.

[24] M. Soucy and D. Laurendeau. Multiresolution surface modeling
based on hierarchical triangulation.Computer Vision and Image
Understanding, 63:1–14, 1996.

[25] P. Tompkins, T. Stentz, and W. Whittataker. Mission planning for the
sun-synchronous navigation field experiment. InIEEE International
Conference on Robotics and Automation, 2002.

[26] K. R. Varadarajan and P. K. Agarwal. Approximating shortest paths
on a nonconvex polyhedron.SIAM J. Comput., 30(4):1321–1340,
2000.

[27] S. Xing, C. Shahabi, and B. Pan. Continuous monitoring of nearest
neighbors on land surface.PVLDB, 2(1):1114–1125, 2009.


