
Hypersphere Dominance: An Optimal Approach

Cheng Long, Raymond Chi-Wing Wong, Bin Zhang, Min Xie
The Hong Kong University of Science and Technology

Clear Water Bay, Kowloon, HongKong
{clong, raywong, zhangbin}@cse.ust.hk, mxieaa@ust.hk

ABSTRACT
Hyperspheres are commonly used for representing uncertain ob-
jects (in uncertain databases) and for indexing spatial objects (in
spatial databases). An interesting operator on hyperspheres called
dominance is to decide for two given hyperspheres whether one
dominates (or is closer than) the other wrt a given query hyper-
sphere. In this paper, we propose an approach called Hyperbola
which is optimal in the sense that it gives neither false positives nor
false negatives and runs in linear time wrt the dimensionality. To
the best of our knowledge, Hyperbola is the first optimal approach
for the dominance problem on hyperespheres with any dimension-
ality. We also study an application of the dominance problem which
relies on the dominance operator as the core component. We con-
ducted extensive experiments on both real and synthetic datasets
which verified our approaches.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and GIS
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1. INTRODUCTION
Hypershperes are commonly used in uncertain databases and

spatial databases. In uncertain databases, using a hypersphere to
represent an uncertain object is widely adopted [6, 26, 2, 8]. For ex-
ample, in GIS applications, the location of an object is measured by
some GPS devices which may yield some imprecise measurements.
Usually, a hypersphere for the location is given to describe the un-
certain region that the object is located at. In spatial databases,
many existing index structures such as M-tree [9], VP-tree [10],
SS-tree [31], SS+-tree [20] and SR-tree [18], rely on hyperspheres
for efficient spatial queries. It is found in [31, 20, 18] that manip-
ulating with hyperspheres in their indexing structures is very ef-
fective for answering similarity search queries in high-dimensional
space compared with conventional well-known indexing structures
based on hyperrectangles such as R-tree and R*-tree.
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Figure 1: An example illustrating the dominance problem

Given two hyperspheres Sa and Sb, and a query hypersphere
Sq , we say that Sa dominates Sb wrt Sq if and only if for any
query point q in Sq , the distance between q and any point in Sa is
smaller than the distance between q and any point in Sb. That is,
∀q ∈ Sq, ∀a ∈ Sa, ∀b ∈ Sb, we have Dist(a, q) < Dist(b, q)
where Dist(p, p′) denotes the distance between two given points p
and p′. For example, Figure 1(a) shows that Sa dominates Sb wrt
Sq while Figure 1(b) shows that Sa does not dominate Sb wrt Sq .

In this paper, we study a spatial dominance problem (or the dom-
inance problem in short) which is to determine whether a hyper-
sphere Sa dominates another hypersphere Sb wrt a query hyper-
sphere Sq .

Spatial dominance is a fundamental operator for pruning in lots
of spatial queries. One example is the k nearest neighbor (kNN)
query where we want to find k nearest neighbors from a query Sq .
If k is set to 1, then we can discard Sb if we know that there exists
an object Sa which dominates Sb wrt Sq . Another example is the
reverse k nearest neighbor (RkNN) query where we want to find
which objects consider a query object Sq as one of their k nearest
neighbors. If k is set to 1, we can discard Sb if Sa dominates Sq

wrt Sb. Some other examples include inverse ranking queries and
dominating queries.

We consider three requirements for evaluating a method M for
the spatial dominance problem, namely correctness, soundness and
efficiency which are borrowed from [14] 1.

• Correctness: If method M returns true, then Sa dominates
Sb wrt Sq .

• Soundness: If method M returns false, then Sa does not
dominate Sb wrt Sq .

• Efficiency: The time complexity of methodM is low. Specif-
ically, our desired time complexity is linear to the dimension-
ality (i.e., O(d)).

All the above three requirements are essential to the spatial dom-
inance problem since (1) a method which is not correct might prune
some hypershperes that should not be pruned (this corresponds to
an instance of “false positive”), which further implies that some

1The original term for “soundness” in [14] is “completeness”.



Methods Correct? Sound? Efficient?
MinMax decision criterion [26, 15] Yes No Yes
MBR decision criterion [14] Yes No Yes
GP decision criterion [22] Yes No Yes
Trigonometric decision criterion [12] No Yes Yes
Hyperbola (Our Method) Yes Yes Yes

Table 1: Summary of existing methods for the spatial domi-
nance problem on hyperspheres

solutions might be missed, (2) a method which is not sound might
leave some hyperspheres that should be pruned not pruned (this
corresponds to an instance of “false negative”), which introduces
more burden on post-processing the remaining hypershperes, and
(3) a method which is not efficient is undesirable since the spatial
dominance operator is usually executed frequently. We say that a
method is optimal if it satisfies all these three requirements.

Unfortunately, existing methods cannot address our dominance
problem well. In fact, none of them are optimal. The MinMax deci-
sion criterion [26, 15], the MBR decision criterion [14] and the GP
decision criterion [22], three of the existing methods, satisfy the
correctness requirement and the efficiency requirement, but they do
not satisfy the soundness requirement. The Trigonometric decision
criterion [12], another existing method, satisfies the soundness re-
quirement and the efficiency requirement, but it does not satisfy the
correctness requirement. Table 1 shows the summary of four exist-
ing methods for the spatial dominance problem on hyperspheres.

Motivated by this, in this paper, we propose a new method called
Hyperbola which can meet all the above three requirements, i.e.,
Hyperbola is optimal. This method utilizes an interesting geometry
property based on a hyperbola and solves the dominance problem
efficiently. Intuitively, we can construct a hyperbola based on the
information about two given hyperspheres Sa and Sb. According to
this hyperbola, we can partition the space into two parts. We then
determine whether Sa dominates Sb wrt a query Sq by checking
whether Sq is in one part of the partitioned space.

The following shows our contributions.

• Firstly, we develop a new method called Hyperbola for the
dominance problem which is based on some geometry prop-
erties. To the best of our knowledge, Hyperbola corre-
sponds to the first optimal approach (i.e., Hyperbola is cor-
rect, sound and efficient) for the dominance problem in any
dimensional space.

• Secondly, we study an application, namely kNN query of the
dominance problem, which relies on the dominance operator
as its core component.

• Thirdly, we conducted extensive experiments with both syn-
thetic and real datasets which verified our approaches.

The rest of the paper is organized as follows. Section 2 provides
the formal definition of the dominance problem and discusses the
adaptions of some existing decision criteria. Section 3 introduces
a new decision criterion and based on this decision criterion, Sec-
tion 4 introduces our Hyperbola method. Section 5 gives the related
work and Section 6 studies an application of the dominance oper-
ator. Section 7 gives the empirical study and Section 8 concludes
the paper.

2. PROBLEM DEFINITION & ADAP-
TIONS OF EXISTING SOLUTIONS

We give the formal definition of our spatial dominance problem
in Section 2.1 and discuss the adaptions of some existing domi-
nance decision criteria in Section 2.2.
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Figure 2: An example illustrating the definition of
MaxDist(·, ·)

2.1 The Dominance Problem
Consider three hyperspheres in the d-dimensional space, Sa, Sb

and Sq . Each hypersphere has a center c which is a d-dimensional
point and a radius r which is a non-negative real value. We denote
the centers (radii) of Sa, Sb and Sq by ca, cb and cq (ra, rb and rq),
respectively. Note that a d-dimensional point could be regarded as
a d-dimensional hypersphere with its radius equal to 0.

Given a d-dimensional point p, we denote its i-th coordinate by
p[i]. In this paper, we use the Euclidean distance as the distance
metric, i.e., the distance between two d-dimensional points p and
p′, denoted by Dist(p, p′), is defined as follows.

Dist(p, p′) =
√∑d

i=1(p[i]− p′[i])2 (1)

DEFINITION 1 (DOMINANCE). Given three hyperspheres
Sa, Sb and Sq (Sq is used as a query hypersphere), Sa is said to
dominate Sb wrt Sq iff for any q ∈ Sq , any a ∈ Sa is closer to q
than any b ∈ Sb. That is,

∀q ∈ Sq, ∀a ∈ Sa, ∀b ∈ Sb : Dist(a, q) < Dist(b, q) (2)

We define Dom(Sa, Sb, Sq) as an indicator of whether Sa dom-
inates Sb wrt Sq . Specifically, Dom(Sa, Sb) is true if Sa domi-
nates Sb wrt Sq and is false otherwise. To illustrate, consider Fig-
ure 1. We know that Dom(Sa, Sb, Sq) is true for Figure 1(a) while
Dom(Sa, Sb, Sq) is false for Figure 1(b).

The dominance problem studied in this paper is defined as fol-
lows.

PROBLEM 1 (DOMINANCE PROBLEM). Given three hyper-
spheres Sa, Sb and Sq , the dominance problem is to determine
whether Dom(Sa, Sb, Sq) is true or not.

Two d-dimensional hyperspheres Sa and Sb are said to overlap
iff Dist(ca, cb) ≤ ra + rb. We have the following lemma.

LEMMA 1 (OVERLAPPING CASE). If Sa and Sb overlap,
then Dom(Sa, Sb, Sq) is false.

PROOF. Let p be a point in both Sa and Sb and p′ be any point
in Sq . Consider a = p, b = p and q = p′. We have Dist(a, q) =
Dist(b, q) which implies that Dom(Sa, Sb, Sq) is false.

The above lemma suggests that if Sa and Sb overlaps, then we
immediately know that Dom(Sa, Sb, Sq) is false.

2.2 Adaptions of Existing Decision Criteria
There are some existing decision criteria originally proposed

for hyperrectangles and some others originally designed for hyper-
spheres. In this section, we focus on the existing decision criteria
originally proposed for hyperrectangles, which are closely related
to our dominance problem. They are the MinMax decision criterion
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Figure 3: An example illustrating the definition of MinDist(·, ·)
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Figure 4: An example illustrating the
proof of Lemma 3

[26, 15], the MBR decision criterion [14] 2 and the corner-based
decision criterion [13]. In the next section, we will describe the
existing decision criteria originally proposed for hyperspheres.

MinMax decision criterion: The MinMax decision criterion is
denoted by DCMinMax(Sa, Sb, Sq). Before we describe it, we
first give some notations which will be used in this criterion.

The maximum distance between Sa and Sb, denoted by
MaxDist(Sa, Sb), is defined to be the maximum distance be-
tween a point in Sa and a point in Sb. It is easy to verify that

MaxDist(Sa, Sb) = Dist(ca, cb) + ra + rb (3)

For example, Figure 2(a) shows the maximum distance between
two hyperspheres Sa and Sb. Figure 2(b) shows the maximum dis-
tance between a hypersphere Sa with non-zero radius and a hyper-
sphere Sb with zero radius (or a point).

The minimum distance between Sa and Sb, denoted by
MinDist(Sa, Sb), is defined to be the minimum distance be-
tween a point in Sa and a point in Sb. It is easy to verify that
MinDist(Sa, Sb) ={

Dist(ca, cb)− ra − rb if Dist(ca, cb) > ra + rb
0 otherwise (overlapping case)

(4)

For example, Figure 3(a) shows the minimum distance between
two non-overlapping hyperspheres Sa and Sb. Figure 3(b) shows
the minimum distance between two overlapping hyperspheres Sa

and Sb. Figure 3(c) shows the minimum distance between a hyper-
sphere Sa with non-zero radius and another hypersphere Sb with
zero radius (or a point).

With the above notations, we are ready to describe
DCMinMax(Sa, Sb, Sq) which checks whether the maximum
distance between Sa and Sq is strictly smaller than the minimum
distance between Sb and Sq . Specifically,DCMinMax(Sa, Sb, Sq)
is true if

MaxDist(Sa, Sq) < MinDist(Sb, Sq)

and false otherwise.
The MinMax decision criterion is simple, but it does not sat-

isfy all three desired requirements for an optimal dominance oper-
ator introduced in Section 1 (i.e., correctness, soundness and effi-
ciency). Specifically, the MinMax decision criterion is correct but
not sound, which is shown in the following two lemmas.

LEMMA 2 (CORRECTNESS OF DCMinMax(Sa, Sb, Sq)). If
DCMinMax(Sa, Sb, Sq) is true, then Dom(Sa, Sb, Sq) is true.

PROOF. Since DCMinMax(Sa, Sb, Sq) is true, by definition,
we have MaxDist(Sa, Sq) < MinDist(Sb, Sq). Thus, we
deduce that ∀q ∈ Sq, ∀a ∈ Sa, ∀b ∈ Sb : Dist(a, q) ≤
MaxDist(Sa, Sq) < MinDist(Sb, Sq) ≤ Dist(b, q).

2“MBR decision criterion” corresponds to the “DDCoptimal deci-
sion criterion” in [14].

LEMMA 3 (NON-SOUNDNESS OF DCMinMax(Sa, Sb, Sq)).
DCMinMax(Sa, Sb, Sq) is false does not imply that
Dom(Sa, Sb, Sq) is false.

PROOF. We prove this lemma by constructing an example such
thatDCMinMax(Sa, Sb, Sq) is false andDom(Sa, Sb, Sq) is true.

Consider a two-dimensional space containing one hypersphere
Sa and another hypersphere Sb where their radii are equal to 0.
The x-coordinates of the centers of both hyperspheres are the same
but the the y-coordinate of the center of Sa is larger than that of the
center of Sb. Figure 4 shows these two hyperspheres. Let L be the
perpendicular bisector of the line connecting Sa and Sb. We can
construct a hypersphere Sq with non-zero radius above L such that
MaxDist(Sa, Sq) > MinDist(Sb, Sq) as shown in the figure.
Thus, DCMinMax(Sa, Sb, Sq) is false.

Note that for each q ∈ Sq , we know that Dist(ca, q) <
Dist(cb, q) which essentially implies that ∀q ∈ Sq, ∀a ∈ Sa, ∀b ∈
Sb : Dist(a, q) < Dist(b, q) (i.e., Dom(Sa, Sb, Sq) is true).

Note that the MinMax decision criterion is sound only when Sq

is a point.
In addition, the MinMax decision criterion can be determined in

O(d) time since both MaxDist(Sa, Sq) and MinDist(Sb, Sq)
can be computed in O(d) time.

MBR decision criterion: The MBR decision criterion denoted by
DCMBR(Ra,Rb,Rq) was proposed by [14], where Ra,Rb and
Rq are hyperrectangles (instead of hyperspheres studied in this
paper). Similar to our dominance operator in the context of hy-
perspheres, DCMBR(Ra,Rb,Rq) determines whether Ra dom-
inates Rb wrt Rq in the context of hyperrectangles. According to
[14], DCMBR(Ra,Rb,Rq) is correct, sound and efficient in the
context of hyperrectangles.

We propose to adapt DCMBR(Ra,Rb,Rq) for our problem (in
the context of hyperspheres), and denote the adapted decision cri-
terion by DCMBR(Sa, Sb, Sq) which is described as follows. Let
Ra, Rb and Rq be the minimum bounding hyperrectangles of Sa,
Sb and Sq , respectively. We define DCMBR(Sa, Sb, Sq) to be true
if DCMBR(Ra,Rb,Rq) is ture and false otherwise.

Unfortunately, similar to the MinMax decision criterion, this
adapted MBR decision criterion does not satisfy all three desired
requirements for the dominance operator. Specifically, the adapted
MBR decision criterion is correct but is not sound, which will be
shown in the following two lemmas.

LEMMA 4 (CORRECTNESS OF DCMBR(Sa, Sb, Sq)). If
DCMBR(Sa, Sb, Sq) is true, then Dom(Sa, Sb, Sq) is true.

PROOF. Let Ra,Rb and Rq be the minimum bound-
ing hyperrectangles of Sa, Sb and Sq , respectively. Since
DCMBR(Sa, Sb, Sq) is true, by definition, we know that
DCMBR(Ra,Rb,Rq) is true. Since DCMBR(Ra,Rb,Rq) is
correct [14], we deduce that ∀q ∈ Rq, ∀a ∈ Ra, ∀b ∈ Rb :
Dist(a, q) < Dist(b, q) which further implies that ∀q ∈ Sq, ∀a ∈
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Sa, ∀b ∈ Sb : Dist(a, q) < Dist(b, q) (i.e., Dom(Sa, Sb, Sq) is
true).

LEMMA 5 (NON-SOUNDNESS OF DCMBR(Sa, Sb, Sq)).
DCMBR(Sa, Sb, Sq) is false does not imply that
Dom(Sa, Sb, Sq) is false.

PROOF. We prove this lemma by constructing an example such
that DCMBR(Sa, Sb, Sq) is false and Dom(Sa, Sb, Sq) is true.

Consider a two-dimensional space containing three hyperspheres
with the same radii equal to r, Sa, Sb and Sq . The centers of
these hyperspheres are along a virtual line l with slope equal to
1 such that the distance between the center of Sa and the cen-
ter of Sq is 4 · r and the distance between the center of Sb and
the center of Sq is 6r + δ where δ is a small number. Figure 5
shows these hyperspheres. In this example, it is easy to verify that
Dom(Sa, Sb, Sq) is true. Besides, we have thatRa (i.e., the MBR
of Sa) intersects with Rb (i.e., the MBR for Sb). This, however,
implies that DCMBR(Ra,Rb,Rq) is false which further implies
that DCMBR(Sa, Sb, Sq) is false.

It is shown in [14] that the time complexity of determining
DCMBR(Ra,Rb,Rq) is O(d). Since the adapted decision cri-
terion DCMBR(Sa, Sb, Sq) requires O(d) time for constructing
three hyperrectangles from three hyperspheres, the time complex-
ity of determining DCMBR(Sa, Sb, Sq) is O(d).

Corner-based decision criterion: The corner-based decision cri-
terion denoted by DCCorner(Sa, Sb, Sq) was proposed by [13].
Similar to the MBR decision criterion, the corner-based decision
criterion is designed for the dominance problem in the context of
hyperrectangles. Thus, this decision criterion cannot be used for
our dominance problem in the context of hyperspheres directly. Be-
sides, the time complexity of executing this decision criterion is
O(2d) which is prohibitively expensive for high-dimensional data
and thus we do not adapt it in this paper as what we did for the
MBR decision criterion.

3. DOMINANCE CONDITION
We discuss Voronoi-based approaches for capturing our hyper-

sphere dominance condition in Section 3.1 and then propose our
own approach in Section 3.2.

3.1 Voronoi-based Approach
One may propose to use a Voronoi-based approach for our dom-

inance problem. Specifically, we partition the whole space into two
regions Ra and Rb where Ra contains Sa and Rb contains Sb such
that if Sq falls in Ra, then Sa dominates Sb wrt Sq . The two par-
titioned regions can be determined by a boundary represented by
a curve in the form of “MaxDist(Sa, x) = MinDist(Sb, x)”.
Figure 6(a) shows the two regions with this boundary for the ex-
ample in Figure 1(a) where Dom(Sa, Sb, Sq) is true. Figure 6(b)
shows the case in Figure 1(b) where Dom(Sa, Sb, Sq) is false.

LEMMA 6. The whole hypersphere Sq is in region Ra iff
Dom(Sa, Sb, Sq) is true.

PROOF. The whole hypersphere Sq is in region Ra

⇔ ∀q ∈ Sq,MaxDist(Sa, q) < MinDist(Sb, q)

⇔ ∀q ∈ Sq, ∀a ∈ Sa, ∀b ∈ Sb, Dist(a, q) < Dist(b, q)

⇔ Dom(Sa, Sb, Sq) is true

A Voronoi-based approach looks promising for solving our dom-
inance problem, but how to implement this approach efficiently on
a d-dimensional space is not an easy task. Up to now, this domi-
nance problem on hyperspheres has not been solved optimally al-
though it is fundamental. This is mainly due to the difficulty in
finding the shape of the region Ra in a high-dimensional space,
one of the well-known challenges of computing a high-dimensional
Voronoi diagram. To the best of our knowledge, there are only three
existing studies [22, 12, 32] using a Voronoi-based approach for
our dominance problem on hyperspheres as a component of their
proposed algorithms, but they have some deficiencies.

• Firstly, the Voronoi-based approach studied in [22] called the
GP decision criterion, originally used for a RkNN query,
is not optimal for our dominance problem when the dimen-
sionality is greater than 2. Specifically, it is optimal for 2-
dimensional datasets only. As claimed in [22] that finding
the optimal solution in a d-dimensional dataset is very com-
plex where d > 2, [22] proposed an approximate solution for
the dominance problem. Specifically, when d > 2, it trans-
forms a d-dimensional dataset to a 2-dimensional dataset and
adopts the method, originally designed for the 2-dimensional
data, on this transformed dataset. Since a high-dimensional
dataset is transformed to a low-dimensional dataset, some in-
formation is lost and thus optimality cannot be achieved.

• Secondly, [12] also adopted the Voronoi-based approach
called the Trigonometric decision criterion, originally used
for an all-nearest-neighbor query, is unfortunately not cor-
rect thought it is sound and efficient for our dominance prob-
lem. Detailed description of this adaption can be found in the
appendix.

• Thirdly, the Voronoi-based approach studied in [32] called
the UV-Diagram decision criterion, originally used for a
1NN query, is restricted to 2-dimensional datasets only. It
is not clear how the approach can be extended to high-
dimensional datasets such that the time complexity of the
approach can be O(d). Besides, the query object studied in
[32] is a point only, but not a hypersphere.



In this paper, we propose a Voronoi-based method, which is cor-
rect and sound, for our dominance problem on data of any dimen-
sionality. With some properties, this method can be done in O(d)
time, the first optimal approach in the literature.

Since there are some details of the above existing decision crite-
ria, for clarity, we show the correctness, soundness and efficiency of
these existing decision criteria in the appendix. The results of these
decision criteria can be found in Table 1. Since the UV-Diagram
decision criterion is restricted to 2-dimensional datasets only, we
do not include it in the table nor in the appendix.

3.2 Our Approach
In this section, we derive a condition called the minimum dis-

tance difference (MDD) condition which is used to determine
whether Dom(Sa, Sb, Sq) is true or not. This condition has an
interesting geometry property which can determine the boundary
described above and can help to solve the dominance problem effi-
ciently. We will discuss this interesting property in Section 4.

According to Definition 1, Dom(Sa, Sb, Sq) is equivalent to de-
termining whether Expression (2) is true or not.

With the notations MaxDist(·) and MinDist(·), it is easy to
verify that Expression (2) is equivalent to the following.

∀q ∈ Sq : MaxDist(Sa, q) < MinDist(Sb, q)

By (3), the above expression could be re-written as follows.

∀q ∈ Sq : Dist(ca, q) + ra < MinDist(Sb, q) (5)

Consider two cases. Case 1: ∀q ∈ Sq : Dist(cb, q) > rb. In
this case, by (4), we know that

∀q ∈ Sq : MinDist(Sb, q) = Dist(cb, q)− rb

Expression (5) can be re-written as follows.

∀q ∈ Sq : Dist(cb, q)−Dist(ca, q) > ra + rb (6)

Case 2: ∃q ∈ Sq : Dist(cb, q) ≤ rb. This case is not pos-
sible. We show by contradiction. Suppose that there exists a
point q ∈ Sq such that Dist(cb, q) ≤ rb. By (4), we know that
MinDist(Sb, q) = 0. We derive that Dist(ca, q) + ra < 0,
which leads to a contradiction that Dist(ca, q) + ra must be non-
negative.

By combining the above two cases, we conclude that Expres-
sion (5) is equivalent to the following expression.

∀q ∈ Sq : Dist(cb, q)−Dist(ca, q) > ra + rb

The above expression can be further re-written as follows.

Minq∈Sq (Dist(cb, q)−Dist(ca, q)) > ra + rb (7)

The above expression is called the minimum distance differ-
ence (MDD) condition. Therefore, the dominance problem reduces
to the problem of determining whether the MDD condition is true
or not which we solve in Section 4.

4. ALGORITHM HYPERBOLA
Section 4.1 presents the high-level idea of our proposed algo-

rithm called Hyperbola. Section 4.2 elaborates on some steps of
Hyperbola in detail. Section 4.3 gives the theoretical analysis and
the time complexity of Hyperbola.

4.1 Algorithm Hyperbola
Consider two cases. The first case is called the overlapping case

in which Sa and Sb overlap. The second case is called the non-
overlapping case in which Sa and Sb do not overlap.

Algorithm 1 Algorithm Hyperbola

Input: Sa, Sb and Sq

Output: a boolean value denoting whether Dom(Sa, Sb, Sq) is
true

1: if Sa and Sb overlap then
2: return false
3: else
4: P ← the hyperbola represented in the form of

“Dist(cb, x)−Dist(ca, x) = ra + rb”
5: Ra ← the region containing ca which is one of the regions

partitioned by P
6: if Sq is in Ra then
7: return true
8: else
9: return false

Consider the overlapping case. According to Lemma 1, we know
that Dom(Sa, Sb, Sq) is false. There is no need to check with the
MDD condition.

Consider the non-overlapping case. We have to check with the
MDD condition in order to determine whether Dom(Sa, Sb, Sq) is
true or not. In the following, we observe an interesting geometry
property for the MDD condition which helps to check the MDD
condition efficiently.

Let P be the hyperbola represented in the following form.

Dist(cb, x)−Dist(ca, x) = ra + rb (8)

where x is a d-dimensional point along the hyperbola which has
two focal points, namely ca and cb. We use P to partition the space
into two regions and denote by Ra the one that contains ca. Then,
we have the following property.

LEMMA 7 (NON-OVERLAPPING CASE). The whole hyper-
sphere Sq is in Ra iff the MDD condition is satisfied.

PROOF. The whole hypersphere Sq is in Ra

⇔ ∀q ∈ Sq, q is in Ra

⇔ ∀q ∈ Sq, Dist(cb, q)−Dist(ca, q) > ra + rb

⇔ Minq∈Sq (Dist(cb, q)−Dist(ca, q)) > ra + rb

⇔ the MDD condition is satisfied

The above lemma suggests that in order to determine whether the
MDD condition is satisfied or not, we can check whether Sq is in
Ra. If yes, we know that the MDD condition is satisfied and thus
Dom(Sa, Sb, Sq) is true; otherwise, we know that the MDD con-
dition is not satisfied and thus Dom(Sa, Sb, Sq) is false. This cor-
responds to the idea of our Hyperbola algorithm which we present
in Algorithm 1.

THEOREM 1. Algorithm 1 is correct and sound.

PROOF. This could be easily verified by Lemma 7 and the
equivalence between the MDD condition and the dominance con-
dition.

According to the above theorem, algorithm Hyperbola satisfies
the first two requirements for our dominance problem. In the fol-
lowing, we introduce the detailed steps of Hyperbola in Section 4.2
and show that Hyperbola runs in O(d) time (i.e., Hyperbola is ef-
ficient) in Section 4.3.



4.2 Detailed Steps
Algorithm 1 looks straightforward but how to perform the step

of determining whether Sq is in Ra efficiently needs more careful
design. Note that this step has to be performed only in the case that
Sa and Sb do not overlap.

In this paper, we propose the following two-step method to de-
termine whether Sq is in Ra.

• Step 1 (Finding Minimum Distance): We find the mini-
mum distance dmin between hyperbola P and point cq .

• Step 2 (Checking Minimum Distance): We conclude that
Sq is in Ra if dmin > rq and cq is inside Ra; otherwise, we
conclude that Sq is not in Ra.

The correctness of the above two-step method is obvious and its
time complexity is O(d) since Step 1 could be done in O(d) which
will be shown in the following Section 4.3 and Step 2 also runs
O(d) time which could be verified easily.

4.3 Theoretical Analysis & Time Complexity
Now, we present an efficient method to find the minimum dis-

tance dmin between the hyperbola P and the point cq in O(d) time.

4.3.1 An Explicit Expression of P
In this subsection, we give an explicit expression of P .
Let rab = ra + rb. From (8), P is represented in the following

form.

Dist(cb, x)−Dist(ca, x) = ra + rb

Since rab = ra + rb, by (1), it can be re-written as follows.(√∑d
i=1(cb[i]− x[i])2

)2

=

(√∑d
i=1(ca[i]− x[i])2 + rab

)2

The above expression can be simplified as follows.∑d
i=1(cb[i]− x[i])2 −∑d

i=1(ca[i]− x[i])2 − r2ab =

2rab

√∑d
i=1(ca[i]− x[i])2

Squaring both sides of the above expression results in the following
expression.(∑d

i=1 c
2
b [i]−

∑d
i=1 c

2
a[i] + 2

∑d
i=1 x[i](ca[i]− cb[i])− r2ab

)2

=

4r2ab

(∑d
i=1 x

2[i] +
∑d

i=1 c
2
a[i]− 2

∑d
i=1 x[i]ca[i]

)
(9)

The above expression looks a little bit complicated to proceed. For-
tunately, we can make use of the hyperbola property and can sim-
plify the above expression by transforming points to a new coordi-
nate system.

In a typical hyperbola, there are two fixed points (or focal points)
and the point along the hyperbola should satisfy that the difference
between its distance from one of the fixed points and its distance
from the other fixed point is equal to a fixed value r. In a typical
representation, one of the fixed points has the coordinates equal to
(−α, 0, 0, ..., 0) and the other fixed point has the coordinates equal
to (α, 0, 0, ..., 0) where α is a non-negative real number. Note that
there are d − 1 zeros in the coordinates of both fixed points which
can be used to simplify some derivations. The sufficient condition
that this hyperbola exists is that r < 2α.

Motivated by the above observation, since the two fixed points
are ca and cb in our hyperbola, we perform a coordinate transfor-
mation for our hyperbola such that in the new coordinate system,

ca has its coordinates equal to (−α, 0, 0, ..., 0) and cb has its coor-
dinates equal to (α, 0, 0, ..., 0). Here, in our hyperbola, α is set to
Dist(ca, cb)/2 and r is set to rab. Note that rab < 2α, which sat-
isfies the condition that a hyperbola exists. This is because we per-
form to check whether Sq is in Ra only when know that Sa and Sb

does not overlap, which means that ra+rb < Dist(ca, cb)(= 2α).
With this coordinate transformation, ca, cb and cq in the original

coordinate system is transformed to c′a, c′b and c′q in the new coor-
dinate system, respectively. In the following, for simplicity, we do
not change the notations of ca, cb and cq . Instead, we just substitute
the coordinate of these points in the new coordinate system. It is
easy to verify that the coordinate transformation takes O(d) time.

After the coordinate transformation, Expression (9) denoting the
hyperbola can be written as follows.

(4αx[1] + r2ab)
2 = 4r2ab(

∑d
i=1 x

2[i] + α2 + 2αx[1])

With some simple derivations, we have the following.

4r2ab
∑d

i=1 x
2[i] + 4r2abα

2 − 16α2x2[1]− r4ab = 0 (10)

Let F (x) = 4r2ab
∑d

i=1 x
2[i] + 4r2abα

2 − 16α2x2[1]− r4ab. Thus,
the hyperbola P can be written in the following form.

F (x) = 0

4.3.2 Finding dmin Between P and cq

We want to find the minimum distance dmin between P and cq .
Note that P can be written in the form of “F (x) = 0”. What we
want to solve is the following constrained optimization problem.

Minimize Dist(cq, x)
subject to F (x) = 0

The solution of above optimization corresponds to dmin. Be-
sides, the above optimization is equivalent to the following opti-
mization where the objective function is changed from Dist(cq, x)
to Dist(cq, x)

2 (since Dist(cq, x) is non-negative).
Minimize Dist(cq, x)

2

subject to F (x) = 0
By the Lagrange multipliers [4], we just need to consider the

corresponding Lagrange function G(x) as follows.

G(x) = Dist(cq, x)
2 + λ · F (x)

where λ is a Lagrange multiplier which is a real number.
It is easy to verify the following gradient of G(x).

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂G(x)
∂x[1]

= −2(cq[1]− x[1]) + λ(8r2abx[1]− 32α2x[1])
∂G(x)
∂x[2]

= −2(cq[2]− x[2]) + λ8r2abx[2]
∂G(x)
∂x[3]

= −2(cq[3]− x[3]) + λ8r2abx[3]

...
...

∂G(x)
∂x[d]

= −2(cq[d]− x[d]) + λ8r2abx[d]

Setting the gradient of G(x) to 0 results in the following equations.⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cq[1]− x[1] = λ(4r2abx[1]− 16α2x[1])
cq[2]− x[2] = λ4r2abx[2]
cq[3]− x[3] = λ4r2abx[3]

...
...

cq[d]− x[d] = λ4r2abx[d]

(11)

From (11), we derive the following equations.

x[1] =
cq [1]

1+4r2
ab

λ−16α2λ
(12)



x[i] =
cq [i]

4r2
ab

λ+1
where 2 ≤ i ≤ d (13)

We insert the above d equations for x[1], x[2], ..., x[d] into F (x) =
0. We have

(16α2−4r2ab)c
2
q [1]

(1+4r2
ab

λ−16α2λ)2
+ r4ab − 4r2abα

2 =
4r2ab(

∑d
i=2 c2q [i])

(4r2
ab

λ+1)2

Let a1 = (16α2 − 4r2ab)c
2
q[1], a2 = r4ab − 4r2abα

2, a3 =

4r2ab(
∑d

i=2 c
2
q[i]), a4 = 4r2ab and a5 = 4r2ab − 16α2. The above

equation can be simplified as follows.

a1
(1+a5λ)2

+ a2 = a3
(1+a4λ)2

It can be further expressed in the following quartic form.

Aλ4 +Bλ3 + Cλ2 +Dλ+ E = 0 (14)

where

A = a2a
2
4a

2
5

B = 2a2a
2
4a5 + 2a2a4a

2
5

C = a1a
2
4 + a2a

2
4 + 4a2a4a5 + a2a

2
5 − a3a

2
5

D = 2a1a4 + 2a2a4 + 2a2a5 − 2a3a5

E = a1 + a2 − a3

We know that the solutions for a quartic equation can be found in
O(1) time [17]. Thus, we can find the solutions for Equation (14)
in O(1) time. Besides, at most four solutions for λ can be ob-
tained. For each solution for λ, we can compute the value for x
according to Equation (12) and Equation (13) in O(1) time, and
then can compute the distance Dist(cq, x) in O(d) time. We pick
the smallest distance value among all computed distance values as
the final dmin value. Thus, dmin can be computed in O(d) time.

LEMMA 8. dmin can be computed in O(d) time.

THEOREM 2. The time complexity of Hyperbola as shown in
Algorihtm 1 is O(d).

According to the above theorem, Hyperbola satisfies the third
requirement for our dominance problem.

5. RELATED WORK
We study the related work of hyperspheres, spatial dominance

and existing queries using dominance in Section 5.1, Section 5.2
and Section 5.3, respectively.

5.1 Hyperspheres
There are a lot of existing studies about hyperspheres which we

study with two branches. The first branch includes the queries in
uncertain databases where the uncertain objects are usually rep-
resented with hyperspheres due to the imprecise measurements of
these objects. Some example include [6, 26, 2, 8].

The second branch includes the indexes whose index entries
are represented in the form of hyperspheres. Some representa-
tive examples are SS-tree [31], SS+-tree [20], SR-tree [18], M-tree
[9] and VP-tree [10]. [31] and [20] reported that SS-tree and its
variation, SS+-tree, outperform the conventional well-known in-
dexing structure, R*-tree, in similarity search queries in a high-
dimensional space, which is commonly used in the literature of im-
age and video retrieval. SR-tree is a hybrid tree structure which
integrates the advantage of R*-tree and the advantage of SS+-tree
in order to speed up nearest neighbor queries in a high-dimensional
space. Both M-tree and VP-tree are tree structures which are de-
signed to index objects in a metric space.

5.2 Spatial Dominance
The spatial dominance operator has been studied in the context

of hyperrectangles [14]. Four decision criteria were studied in [14].
The first decision criterion is the MinMax decision criterion. Same
as the case for hyperspheres, this decision criterion is correct but
not sound for hyperrectangles and runs in O(d) time. The second
decision criterion is the Voronoi-based decision criterion which is
correct and sound for hyperrectangles, but runs in O(2d) time. The
third criterion is the corner-based decision criterion which is cor-
rect and sound for hyperrectangles, but runs in O(2d) time. The
fourth decision criterion is the MBR decision criterion which is
correct and sound for hyperrectangles, and runs in O(d) time [14].
However, the MBR decision criterion cannot be applied to hyper-
spheres directly since it makes use of the property of hyperrectan-
gles which do not hold for hyperspheres. In particular, this decision
criterion requires that the maximum distance between a hyperrect-
angle r and another hyperrectangle r′ is split into d components
where each component is the maximum distance between r and r′

on one dimension. Since each dimension of a hyperrectangle is rep-
resented in the form of a closed interval (with a minimum value and
a maximum value on this dimension), the splitting process can be
done conveniently for hyperrectangles which is not the case for hy-
perspheres. These criteria are all based on hyperrectangles instead
of hyperspheres studied in this paper. Note that different applica-
tions use different shapes to represent uncertain objects. In some
applications, an uncertain object is represented by a hypersphere as
described in Section 5.1 and in some other applications, it is repre-
sented by a hyperrectangle. In this paper, we focus on the former
case.

To the best of our knowledge, we are the first to propose a dom-
inance operator in the context of hyperspheres, which is correct,
sound and efficient, for any dimensionality.

5.3 Existing Queries Using Dominance
There are an abundance of existing queries which depend on the

dominance definition studied in this paper. In the context of points
(which could be regarded as special cases of hyperspheres), those
queries are kNN queries [26, 15], RkNN queries [29], inverse rank-
ing queries [21], dominating queries [33], spatial skyline queries
[27] and reverse skyline queries [11].

In the context of hyperspheres, similar queries also adopt this
dominance definition. Consider kNN queries. Among many ex-
isting studies on kNN queries in uncertain databases [32, 34, 25,
3, 7, 30, 28, 16, 19] adopting the dominance definition (or sim-
ilar definitions), only [32] is closely related to us. Specifically,
some [16, 30, 28] only focus on these queries on the data con-
taining points (not hyperspheres) with an uncertain query object
represented in some forms (e.g., hyperspheres). Some [25, 7] only
focus on these queries on the data containing uncertain data with a
query point (not a hypersphere). Some [34] focus on uncertain data
in the form of the shapes other than hyperspheres (e.g., hyperrect-
angles). Some techniques like [19] with sampling may introduce
errors for the queries when the number of sampling points is insuf-
ficient. Some techniques like [3] choose k objects “independently”
without considering the correlation of the objects in the answer set
of the queries. [32] studied the 1NN query on the database contain-
ing hyperspheres. However, it is different from ours. Firstly, we
study kNN query where k could be any positive integer while [32]
focuses on 1NN query. Secondly, we study the dominance prob-
lem for any dimensionality while [32] focuses on the dominance
problem embedded in the queries on 2-dimensional dataset only.
Thirdly, the query object in our kNN query is a hypersphere while
the query object in the 1NN query studied in [32] is a point.
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Figure 7: An example illustrating the proof of Lemma 10

Consider RkNN queries. [1] focuses on objects represented in
the form of hyperrectangles and [5] works on a discrete space only
instead of a continuous space inside a hypersphere as studied in this
paper. [22] studies a RkNN query which involves a spatial domi-
nance problem similar to us. Nevertheless, when the dimensional-
ity d of the dataset is greater than 2, [22] transforms the dataset to a
2-dimensional dataset with some information loss and the resulting
approach is non-optimal for the spatial dominance problem.

Consider all-nearest neighbor queries. [12] adopts the domi-
nance operator for all-nearest neighbor queries considering Sq as
a hypersphere, Sa as a point only and Sb as either a point or a hy-
persphere. However, as we described before, though the adapted
method considering all Sq, Sq and Sb as hyperspheres is sound and
efficient, it is not correct.

Consider inverse ranking queries. [23] studies these queries
when the data objects are represented in the form of hyperrectan-
gles, but not hyperspheres.

Consider dominating queries. [24] focuses on a discrete space
instead of a continuous space as studied in this paper.

6. APPLICATION
In the previous section, we describe how to determine whether

Dom(Sa, Sb, Sq) is true or not efficiently. In this section, we dis-
cuss how to use Dom(Sa, Sb, Sq) in a popular query, namely the
k nearest neighbor (kNN) query. Although there are other appli-
cations using Dom(Sa, Sb, Sq) (e.g., reverse kNN queries [22],
inverse ranking queries [21] and dominating queries [33, 24]), for
the sake of space, we study the kNN query only.

As described in Section 5, although there are a vast number of
studies for the kNN query on uncertain databases [32, 34, 25, 3,
7, 30, 28, 16, 19], surprisingly, none of them study the kNN query
on hyperspheres with any dimensionality which we study in this
section.

Let D be a set of N hyperspheres, S1, S2, ..., SN . We define a
kNN query in the context of hyperspheres as follows.

DEFINITION 2 (kNN QUERY). Given a query hypersphere
Sq , a k nearest neighbor (kNN) query of Sq is to find a set of hy-
perspheres in D which are not dominated by Sk wrt Sq where Sk is
a hypersphere in D which has the k-th smallest maximum distance
to Sq .

Note that if there are multiple hyperspheres in D which has the
k-th smallest maximum distance to Sq , all these hyperspheres are
kept in the answer set of this query. Notation Sk in the above def-
inition is applied to each of these hyperspheres. In the following
discussion, we assume that there is only one Sk for ease of discus-
sion. All techniques can be extended easily to the case where there
exist multiple hyperspheres for Sk.

The existing algorithms [26, 15] can be adapted for this kNN
query in the context of hyperspheres. Specifically, these algorithms
have to maintain a best-known list L storing hyperspheres/points
found so far when the algorithms are being executed. This list is

updated when a better hypersphere is found during the execution
process.

Before describing how we maintain the list L in our adapted al-
gorithm, we give the following lemmas first.

LEMMA 9. Let Sq be a query hypersphere and D′ be a subset
of D. Let L be a list of hyperspheres of the kNN query on D′ with
the query hypersphere as Sq and distk be the k-th smallest max-
imum distance of a hypersphere in L to Sq . Given a hypersphere
S ∈ D \D′, if distk is smaller than the minimum distance of S to
Sq , then S is not in the answer set of the kNN query on D′ ∪ {S}
with the query hypersphere as Sq .

PROOF. Let Sk be the hypersphere in L which has the k-
th smallest maximum distance to Sq equal to Sk. Since
distk is smaller than the minimum distance of S to Sq ,
we have MaxDist(Sk, Sq) < MinDist(S, Sq). Thus,
DCMinMax(Sk, S, Sq) is true. By Lemma 2, Dom(Sk, S, Sq)
is true. S is dominated by Sk wrt Sq . Thus, S is not in the answer
set of the kNN query on D′ ∪ {S} with the query hypersphere as
Sq .

The above lemma suggests that given a best-known list L cor-
responding to the answer set of the kNN query on D′ (containing
the hyperspheres accessed so far) with the query hypersphere as
Sq , whenever we access a hypersphere S, if distk is smaller than
the minimum distance of S to Sq where distk is the k-th smallest
maximum distance of a hypersphere in L to Sq , we can prune S
since S is not in the answer set of the kNN query on D′∪{S} (and
even on D).

Based on the traditional rule of pruning used in the literature,
one may think that if distk is larger than or equal to the minimum
distance of S to Sq , S must be in the answer set of the kNN query
on D′ ∪ {S}, which, however, is not always true in our case.

LEMMA 10. Let Sq be a query hypersphere and D′ be a subset
of D. Let L be a list of hyperspheres of the kNN query on D′ with
the query hypersphere as Sq and distk be the k-th smallest max-
imum distance of a hypersphere in L to Sq . Given a hypersphere
S ∈ D \ D′, if distk is larger than or equal to the minimum dis-
tance of S to Sq , it is possible that S is not in the answer set of the
kNN query on D′ ∪ {S} with the query hypersphere as Sq .

PROOF. We show this lemma by constructing an example that
S is not in the answer set of the kNN query on D′ ∪ {S} with the
query hypersphere as Sq .

Let k = 1. Consider a two-dimensional space containing three
hyperspheres, Sk, Sq and S. Let rk, rq and r be the radii of Sk, Sq

and S, respectively. Let ck, cq and c be the centers of Sk, Sq and S,
respectively. Besides, rq > rk and r is near to zero. Suppose that
the centers of these hyperspheres are along a horizontal line where
(1) the distance between cq and ck is larger than rq + rk, (2) ck
along the line segment between cq and c, (3) the distance between
ck and c is equal to rk+δ where δ is a very small constant. Figure 7
shows these hyperspheres. Let D′ = {Sk}.

In this example, we can verify that distk (which is equal to
Dist(cq, ck) + rq + rk) is larger than or equal to the minimum
distance of S to Sq (which is equal to Dist(cq, ck)− rq + rk + δ).
Besides, ∀q ∈ Sq, ∀a ∈ Sk, ∀s ∈ S : Dist(a, q) < Dist(s, q).
This implies that Dom(Sk, S, Sq) is true. S is dominated by Sk

wrt Sq . Thus, S is not in the answer set of the kNN query on
D′ ∪ {S} with the query hypersphere as Sq .

According to the above lemma, it is possible that S is not in
the answer set of the kNN query on D′ ∪ {S} with the query hy-
persphere as Sq if distk is larger than or equal to the minimum



distance of S to Sq . In this case, in order to determine whether
S is in the answer set, we have to check whether Sk dominates S
wrt Sq where Sk is a hypersphere in L which has the k-th smallest
maximum distance to Sq .

Now, based on the above lemmas, we are ready to describe how
we adapt these existing algorithms to our kNN query as follows.
LetA be one of the existing algorithms. BeforeA is executed, L is
initialized to ∅. Whenever A determines a hypersphere S which is
a potential candidate to be inserted intoL, it performs the following
steps.

• If the number of hyperspheres maintained in L is smaller
than k, it inserts S into L.

• Otherwise, it performs the following steps. There are at least
k hyperspheres in L. Let distk be the k-th smallest max-
imum distance between Sq and a hypersphere in L. Let
distmax and distmin be the maximum distance between S
and Sq , and the minimum distance between S and Sq , re-
spectively. It performs different steps under different cases
based on distk.

– Case 1: distmax ≤ distk.
In this case, it inserts S into L. It removes each hy-
persphere S′ in L such that Sk dominates S′ wrt Sq

where Sk is the new hypersphere in L which has the
k-th smallest maximum distance to Sq .

– Case 2: distmin ≤ distk < distmax.
We check whether Sk dominates S wrt Sq . If yes, it
prunes S. Otherwise, it inserts S into L.

– Case 3: distmin > distk.
It prunes S.

According to the above two lemmas, it is easy to verify the cor-
rectness of the above adapted algorithm of A.

THEOREM 3. The adapted algorithm of A returns the optimal
answer for the kNN query.

7. EMPIRICAL STUDIES
Four real datasets were used in our experiments, namely NBA,

Color, Texture and Forest. NBA is a data set downloaded from
the NBA official website containing Great NBA Players’ techni-
cal statistics from 1960 to 2001. NBA has 17,265 points with 17
dimensions. Color and Texture are two datasets each of which con-
tains 68,040 image features (or points in our context) extracted
from a Corel image collection. Color is 9-dimensional and Tex-
ture is 16-dimensional. Forest is a dataset containing 82,012
10-dimensional points that was derived from US Forest Service
(USFS) Region 2 Resource Information System (RIS) data. For
each point in the real dataset, we generated a corresponding hy-
persphere by using the point as the center of the hypersphere to
be generated and sampling a real number with Gaussian distribu-
tion N (μ, σ) as the radius of the hypersphere. μ is user parameter
which will be studied in our experiments and σ is set to μ/4 by
default.

Synthetic datasets were also used in our experiments. We gen-
erated a dataset containing N hyperspheres in the d-dimensional
space as follows. Firstly, we generated N d-dimensional points
as the centers of the hyperspheres to be generated by sampling d
coordinates for each point. The sampled coordinates follow the
Gaussian distribution with its mean equal to 100 and its standard
deviation equal to 25. Secondly, for each data point generated, we

Parameter Values
Average radius value (μ) 5, 10, 50, 100
No. of hyperspheres (N ) 20k, 60k, 100k, 140k, 180k

Dimensionality (d) 2, 4, 6, 8, 10
Parameter k for kNN 1, 10, 20, 30

Table 2: Parameter settings for synthetic datasets

constructed a hypersphere with its center as this point and its radius
as a real number sampled similarly as for the real datasets. In our
experiments, we study the effects of data size N , dimensionality d
and parameter μ. The settings of these factors are shown in Table 2
where the default values are shown in bold.

All algorithms were implemented in C/C++ and ran on a CentOS
linux server with a 2.66GHz processor and 4GB memory.

In the following, we conducted experiments on the hypersphere
problem in Section 7.1 and on the kNN problem in Section 7.2.

7.1 Hypersphere Dominance
In this part, we study five methods, namely Hyperbola, MinMax,

MBR, GP and Trigonometric, for the hypersphere dominance prob-
lem defined in Section 2. Specifically, for each reported exper-
iment, we created a workload containing 10,000 random queries
each involving three hyperspheres Sa, Sb and Sq selected from the
dataset randomly, and ran the algorithm 10 times. We took the av-
erage results as the final reported results.

We used three measures, namely execution time, precision and
recall. Execution time means the running time of the algorithm.
Precision and recall are defined as follows. We used the results
(i.e., “true” or “false”) returned by Hyperbola as ground truth
(note that Hyperbola is the only algorithm which is both cor-
rect and sound). The precision of an algorithm is defined to be
TP/(TP + FP ) where TP and FP correspond to the number
of “true positives” and the number of “false positives” of this al-
gorithm, respectively, when a workload of 10,000 queries is per-
formed. Note that an algorithm which is correct has its precision
always equal to 100%. The recall of an algorithm is defined to be
TP/(TP + FN) where TP is as defined above and FN corre-
spond to the number of “false negatives” of this algorithm when a
workload of 10,000 queries is performed. Note that an algorithm
which is sound has its recall always equal to 100%.

Effects of Ave. Radius μ. The results on the real dataset NBA are
shown in Figure 8. Consider the results of execution time in Fig-
ure 8(a). We notice that MinMax runs the fastest, followed by GP,
Hyperbola, MBR, and Trigonometric. Consider the precision re-
sults in Figure 8(b). They show that all algorithms except Trigono-
metric have their precision always equal to 100%, which verified
our theoretical analysis that all algorithms except Trigonometric
are correct. Besides, Trigonometric has its precision worse and
worse when μ increases. Consider the recall results in Figure 8(c).
Only Hyperbola and Trigonometric have their recall always equal
to 100%, which verified our theoretical analysis that only Hyper-
bola and Trigonometric are sound.

Effects of Dimensionality (d). The results are shown in Figure 9(a)
(execution time), Figure 9(b) (precision) and Figure 9(c) (recall).
We have the following observations. First, each algorithm has its
running time slightly increase when the dimensionality increases.
This could be easily explained by the fact that each algorithm in-
volves some distance computations whose cost grows with the di-
mensionality. Second, consistent with the results shown in Fig-
ure 8, Hyperbola runs slightly slower than MinMax and GP (the
reason is probably that MinMax simply computes only two dis-
tances, namely the maximum one and the minimum one, which is
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Figure 8: Effects of the Ave. Radius μ for the Dominance problem (NBA)
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Figure 9: Effects of the Dimensionality d for the Dominance problem (Synthetic)

cheap and GP always does the computations in the 2D space only
(since in case of a higher dimensional space, it transforms the space
to a 2D one)), but it runs faster than both MBR and Trigonometric
(the reason is probably that MBR involves an additional adaption
step and Trigonometric involves some trigonometric computations
which are costly). Third, again, it shows that Hyperbola is the only
algorithm that is both correct and sound.

Experiments on Real Datasets. The results are shown in Fig-
ure 10. Consider the results of execution time in Figure 10(a). As
could be noticed, the same pattern found on the synthetic datasets,
i.e., MinMax is the fastest, followed by GP, Hyperbola, MBR and
Trigonometric, could be found in the real datasets as well. The
results of precision (in Figure 10(b)) and those of recall (in Fig-
ure 10(c)) verify that Hyperbola is the only algorithm that is both
accurate and sound.

Additional Experiments. This part includes some additional ex-
periments. First, we conducted experiments on synthetic datasets in
a high-dimensional space. Specifically, we vary the dimensionality
with 25, 50, 75, 100, and Figure 11 shows the results of the execu-
tion time. Second, we conducted experiments on synthetic datasets
where we generated the coordinates and also the radii by using dif-
ferent distributions. We consider two distributions, namely Gaus-
sian distribution and Uniform distribution. Gaussian distribution is
used by default in our experiments and our method of generating
the coordinates (and also the radii) using Gaussian distribution have
been explained in the beginning part of Section 7. Our method of
generating the coordinates (and also the radii) using Uniform dis-
tribution is to first specify a range and then sample a value from the
range randomly. The ranges we used for generating coordinates and
radii are both [0, 200]. We denote by “G-U” if the generated coor-
dinates follow Gaussian distribution and the generated radii follow
Uniform distribution. The meanings for “G-G”, “U-G” and “U-U”
are defined in an analogous way. Figure 12 shows the results of
execution time. We notice that Hyperbola and Trigonometric fa-
vor the datasets in Gaussian distribution slightly and while other
algorithms are not affected by the distributions significantly.

7.2 kNN Query
We index our dataset with an SS-Tree [31] which is a popular

index for hyperspheres. We adopted two well-known strategies
for searching over the SS-Tree we built, namely DF [26] which
is a depth-first search strategy and HS [15] which is a best-first
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search strategy. We adopted the Hypherboloa, MinMax, MBR
and GP for performing the hypersphere dominance operator in-
volved in the algorithm and denote the corresponding algorithm
by DF(Hyper), DF(MinMax), DF(MBR) and DF(GP) for DF, and
HS(Hyper), HS(MinMax), HS(MBR) and HS(GP) for HS. Note that
we did not adopt Trigonometric for our experiments since it is not
correct which implies some hyperspheres that are among the kNN
could be missed by the algorithms based on Trigonometric.

We used two measures, namely query time and precision. Query
time means the time of answering a kNN query and precision is
defined to be the total number of hyperspheres correctly returned by
the algorithm divided by the total number of hyperspheres returned
by the algorithm. Note that we did not use the recall measure here
since for the kNN problem, we find all hypersheres that correspond
to the kNN of a query hypershphere which means that no “false
negatives” are allowed (i.e., all algorithms have the recall equal to
100%).

Effect of Ave. Radius μ. The results on synthetic datasets are
shown in Figure 13(a) (query time) and Figure 13(b) (precision).
We have the following observations. First, the algorithms based
on MinMax have the smallest query time and those based on other
methods run comparably fast. Second, the algorithms based on Hy-
perbola have the precision consistently equal to 100% and the algo-
rithms based on other pruning methods have the precision always
smaller than 100% (e.g., as low as 40%).

Effect of Parameter k. The results on the synthetic datasets are
shown in Figure 14(a) (query time) and Figure 14(b) (precision).
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Figure 10: Experimental results on real datasets for the Dominance problem
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Figure 14: Effect of k for kNN queries (Synthetic)

We have the following observations. First, the query times of all
algorithms increase when k increases. This is reasonable since a
larger k means that a longer best-known list L has to be maintained
by the algorithm which costs more time. Second, the setting of k
has no clear effect on the precision of the algorithms.

Effect of Data Size (N ). The results are shown in Figure 15(a)
(query time) and Figure 15(b) (precision). We notice that the query
times of all algorithms increase whenN increases and the precision
of all algorithms is not affected by N significantly.

Effect of Dimensionality (d). The results are shown in Fig-
ure 16(a) (query time) and Figure 16(b) (precision). We notice that
the query times of all algorithms increase when d increases and the
precision of all algorithms is not affected by d significantly.

8. CONCLUSION
In this paper, we studied an important problem called the domi-

nance problem, for which we proposed a new method called Hyper-
bola which is optimal for the dominance problem. We also studied
a kNN query which relies on the dominance operator as one of its
components. Finally, we conducted experiments which verified our
methods. One interesting future research direction is to study how
to solve the dominance problem efficiently when the radii of the
hyperspheres change over time and/or when some distance metrics
other than Euclidean distance are adopted.
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APPENDIX

A. NON-OPTIMALITY OF EXISTING DE-
CISION CRITERIA

In this part, we show that neither the GP decision criterion, de-
noted by DCGP (Sa, Sb, Sq), nor the Trigonometric decision cri-
terion, denoted by DCTri(Sa, Sb, Sq), are optimal.

GP decision criterion: The GP decision criterion [22] is cor-
rect and efficient but not sound. We briefly describe the ma-
jor idea of this method/decision criterion. Firstly, it transforms
three d-dimensional points ca, cb and cq into three 2-dimensional
points c′a, c

′
b and c′q with the following transformation. Given a

d-dimensional point x, its transformed 2-dimensional point u is
defined to be a point where (u[1])2 =

∑d−1
i=1 (x[i])

2 and (u[2])2 =
(x[d])2. Note that it is shown in [22] that for any two d-dimensional
points x and y with its two transformed 2-dimensional points x′

and y′, dist(x′, y′) ≤ dist(x, y), which means that dist(x′, y′)

can be regarded as a lower bound on dist(x, y). Based on this
property, this method guarantees that if DCGP (Sa, Sb, Sq) is true,
then Dom(Sa, Sb, Sq) is true. Thus, it is correct. However,
since the pairwise distance dist(x′, y′) between two transformed
2-dimensional points is not exactly equal to the pairwise distance
dist(x, y) between the two corresponding d-dimensional points, it
is possible that DCGP (Sa, Sb, Sq) is false but Dom(Sa, Sb, Sq)
is true. In other words, it is not sound. Detailed description can
be found in [22]. Besides, the time complexity of determining
DCGP (Sa, Sb, Sq) is O(d) [22], which means that it is efficient.

Trigonometric decision criterion: The Trigonometric decision
criterion [12] is sound and efficient but not correct, which is shown
in the lemmas in the following.

Before we show the lemmas, we describe this method. There
are two phases. The first phase is the preprocessing phase. In this
phase, this method finds the optimal value of the variant of the
function for the MMD condition (i.e., the function at the left hand
side of Inequality (7)). Specifically, Inequality (7) can be re-written
as “Minq∈Sq (Dist(cb, q)−Dist(ca, q)− (ra+rb)) > 0”. It de-
fines a function fSa,Sb(q) = Dist(cb, q)−Dist(ca, q)−(ra+rb)
where Sa(Sb) contains the information about ca and ra (cb and
rb), and q is a variable denoting a d-dimensional point. Since
it is difficult to find a nice formula of the derivative of func-
tion fSa,Sb(q), the method defines another function gSa,Sb(q) =
[Dist(cb, q)]

2−[Dist(ca, q)]
2−(ra+rb) whose derivative can be

obtained easily. This function g can be regarded as a variant of the
function for the MMD condition. Note that g is a quadratic function
and thus has two possible optimal values. Based on this function
g, it finds the derivative of this function. It derives a nice formula
FSa,Sb which computes the two possible solutions of the optimal
value of function g based on its derivative in O(d) time. The sec-
ond phase is the query phase. In this phase, the method takes Sa

and Sb as inputs and plugs them into the formula FSa,Sb , finally
computing two possible solutions q1 and q2. Then, it determines
whether one of the following conditions is satisfied: (1) fSa,Sb(q1)
and fSa,Sb(q2) have different signs, and (2) fSa,Sb(q1) = 0 or
fSa,Sb(q2) = 0. If one of the conditions is satisfied, then this
method returns false. Otherwise, it returns true.

LEMMA 11 (NON-CORRECTNESS OF DCTri(Sa, Sb, Sq)).
DCTri(Sa, Sb, Sq) is true does not imply that Dom(Sa, Sb, Sq)
is true.

Proof Sketch: The major idea of the claim in the lemma is that
optimizing g is not equivalent to optimizing f . Thus, it is easy to
give a counter example showing that DCTri(Sa, Sb, Sq) is true but
Dom(Sa, Sb, Sq) is false. A counter example in a 2-dimensional
space can be ca = (20, 8), cb = (8, 10), cq = (16, 16), ra = 0.4,
rb = 0.3 and rq = 0.3.

LEMMA 12 (SOUNDNESS OF DCTri(Sa, Sb, Sq)). If
DCTri(Sa, Sb, Sq) is false, then Dom(Sa, Sb, Sq) is false.

PROOF. Let q1 and q2 are the two solutions of the optimal value
of function g used in the Trigonometric decision criterion. Since
DCGP (Sa, Sb, Sq) is false, we know that one of the following
conditions is satisfied: (1) fSa,Sb(q1) and fSa,Sb(q2) have dif-
ferent signs, and (2) fSa,Sb(q1) = 0 or fSa,Sb(q2) = 0. Since
we know that function f is continuous, there exists a point qo
such that fSa,Sb(qo) = 0. Thus, Inequality (7) is not satisfied.
Dom(Sa, Sb, Sq) is false.

As we described above, the time complexity of determining
DCTri(Sa, Sb, Sq) (in the query phase) is O(d), which means that
this method is efficient.


