
Efficient Algorithms for Optimal Location Queries in Road
Networks

Zitong Chen†, Yubao Liu†, Raymond Chi-Wing Wong‡, Jiamin Xiong†, Ganlin Mai†, Cheng Long‡

†Sun Yat-Sen University, China
‡The Hong Kong University of Science and Technology, Hong Kong, China

ABSTRACT
In this paper, we study the optimal location query problem based on
road networks. Specifically, we have a road network on which some
clients and servers are located. Each client finds the server that is
closest to her for service and her cost of getting served is equal to
the (network) distance between the client and the server serving her
multiplied by her weight or importance. The optimal location query
problem is to find a location for setting up a new server such that the
maximum cost of clients being served by the servers (including the
new server) is minimized. This problem has been studied before,
but the state-of-the-art is still not efficient enough. In this paper,
we propose an efficient algorithm for the optimal location query
problem, which is based on a novel idea of nearest location com-
ponent. We also discuss three extensions of the optimal location
query problem, namely the optimal multiple-location query prob-
lem, the optimal location query problem on 3D road networks, and
the optimal location query problem with another objective. Exten-
sive experiments were conducted which showed that our algorithms
are faster than the state-of-the-art by at least an order of magnitude
on large real benchmark datasets. For example, on our largest real
datasets, the state-of-the-art ran for more than 10 hours but our al-
gorithm ran within 3 minutes only (i.e., >200 times faster).

1. INTRODUCTION
Location-based analysis is very important and prevalent nowa-

days. At present, there are tools for location-based analy-
sis on road networks (http://www.esri.com/software/
arcgis/extensions/networkanalyst). A fast query re-
sponse is expected in an interactive setting of these tools. At the
same time, many mobile devices with limited memory are installed
with various mobile applications for location-based analysis. In
this paper, we study one type of location-based analysis, namely
the optimal location query (OLQ) problem.

Given a set C of clients and a set S of servers in a road network
G = (V,E) where V is a vertex set and E is an edge set, an op-
timal location query (OLQ) is to find a location such that when a
new server is set up at this location, a certain cost function com-
puted based on the clients and servers (including the new server) is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD ’14, June 22 - 27 2014, Snowbird, UT, USA
Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.

optimized. This optimal location query is very important since it
is used as a basic operation in many real applications such as loca-
tion planning, location based service and profile-based marketing
[1, 17, 5].

In [17], the optimal location query problem with the following
cost function is studied. Given a road network, a set of clients and
a set of servers, the cost of serving the the clients is defined to be
the maximum (network) distance from a client to its closest server.
Then, the optimal location query problem which minimizes the
above cost function is called the MinMax query. The intuition of
MinMax query is to optimize the worst-case cost of a client, which
has many applications in real life. For example, in an emergency
scenario, it is often required to optimize the worst-case cost (e.g.,
the worst-case time of getting the ambulance/fire-station/police ser-
vice). An algorithm was designed for the MinMax query in [17],
whose major idea is to first augment the road network by creating
a vertex for each client and each server in the road network and
then partition the augmented road network into sub-networks/sub-
graphs for solving the problem.

However, the algorithm in [17] has several shortcomings as fol-
lows. First, the algorithm relies on an augmented road network
which could be prohibitively large. Specifically, the augmented
road network has the number of its vertices as large as |V |+ |S|+
|C| and the number of its edges as large as |E|+ |S|+ |C|, both of
which become very large when there are a large number of servers
and/or clients. Second, the algorithm has its time complexity of
O((|V |+ |S|+ |C|)2 log(|V |+ |S|+ |C|)) which is prohibitively
expensive. Third, the algorithm involves a partitioning procedure
which heavily depends on the quality of a partition parameter and
an improper setting of the parameter would result in a very long
running time. For example, the experimental results in [17] show
that the running time of the algorithm with an “improper” setting
could be three times longer than that with the “best” setting.

Motivated by the shortcomings of the existing approach in [17],
in this paper, we design an efficient algorithm called MinMax-Alg
which avoids the above shortcomings. Specifically, we make the
following contributions.

Firstly, we propose an efficient algorithm for the optimal loca-
tion query in road networks. The proposed query algorithm is ex-
ecuted on the original road network without generating any new
road network where the number of the vertices to be examined is
equal to |V |. We also present several new pruning techniques based
on the idea of nearest location component (NLC) of the clients,
which can dramatically reduce the algorithm search space. In this
paper, we focus on the query algorithm MinMax-Alg using these
new pruning techniques. The time complexity of our query al-
gorithm is significantly smaller than that of the best-known algo-
rithm [17]. In particular, the time complexity of our MinMax-Alg

is O(γ · |V | log |V |+ |V | · |C| log |C|) where γ is at most |C| and
is usually much smaller than |C| in practice. In our experiments
with the default setting on the SF (San Francisco) real dataset [17]
where |C| is 300k and |E| is 223k, γ is equal to 27.

Secondly, we discuss three extensions to our problem. (1) We
study to find multiple locations (instead of a single location) for
the optimal location query, which has not been studied in the liter-
ature. We show that this problem is NP-hard and propose a greedy
algorithm (GA) for this general problem. (2) We discuss the opti-
mal location query on a three-dimensional (3D) road network [10].
(3) We extend the techniques based on NLC to handle the optimal
location query with another objective.

Thirdly, we conducted extensive experiments to verify the effi-
ciency of our algorithm. Our algorithm is significantly faster than
the best-known algorithm by at least an order of magnitude on the
datasets with large sizes. For example, on our largest datasets,
the best-known algorithm in [17] runs for more than 10 hours but
our algorithm (i.e., MinMax-Alg) runs within 3 minutes only (i.e.,
>200 times faster).

The rest of this paper is organized as follows. Section 2 gives the
problem definition and Section 3 reviews the related work. Sec-
tion 4 introduces our method of building the NLCs of the clients
and Sections 5 introduces our algorithm MinMax-Alg. Sections 6
discusses three extensions of our problem. Section 7 gives the em-
pirical study and Section 8 concludes the paper.

2. PROBLEM DEFINITION
Let G = (V,E) be a road network, and C (S) be a set of clients

(servers) on G. For any edge e = (vl, vr) of G, vl (vr) is the left
(right) vertex of e.

We adopt the network distance metric to define the distance be-
tween two locations on the road network, denoted by d(·, ·). Let
c be a client in C. We denote c’s closest server in S by NNS(c).
Besides, we denote the distance between c and its closest server in
S by c.dist, i.e., c.dist = d(c,NNS(c)). Each client c ∈ C is
associated with a positive weight, denoted by w(c), which denotes
the importance of the client. For example, if c is a residential estate,
then w(c) could be set to the number of residents living at c. We
define the cost value of c, denoted by Cost(c), to be w(c) · c.dist.

The optimal location query (OLQ) [17] problem is to find a lo-
cation such that once a new server is set up at this location, the
maximum cost value of the clients based on the servers (includ-
ing the new server) is minimized. Formally, the OLQ problem is
defined in Problem 1.

PROBLEM 1. Given a road networkG = (V,E), a setC (S) of
clients (servers) onG, the optimal location query problem is to find
a location pwhich minimizes maxc∈C{w(c)·d(c,NNS∪s(p)(c))},
where s(p) denotes the new server located at p. We also call this
problem the MinMax query.

Consider an example of a road network G in Figure 1(a). In this
figure, each line segment corresponds to an edge and each dot cor-
responds to a vertex or a client or a server in the road network. In
this example, there are 7 vertices, namely v1, v2, ..., v7, 3 servers,
namely s1, s2 and s3, and 5 clients, namely c1, c2, ..., c5. The num-
ber near to each line segment in the figure denotes the distance be-
tween the two end-points of the line segment. Since c1 (s3) has the
same location as vertex v1 (v3) in the network, we write “v1/c1”
(“v3/s3”) in the figure.

Given two points p1 and p2 on an edge e = (vl, vr), we define a
point interval on e in the form of [p1, p2] and p1 (p2) is said to be
the start point (end point) of this interval. Note that a point inter-
val is a portion (or a whole portion) of an edge. Suppose that the

(a) G(V,E) (b) NLC(c1)

Figure 1: A Running Example

start point p1 is nearer to the left vertex vl than the end point p2.
We use a number interval to denote this point interval. Specifically,
the number interval for a point interval [p1, p2] is defined to be the
closed real interval [a, b], where a = d(vl, p1) and b = d(vl, p2).
For example, the point interval [p1, v4] on edge (v3, v4) in Fig-
ure 1(b) could be represented by [1, 3] if d(v3, p1) = 1 and
d(v3, v4) = 3. It is easy to verify that given a point interval, we can
derive its corresponding number interval in O(1) time. In the fol-
lowing, we write these two terms, the point interval and the number
interval, interchangeably.

Next, we introduce a key concept used in this paper, which is
called nearest location component (NLC).

DEFINITION 1. For each client c ∈ C, the nearest location
component of c, denoted by NLC(c), is defined to be a set of all
points on the edges in G such that each of these points has its dis-
tance to c at most c.dist. Formally, NLC(c) = {p|d(c, p) ≤
c.dist and p is a point on the edges of G}.

For example, in Figure 1(b), all bold lines correspond to
NLC(c1), where each point along one of these lines has its dis-
tance to c1 at most c1.dist = 6 (note that NNS(c1) is s1 and
thus c1.dist = d(c1, s1) = 6). The number in the bracket near
to the vertex denotes the distance between the vertex and c1. An
edge e is covered by NLC(c) if there exists such a point p along
edge e such that p ∈ NLC(c). For example, NLC(c1) covers the
edges (v1, v2), (v1, v4), (v1, v5), (v3, v4), (v4, v5) and (v5, v7).
Besides, an edge is completely covered by NLC(c) if all points
along the edge are included in NLC(c). For example, the edges
(v1, v2), (v1, v4), (v1, v5), and (v4, v5) are completely covered by
NLC(c1).

Given any point p on an edge in G, if p ∈ NLC(c), then we say
that the client c is attracted by a server to be built at the location p.
For simplicity, we say that c is attracted by p.

For the sake of convenience, we summarize the notations used in
the paper in Table 1.

3. RELATED WORK
We classify the related work into two types, namely optimal

location queries with the non-road network setting (Section 3.1)
and optimal location queries with the road network setting (Sec-
tion 3.2).

3.1 Optimal Location Queries with Non-Road
Network Setting

There are a lot of existing studies on optimal location queries
with the non-road network setting [1, 2, 11, 14, 15, 16, 12, 20, 18]
due to the importance of optimal location queries in real-life appli-
cations. In general, they find a location which optimizes an objec-
tive function in the Lp-norm space. One objective is to maximize
the number of clients attracted. Another objective is to minimize
the average distance between a client and its closest server.

Table 1: Notations
Notation Description
G a road network
V / v the set of vertices/a vertex
E / e the set of edges / an edge
C / c the set of clients /a client
S / s the set of servers / a server
w(c) importance of client c
p a location on the road network
s(p) a server at location p
c.dist the distance between c and its nearest server
Cost(c) the cost value of c
NNS′ (c) the server in S′ nearest to client c
[p1, p2] a point interval on a single edge where p1 and p2 are two

points on this edge
NLC(c) the nearest location component of c
v.esd the edge server distance of v
V N the virtual node
n number of clients in C

NewCost(c, p) the cost of client c after the new server is built at location p
MaxNewCost(p) the greatest cost of a client after the new server is built at p

costo the cost of the optimal solution for the MinMax query
po the optimal location

NLC(c, d) the shrinking NLC
mo the critical number (i.e., the greatest integer in [1, n] such

that the (mo, Cost(cmo))-critical intersection is non-
empty)

(m, C)-critical in-
tersection

the intersection ∩m
j=1NLC(cj , dj) where dj =

C/w(cj) for each j ∈ [1,m]
Θ a set of point intervals representing the (mo, Cost(cmo))-

critical intersection
I a point interval in Θ

I′(= (p′s, p
′
e)) a sub-interval of I whose interior contains no client

Ω a set of piecewise linear functions each of which corresponds
to a client

R the (mo, Cost(cmo+1))-critical intersection
|C′| the greatest number of NLCs covering a point interval in Θ
l the number of clients in the point interval I (which is a por-

tion of an edge)
ls the greatest number of servers along an edge
lc the greatest number of clients along an edge
α the time complexity of constructing the intersection

∩mo
j=1NLC(cj , dj) and checking the emptiness of the in-

tersection
γ the number of clients examined in MinMax-Alg

Inf(p) the influence value of p

The optimal location query, originated from the facility location
problem, also known as location analysis [1, 2, 11, 14], has been
extensively studied in past years. The facility location problem is to
locate the preferred facilities with respect to a given set of clients,
and is shown to be NP-hard. A number of approximation algo-
rithms were developed for the facility location problem. Different
from the facility location problem where the number of all opti-
mal locations is usually limited, in the optimal location query, the
number of all optimal locations could be infinite. This is because
usually, in the facility location problem, a set of a limited number
of possible locations is given but in the optimal location query, this
set can be the whole space (i.e., the set of all possible points on the
road network). Recently, the researchers in the database commu-
nity pay attention to this problem because of its broad applications.

The MaxBRNN problem [1] is to find an optimal region such that
the total number of clients attracted by a new server to be set up is
maximized. An infinite number of optimal points are contained in
the optimal region. A solution with an exponential-time complexity
was presented for the MaxBRNN problem in [1]. The MaxBRNN
problem was also studied in [15] in which the first polynomial-
time complexity algorithm, MaxOverlap, was introduced. Some
variations, such as the extension of the MaxOverlap algorithm in
a three-dimensional space and other Lp-norm metric spaces, were
studied in [16]. Recently, the MaxSegment algorithm, an improved
algorithm for the MaxBRNN problem, was given in [12]. Both the
running time and the storage cost of the MaxSegment algorithm are

significantly smaller than the MaxOverlap algorithm. A general-
ized MaxBRkNN problem [20] was studied in which a client may
have different probabilities to visit different servers and at the same
time, a server is assumed to have different target sets of clients.
Moreover, an approximate method was recently presented for the
MaxBRNN problem in [18].

Besides, the algorithm in [7] finds an optimal location instead of
an optimal region for the L1-norm space. The algorithm in [19]
finds a location which minimizes the average distance from each
client to its closest server when a new server is built at this location.
The algorithm in [2] locates a place for a new server and this loca-
tion can minimize the maximum distance between this new server
and any client. The algorithm in [13] selects a location from a
given set of potential locations for a new server so that the average
distance between a client and its nearest server is minimized. The
algorithm in [4] searches the location of a rectangular region with a
given size such that the sum of the weights of all the points covered
by this region is maximized.

3.2 Optimal Location Queries with Road Net-
work Setting

Recently, Xiao el al. [17] first studied the OLQ problem with
the road network setting and presented an algorithm which is the
state-of-the-art algorithm. Specifically, the algorithm involves the
following five major steps. The first step is to generate a vertex
for each client and a vertex for each server, and include all gen-
erated vertices in the network/graph, resulting in a network with
more vertices. The second step is to split each edge into a num-
ber of sub-edges via all original vertices and all newly generated
vertices which are not located at the end-points of the edges in
the original network, resulting in a network with more edges. As
a result, a larger network is generated. Both the time and space
complexities for generating the new road network areO(M) where
M = max{|V |, |S|, |C|}. In particular, when each client and each
server are not located at the end-points of edges in the original net-
work, the resulting network generated by these algorithms contains
|V |+|S|+|C| vertices and |E|+|S|+|C| edges. The third step is to
partition the large network into a number of smaller sub-networks.
The time complexity of this step is O(M logM). The fourth step
is to execute a search algorithm based on each of the sub-networks
in order to find the local optimal locations within each of these
sub-networks. Note that the time complexity of the search algo-
rithm on a sub-network isO(|E′| · |V ′′| log |V ′′|) where |E′| is the
number of edges and |V ′′| is the total number of vertices visited by
the search algorithm. Since the search algorithm on a sub-network
sometimes requires to search some vertices in other sub-networks
“close” to this sub-network, |V ′′| can be larger than the number of
vertices in this sub-network. Note that |V ′′| is at most the number
of vertices in the resulting network (i.e., |V | + |S| + |C|). In our
experiments with the default setting on the SF real dataset where
|C| is 300k, |S| is 1k and |V | is 174k, |V ′′| is equal to 475k (which
is exactly equal to |V | + |S| + |C|, the worst-case scenario). It
is easy to verify that the overall time complexity of this step is
O((|E|+|S|+|C|)·|V ′′| log |V ′′|) after we execute this search al-
gorithm on all sub-networks (since there are (|E|+|S|+|C|) edges
in the resulting network). Note that |V ′′| = O(|V | + |S| + |C|)
and |E| = O(|V |) in the road network setting (e.g., a vertex is
adjacent to at most 8 edges (3 edges on average) in the real road
network SF used in our experiments). The time complexity of this
step is O((|V | + |S| + |C|)2 log(|V | + |S| + |C|)). The fifth
step is to scan through all local optimal locations obtained in each
sub-network (from the previous step) and find the global optimal
locations in the whole network. In conclusion, it is easy to ver-

ify that the overall time complexity of the best-known algorithm is
O((|V |+|S|+|C|)2 log(|V |+|S|+|C|)) in the worst case, which
is prohibitively expensive.

Besides, as described in Section 1, this algorithm has some short-
comings. In this paper, we propose a new algorithm framework
with significant improvements for the OLQ problem. In particular,
the time complexity of our algorithm is O(γ · |V | log |V | + |V | ·
|C| log |C|) where γ is at most |C|.

4. BUILDING NLCS
This section introduces a method of building NLC(c) for a

client c which involves three steps: (i) determine the shortest dis-
tance from each vertex v to its nearest server, denoted by v.dist
(Section 4.1), (ii) determine the shortest distance from each client c
to its nearest server, denoted by c.dist (Section 4.2), and (iii) build
NLC(c) based on c.dist (Section 4.3).

4.1 Finding Shortest Distance Between a Ver-
tex and Its Closest Server

In this section, we describe how we determine the shortest dis-
tance from each vertex v to its nearest server in the network. A
naive method is to perform a search (e.g., the Dijikstra’s algorithm)
from each vertex v and find the closest server to v in the network.
This method is time-consuming since it has to execute the search
process |V | times independently. Thus, the total time complexity
of this method is O(|V |2 log |V |) since the Dijikstra’s algorithm
takes O(|V | log |V |) time [6]. In the following, we introduce an
efficient method which runs the search process (i.e., the Dijkstra’s
algorithm) once only, and thus it has the overall time complexity of
O(|V | log |V |).

We construct a new node called the virtual node, denoted by
V N , in the network G, and then execute the Dijkstra’s algorithm
starting from this virtual node V N once only. We guarantee that the
distance between each vertex v and its closest server (i.e., v.dist)
is exactly equal to the shortest distance between V N and v.

Before we describe how we construct this virtual node, we in-
troduce a concept called “edge server distance”. For each vertex
v, the edge server distance of v, denoted by v.esd, is defined to
be the distance from v to the server closest to v along one of the
edges adjacent to v if there is a server on one of these edges, and
∞ otherwise.

Consider v7 in our example as shown in Figure 1(a) for illustra-
tion. There are 3 edges adjacent to v7 (i.e., (v7, v5), (v7, v3) and
(v7, v6)). Only edges (v7, v5) and (v7, v3) contain servers, namely
s1 and s3, respectively. Thus, the edge server distance of v7 (i.e.,
v7.esd) is equal to min{d(v7, s1), d(v7, s3)} = min{4, 7} = 4.
Similarly, we can compute the edge server distances of the other
vertices. We have v2.esd = 3, v3.esd = 0, v4.esd = 3,
v5.esd = 2 and v6.esd = 7. Since there is no server on the edges
adjacent to v1, v1.esd is equal to∞.

Now, we are ready to describe how to construct the virtual node
V N . We create a virtual node V N in the network. For each vertex
v where v.esd 6=∞, we create an edge (V N, v) and set the length
of this edge to be v.esd. Next, we take the road network in Figure
1(a) as an example to illustrate the detailed construction.

Consider our running example again. Since only v2, v3, v4, v5,
v6 and v7 have their edge server distances not equal to∞, we cre-
ate a virtual node V N in the road network as shown in Figure 2.
Specifically, the virtual node V N is connected with the vertices v2,
v3, v4, v5, v6 and v7 only. Their corresponding edge lengths are
3, 0, 3, 2, 7 and 4, respectively.

It is easy to verify that the time of computing v.esd for all ver-
tices is O(|V |) (remember that |E| = O(|V |) in a road network

G = (V,E)).
Next, we execute the Dijkstra’s algorithm, which takes V N as a

source node, to traverse all vertices in G. After each vertex is tra-
versed, the shortest distance from V N to each vertex v, d(V N, v),
can be obtained.

The idea of using the concept of “virtual node” was studied in
[8] and this concept has the following property.

PROPERTY 1. Consider the network G with the virtual node
V N . Then, for each vertex v in G (except the virtual node),
v.dist = d(V N, v).

By Property 1, we can know that v.dist = d(V N, v). Since
the Dijkstra’s algorithm takes O(|V | log |V |) time [6], finding the
shortest distances between all vertices and their closest servers (i.e.,
v.dist for all v ∈ V) takes O(|V | log |V |) time.

4.2 Finding Shortest Distance Between a
Client and Its Closest Server

Now, we know how to compute v.dist efficiently for each vertex
v. In this section, we compute c.dist efficiently for each client c.
Similar to Section 4.1, a naive method of computing c.dist for all
clients c takesO(|C| · |V | log |V |) time. In this section, we present
an efficient method for this, which takes O(|C| · ls) time where ls
is a small number at most |S|, based on the distance information
computed in the previous section with the help of the following
lemma.

LEMMA 1. Consider a client c on an edge e = (vl, vr). If there
is no server on e, then c.dist = min{d(c, vl) + vl.dist, d(c, vr) +
vr.dist}. Otherwise, c.dist = min{d(c, s′), d(c, vl) +
vl.dist, d(c, vr)+vr.dist} where s′ is the closest server to c along
e.

It is easy to verify the correctness of the above lemma. Let ls
be the greatest number of servers along an edge. The running time
of finding c.dist for one client c takes O(ls) time, and the overall
running time of finding c.dist for all clients c takesO(|C|·ls) time.

4.3 Building the NLC of a Client
In this section, we discuss how to find the NLC of client c based

on c.dist computed in the previous section.
Algorithm 1 shows the algorithm for finding the NLC of a client

c (i.e.,NLC(c)). In this algorithm, we use the Dijkstra’s algorithm
to traverse the vertices in the network in ascending order of their
shortest distances to c (Line 1). Besides, we introduce a variable
I which is used to store NLC(c) and is being updated during the
execution of the algorithm. In the algorithm, I is to store a set of
point intervals representing NLC(c).

Initially, I is set to ∅ (Line 2). Then, the algorithm processes
each vertex v (Line 3) with two different cases (based on the pro-
cessing ordering of the Dijkstra’s algorithm). Case 1: d(v, c) ≤
c.dist (Line 4). In this case, for each edge e′ adjacent to v, in the
form of (v, v′) (Line 5), we check whether v′ is processed before
(Line 6). If yes, then we know that the whole edge e′ is inside
NLC(c). Thus, the point interval with the end points of e′ (i.e., v
and v′), which is equal to [v, v′], is created and is inserted into I
(Line 7).

Case 2: d(v, c) > c.dist (Line 9). In this case, for each edge e′′

adjacent to v, in the form of (v, v′′) (Line 10), we check whether
d(v′′, c) ≤ c.dist (Line 11).

• If yes, then we know that a portion of the edge e′′ containing
v′′ is inside NLC(c). Next, we check whether c is on edge

Figure 2: The road network
with a virtual node V N

(a) The (2, Cost(c2))-critical intersection (b) The (2, Cost(c3))-critical intersection

Figure 3: Example 1

Algorithm 1 Algorithm for Finding the NLC of a Client c (i.e.,
NLC(c))
1: use Dijkstra’s algorithm to traverse the vertices in ascending order of their dis-

tances to c
2: I ← ∅
3: for each vertex v to be processed do
4: if d(v, c) ≤ c.dist then
5: for each edge e′ adjacent to v, in the form of (v, v′), do
6: if v′ is processed before then
7: I ← I ∪ {[v, v′]};
8: else
9: // d(v, c) > c.dist
10: for each edge e′′ adjacent to v, in the form of (v, v′′), do
11: if d(v′′, c) ≤ c.dist then
12: if c is on edge e′′ then
13: I ← I∪{[v′′, p]} where p is a point along the edge e′′ such that

d(c, p) ≤ c.dist and d(c, p) is the largest.
14: else
15: I ← I ∪ {[v′′, p′]} where p′ is a point along the edge e′′ such

that d(c, v′′) + d(v′′, p′) ≤ c.dist and d(v′′, p′) is the largest.
16: else
17: if c is on edge e′′ then
18: I ← I ∪ {[q, q′]} where q and q′ are two points along the edge

e′′ such that d(c, q) = c.dist, d(c, q′) = c.dist and q 6= q′ if
c.dist 6= 0 and q = q′ otherwise.

19: else
20: regard e′′ as deleted
21: return I

e′′ (Line 12). If c is on edge e′′ (Line 12), then we know
that there exists a point p on the edge e′′ such that d(c, p) ≤
c.dist and d(c, p) is the largest. We create a point interval
{[v′′, p]} and insert it into I (since each point in this point
interval is in NLC(c)) (Line 13). If c is not on edge e′′,
we know that there exists a point p′ on the edge e′′ such that
d(c, v′′) + d(v′′, p′) ≤ c.dist and d(v′′, p′) is the largest.
We create a point entry {[v′′, p′]} and insert it into I (since
each point in this point interval is in NLC(c)) (Line 15).

• If no, then we check whether c is on the edge e′′ (Line 17).
If c is on the edge e′′, then we know that a portion of the
edge e′′ is inside NLC(c). We also know that there exist
two points along the edge e′′, namely q and q′, such that
d(c, q) = c.dist, d(c, q′) = c.dist and q 6= q′ if c.dist 6= 0
and q = q′ otherwise. We create a point entry {[q, q′]} and
insert it into I (since each point in this point interval is in
NLC(c)) (Line 18). If c is not on the edge e′′, we know that
no point along the edge e′′ is inside NLC(c). we can regard
e′′ as deleted (Line 20).

Finally, we return I as an output, representing NLC(c) (Line
21). Note that if the intervals in I are overlapping, then they are
merged into one interval that covers these intervals accordingly.

Consider our running example. All the point intervals included
in NLC(c1) are marked in bold lines in Figure 1(b).

The major time cost of Algorithm 1 comes from Line 1
(i.e., Dijkstra’s algorithm). Since Dijkstra’s algorithm takes
O(|V | log |V |) time, Algorithm 1 takes O(|V | log |V |) time and
O(|V |) space.

5. ALGORITHM MINMAX-ALG
In this section, we propose an algorithm called MinMax-Alg for

the MinMax query. The algorithm is developed based on a concept
called “critical number”. With the concept of “critical number”,
we can determine the optimal location for the MinMax query ef-
ficiently. Let po be the optimal solution (position) for the Min-
Max query. Let costo be the cost of the optimal solution for
the MinMax query. That is, costo = minp∈G[maxc∈C w(c) ·
d(c,NNS∪{s(p)}(c))]. Here, “p ∈ G” means that p is an arbitrary
point along an edge in G.

Before we give the definition of “critical number”, we give an as-
sumption and some concepts first. We assume that different clients
have different costs. This assumption allows us to avoid several
complicated, yet uninteresting, boundary cases. Obviously, when
the assumption is not fulfilled, we can always apply an infinitesi-
mal perturbation to the positions of some clients or servers, to break
the tie of the costs of two clients. Due to the tininess of perturba-
tion, query results from the perturbed datasets should be as useful
as those from the original datasets.

Suppose that there are n clients, namely c1, c2, ..., cn, and all
clients are ordered in descending order of their costs. Without
loss of generality, assume that Cost(c1) > Cost(c2) > ... >
Cost(cn).

Next, we introduce two concepts, namely “shrinking NLC” and
“critical intersection”.

DEFINITION 2 (SHRINKING NLC). Given a client c and a
value d where 0 ≤ d ≤ c.dist, the shrinking NLC of c with re-
spect to d, denoted by NLC(c, d), is defined to be {p|d(c, p) ≤ d
and p ∈ NLC(c)}.

Consider two examples. The first example is shown in Figure 3.
In this example, there are 3 clients, namely c1, c2 and c3, on a sin-
gle edge. Here, Cost(c1) > Cost(c2) > Cost(c3). Assume that
w(ci) = 1 for each i ∈ [1, 3]. For the ease of illustration, we do not
show the servers in the figure. In both sub-figures of Figure 3, we
show NLC(c1), NLC(c2) and NLC(c3). In Figure 3(a), if d1 =
Cost(c2)/w(c1) and d2 = Cost(c2)/w(c2), then NLC(c1, d1)
is a shrinking NLC of c1 with respect to d1 and NLC(c2, d2)
is a shrinking NLC of c2 with respect to d2. Similarly, in Fig-
ure 3(b), if d1 = Cost(c3)/w(c1) and d2 = Cost(c3)/w(c2),
then NLC(c1, d1) is a shrinking NLC of c1 with respect to d1 and
NLC(c2, d2) is a shrinking NLC of c2 with respect to d2.

The second example is shown in Figure 4. This example is ex-
actly the same as the first example except that c3.dist is smaller
and thus both Cost(c3) and NLC(c3) are smaller. Similarly, we
obtain the shrinking NLCs as shown in Figure 4(a) and Figure 4(b).

DEFINITION 3 (CRITICAL INTERSECTION). Given an inte-
ger m ∈ [1, n] and a non-negative real number C, the (m, C)-
critical intersection is defined to be ∩m

j=1NLC(cj , dj) where dj =
C/w(cj) for each j ∈ [1,m].

Consider the first example. In Figure 3(a), I is the
(2, Cost(c2))-critical intersection. In Figure 3(b), R is the

(a) The (2, Cost(c2))-critical intersection (b) The (2, Cost(c3))-critical intersection
Figure 4: Example 2

(2, Cost(c3))-critical intersection. Besides, it is easy to verify that
the (3, Cost(c3))-critical intersection is empty (since NLC(c3)
does not overlap with NLC(c1, d1) and NLC(c2, d2)). Consider
the second example. in Figure 4(a), I is the (2, Cost(c2))-critical
intersection. In Figure 4(b), the (2, Cost(c3))-critical intersection
is empty. Besides, it is easy to verify that the (3, Cost(c3))-critical
intersection is empty.

Now, we are ready to define the critical number as follows.

DEFINITION 4 (CRITICAL NUMBER). The critical number
denoted by mo is defined to be the greatest integer ∈ [1, n] such
that the (mo, Cost(cmo))-critical intersection is non-empty.

Consider the first example. We know that both the
(1, Cost(c1))-critical intersection and the (2, Cost(c2))-critical
intersection are non-empty, but the (3, Cost(c3))-critical intersec-
tion is empty. Thus, the critical number mo is equal to 2 in the first
example. Consider the second example. Similarly, we deduce that
the critical number mo is equal to 2.

Now, we are ready to give the following lemma which gives us
hints of how to find the optimal location po with the help of the
critical number mo.

LEMMA 2. There exists an optimal location po in the
(mo, Cost(cmo))-critical intersection.

PROOF. Given a client c and a location p in the
(mo, Cost(cmo))-critical intersection, we denote NewCost(c, p)
to be the cost of client c after a new server is set up at p. Given a
location p in the (mo, Cost(cmo))-critical intersection, we denote
MaxNewCost(p) = maxc∈C NewCost(c, p). Since if we set
up a new server at any location in ∩mo

j=1NLC(cj , Cost(cmo)/wj)
(which is non-empty), the greatest cost of a client is at most
Cost(cmo) (i.e., MaxNewCost(p) ≤ Cost(cmo)). Thus,
for any location p in the (mo, Cost(cmo))-critical intersec-
tion, since costo ≤ MaxNewCost(p), we conclude that
costo ≤MaxNewCost(p) ≤ Cost(cmo).

Consider two cases. Case 1: costo = Cost(cmo). For
any location p in the (mo, Cost(cmo))-critical intersection, since
costo ≤ MaxNewCost(p) ≤ Cost(cmo), we deduce that
MaxNewCost(p) = Cost(cmo). Thus, there exists an optimal
location in the (mo, Cost(cmo))-critical intersection.

Case 2: costo < Cost(cmo). Since costo =
MaxNewCost(po), we have MaxNewCost(po) <
Cost(cmo). Next, we show that po is in the (mo, Cost(cmo))-
critical intersection. We prove by contradiction. Sup-
pose that po is not in the (mo, Cost(cmo))-critical in-
tersection. There exists an integer jo ∈ [1,mo] such
that po is outside NLC(cjo , Cost(cmo)/w(cjo)). Thus,
d(po, cjo) > Cost(cmo)/w(cjo). That is, d(po, cjo) · w(cjo) >
Cost(cmo). Then, we have costo = MaxNewCost(po) ≥
NewCost(cjo , po) = min{Cost(cjo), d(po, cjo)·w(cjo)}. Since
Cost(cjo) ≥ Cost(cmo) and d(po, cjo) · w(cjo) > Cost(cmo),
we deduce that costo ≥ Cost(cmo). That leads to a contradiction
that costo < Cost(cmo). This lemma also holds.

The above lemma is a powerful tool which helps us design a
two-step algorithm called MinMax-Alg for the MinMax query as
follows.

• Step 1 (Finding Critical Number mo): The first step is to
find the critical number mo.
• Step 2 (Finding Optimal Solution): The second step is to

find the optimal solution in the (mo, Cost(cmo))-critical in-
tersection.

Step 1 and Step 2 will be described in detail in Section 5.1 and
Section 5.2, respectively.

5.1 Step 1: How to Find Critical Number mo

Finding mo involves the following steps. First, we initialize a
variable m to 2. Then, we can check whether the (m,Cost(cm))-
critical intersection is non-empty. If yes, we increment m by 1 and
continue the above process. If no, we can terminate the process and
know that mo is equal to m− 1.

5.2 Step 2: How to Find Optimal Location in
Critical Intersection

In Section 5.2.1, we introduce a basic method to find the opti-
mal location in the critical intersection, and in Section 5.2.2, we
introduce an enhancement on the basic method.

5.2.1 Basic Algorithm
We want to find the optimal location in the (mo, Cost(cmo))-

critical intersection (which is an intersection among multiple
shrinking NLCs of clients, namely c1, c2, ..., cmo). Note that this
intersection can be represented by a set Θ of point intervals. Next,
we describe how to find the particular location in a single point
interval in Θ with the smallest cost.

Consider a point interval I = [ps, pe]. Note that I is completely
covered by the shrinking NLCs of clients, namely c1, c2, ..., cmo .
Consider the shrinking NLC of a particular client c.

Note that point interval I is a portion (or the whole portion)
of a single edge and thus is on a single edge. This edge may
contain l clients. Suppose that there are multiple clients, namely
c′1, c

′
2, ..., c

′
l, in the point interval I, where c′i is the i-th closest

client to ps for each i ∈ [1, l]. Thus, we split the whole interval
into a number of sub-intervals, [ps, c

′
1], [c′1, c

′
2], ..., [c′l, pe]. Note

that each of the sub-intervals (of the point interval I on this single
edge) is also completely covered by the shrinking NLC of c. Be-
sides, there is no client on the interior of each sub-interval (on this
single edge).

Consider a sub-interval I′ = [p′s, p
′
e] of I. Let p be an arbitrary

point along I′. We know that d(c, p) can be expressed as follows.

d(c, p) = min{d(c, p′s) + d(p′s, p), d(c, p′e) + d(p′e, p)}

Note that when p changes along I′, d(c, p) changes linearly. We
can regard that the form of the above equation is a piecewise linear
function, containing two components (one is the linear equation
“d(c, p′s)+d(p′s, p)” and the other is the linear equation “d(c, p′e)+
d(p′e, p)” where p′s, p′e and c are fixed). For example, Figure 5(a)
shows that when p changes (along I′ = [p′s, p

′
e] where d(p′s, p

′
e) =

6), d(c, p) varies. In the figure, the x-axis denotes d(p′s, p) where
p′s is fixed and p is varying, and the y-axis denotes d(c, p) where
c is fixed. There are two line segments in the figure. Similarly,

(a) One client c (b) One client c′ (c) Multiple clients
Figure 5: Piecewise Linear Function denoting d(c, p) where c is a particular client and p is an arbitrary point

Figure 5(b) shows the piecewise linear function for another client
c′ (which contains one line segment in the figure only).

We conclude that for a particular client c where the shrinking
NLC of c completely covers the sub-interval I′, we have a piece-
wise linear function on I′. For another client c′ where the shrinking
NLC of c′ completely covers I′, we have another piecewise linear
function on I′. There may exist multiple clients whose shrinking
NLCs completely cover I′. For instance, Figure 5(c) shows the
piecewise linear functions on I′ for 3 clients, c1, c2 and c3, whose
shrinking NLCs completely cover I′. In this figure, the piecewise
functions for c1, c2 and c3 involve 2 line segments, 1 line segment
and 1 line segment, respectively.

Now, we are ready to describe how we find the particular location
on I′ with the smallest cost. This involves two sub-steps.
• The first sub-step is to find the upper envelope of all piece-

wise linear functions involved. Given a set Ω of piecewise
linear functions, the upper envelope of Ω is defined to be the
function which takes x as input and outputs the maximum
value of all piecewise linear functions taking this value x as
input. For example, in Figure 5(c) with 3 piecewise linear
functions, the bolded line corresponds to the upper envelope
of the set of these 3 functions. Finding the upper envelope
can be done in O(m logm) time [9] where m is the total
number of piecewise linear functions involved.
• The second sub-step is to find the minimum value in this

upper envelope, which denotes the particular location on I′
with the smallest cost. In Figure 5(c), pointC corresponds to
the minimum value in this upper envelope. This sub-step can
be done together with the first sub-step when we construct
the upper envelope.

We have just described how to find the optimal location for a
single sub-interval I′ of a given point interval. Given a point inter-
val I, we can obtain the optimal location with its cost for each of
the sub-intervals of I and find the one with the smallest cost as the
optimal location for the point interval I. Since we have a number
of point intervals in Θ, we can obtain the optimal location with its
cost for each point interval in Θ and find the one with the smallest
cost as the optimal location in the critical intersection.
Time Complexity Analysis: Next, we analyze the time complexity
of finding the optimal location in the critical intersection. Consider
a sub-interval I′ of a point interval I in Θ. Let |C′| be the great-
est number of (shrinking) NLCs covering a point interval I. Note
that |C′| is at most |C| and in practice, it is significantly smaller
than |C|. Besides, the sub-interval I′ is associated with at most
|C′| piecewise linear functions. The time complexity for both the
first sub-step and the second sub-step for a single sub-interval I′
is O(|C′| log |C′|). Let lc be the greatest number of clients along
an edge. Similarly, lc is at most |C| and is usually much smaller
than |C|. Since there are O(lc) sub-intervals of a single point in-
terval, the time complexity of processing a single point interval is
O(lc · |C′| log |C′|). Since there are |Θ| point intervals, the time
complexity of the method of finding the optimal location in the crit-
ical intersection isO(|Θ|·lc ·|C′| log |C′|). Note that |Θ| is at most
|E| and is usually much smaller than |E|.

5.2.2 Further Enhancement
In the previous section, we described a method finding the op-

timal location in the critical intersection, which takes O(|Θ| · lc ·
|C′| log |C′|) time. Although it is an efficient method using the
concept of “piecewise linear functions”, in this section, we want to
introduce an additional step to find a special region R and check
whetherR is empty, which can be done in O(α) time where α is a
positive integer extremely smaller than |E|. In practice, in our SF
real dataset, α is at most 390 but |E| is 223k. If R is non-empty,
then we return any location inR (or simply the whole regionR) as
the optimal location, which can be done in O(α) time. Otherwise,
we keep executing the method introduced in the previous method
to find the optimal location in the critical intersection.

We first give some concepts and a lemma, and then introduce the
additional step.

DEFINITION 5. Suppose that mo < n. We define R to be the
(mo, Cost(cmo+1))-critical intersection.

Consider the first example where mo = 2. Figure 3(b) shows an
example of R which is non-empty. Consider the second example
where mo = 2. Figure 4(b) shows another example of R which is
empty.

Next, we give a lemma based onR.

LEMMA 3. Suppose that mo < n. If R 6= ∅, then (1) costo =
Cost(cmo+1) and (2) when a new server is set up at any location
in R, the maximum cost of a client is equal to costo. If R = ∅,
then Cost(cmo+1) < costo ≤ Cost(cmo).

PROOF. We prove the lemma with three parts.
First, we prove that in both cases ofR, we haveCost(cmo+1) ≤

costo ≤ Cost(cmo). Consider costo ≥ Cost(cmo+1). We prove
by contradiction. Suppose that costo < Cost(cmo+1) which fur-
ther implies that costo < Cost(cj) for j = mo + 1,mo, ..., 1. It
could be verified that po ∈ NLC(cj , costo/wj) for j = mo +
1,mo, ..., 1 since the cost of cj would be updated from Cost(cj)
to costo by the definition of po and costo. Besides, we know that
NLC(cj , costo/wj) is covered by NLC(cj , Cost(cmo+1)/wj)
for j = mo + 1,mo, ..., 1 since costo < Cost(cmo+1). There-
fore, we know that po ∈ NLC(cj , Cost(cmo+1)/wj) for j =
mo + 1,mo, ..., 1 which leads to a contradiction that mo is the
critical number.

Consider costo ≤ Cost(cmo). This is obvious since if we set
up a new server at any location in ∩mo

j=1NLC(cj , Cost(cmo)/wj)
(which is not empty), the maximum cost of a client is at most
Cost(cmo) (the cost of cj for j = 1, 2, ...,mo would be updated
from Cost(cj) to a value at most Cost(cmo) and the cost of cj
for j = mo + 1,mo + 2, ..., n which is originally smaller than
Cost(cmo) would not be increased).

Second, we show that in the case of R 6= ∅, we have costo ≤
Cost(cmo+1) which further implies that costo = Cost(cmo+1)
(by using the results in the first part of the proof). This is obvious
since if we set up a new server at any location inR, the maximum
cost of a client is at most Cost(cmo+1) (the cost of cj for j =

1, 2, ...,mo would be a value at most Cost(cmo+1) and the cost
of cj for j = mo + 1,mo + 2, ..., n which is originally at most
Cost(cmo+1) would not be increased).

Third, we show that in the case of R = ∅, we have costo >
Cost(cmo+1) by contradiction. Suppose costo ≤ Cost(cmo+1).
We have two cases. Case 1: costo < Cost(cmo+1). This leads
to a contradiction according to the results in the first part of this
proof. Case 2: costo = Cost(cmo+1). In this case, by using
the fact that po ∈ NLC(cj , costo/wj) for j = 1, 2, ...,mo, we
know that po ∈ ∩mo

j=1NLC(cj , Cost(cmo+1)/wj) which leads to
a contradiction sinceR = ∅.

Consider the first example where mo = 2. Since R is non-
empty, by the above lemma, we know that the optimal cost costo is
equal to Cost(c3) and when a new server is set up at any location
inR, the maximum cost of a client is equal to costo. Consider the
second example where mo = 2. Since R is empty, by the above
lemma, we know that Cost(c3) < costo ≤ Cost(c2).

The above lemma suggests that if we know that R is non-
empty, then we immediately return the whole region R as the fi-
nal answer; otherwise, we proceed to find a particular point in the
(mo, Cost(cmo))-critical intersection so that the cost of the final
solution with the new server set up at this location is equal to costo.

Now, we are ready to give the description of Step 2 based on the
above lemma.
• Step 2(a): If mo < n, then we do the following. We check

whether region R is empty or not. If not, we immediately
return region R. If yes, we find the optimal location in the
(mo, Cost(cmo))-critical intersection.
• Step 2(b): If mo = n, then we find the optimal location in

the (mo, Cost(cmo))-critical intersection.

Time Complexity Analysis: Consider Step 2(a). Let α be the time
complexity of constructing the intersection and checking the empti-
ness of the intersection. In general, α can be measured by the num-
ber of disconnected components for an intersection between two
NLCs. In our experiments, this number is at most 390� |E| un-
der the default setting on the SF real dataset where |V | is 174k,
|E| is 223k, |C| is 300k and |S| is 1k. After the emptiness of the
intersection is checked, we perform different steps with two dif-
ferent sub-cases. The first sub-case is that R is non-empty. This
sub-case can be handled easily since we just need to return R.
The second sub-case is that R is empty. The steps in this sub-
case take O(|Θ| · lc · |C′| log |C′|) time. In conclusion, the time
complexity of Step 2(a) is O(α + |Θ| · lc · |C′| log |C′|). Simi-
larly, the time complexity of Step 2(b) is O(|Θ| · lc · |C′| log |C′|).
Thus, the overall time complexity of the two-step algorithm is
O(α+ |Θ| · lc · |C′| log |C′|).

5.3 Pseudo-Code
We present the pseudo-code of MinMax-Alg in Algorithm 2.

EXAMPLE 1. Let us take the road network in Figure 1 for
illustration. Assume that the client weights are the following:
w(c1)=2, w(c2)=3, w(c3)=1.5, w(c4)=1 and w(c5)=0.5. Note
that c1, c2, c3, c4 and c5 have their nearest servers as s1, s2, s2, s2
and s1, respectively. We know that c1.dist = 6, c2.dist =
7, c3.dist = 2, c4.dist = 8 and c5.dist = 8 (Line 1). Thus,
Cost(c1) = w(c1) · c1.dist = 2 · 6 = 12. Similarly, we have
Cost(c2) = 21, Cost(c3) = 3, Cost(c4) = 8 and Cost(c5) = 4.
Then, we have Cost(c2) > Cost(c1) > Cost(c4) > Cost(c5) >
Cost(c3). The client ordering is c2, c1, c4, c5 and c3 (Line 2).

In Step 1 (Lines 3-13), variable m is updated incrementally.
When m = 1, we know that the first client in the ordering is

Algorithm 2 Algorithm MinMax-Alg
1: find c.dist for each client c
2: sort all clients c1, c2, ..., cn in descending order of their cost values
3: // Step 1 (Findingmo)
4: form = 1 to n do
5: C ← Cost(cm)
6: for i = 1 tom do
7: di ← C/w(ci)
8: Inew ← ∩m

i=1NLC(ci, di)

9: if Inew = ∅ then
10: break;
11: else
12: I ← Inew

13: mo ← m
14: // Step 2 (CheckingR)
15: ifmo < n then
16: C′ ← Cost(cmo+1)

17: for i = 1 tomo + 1 do
18: d′i ← C

′/w(ci)

19: R ← ∩mo
i=1NLC(ci, d

′
i)

20: ifR 6= ∅ then
21: returnR (or any point inR)
22: else
23: po ← the location with the smallest cost in the intersection I (represented

by a set of point intervals)
24: return {po}
25: else
26: po ← the location with the smallest cost in the intersection I (represented by

a set of point intervals)
27: return {po}

c2 and thus C = Cost(c2) = 21 (Line 5) and thus Inew =
NLC(c2, 21/3) (Line 8). Since Inew is non-empty, variable I is
updated to Inew (Line 12) and variable mo is updated to m(= 1)
(Line 13).

When m = 2, we know that the second client is c1 and thus
C = Cost(c1) = 12 (Line 5). Similarly, we have Inew =
NLC(c2, 12/3) ∩ NLC(c1, 12/2) (Line 8). Since Inew is non-
empty, variable I is updated to Inew (Line 12) and mo is updated
to m(= 2) (Line 13).

When m = 3, we know that the third client is c4 and thus
C = Cost(c4) = 8 (Line 5). Similarly, we have Inew =
NLC(c2, 8/3)∩NLC(c1, 8/2)∩NLC(c4, 8/1) (Line 8). Since
Inew = ∅, we break the iterative step in Step 1 (Line 10) and
do not update variable I and mo. Thus, finally, we have I =
NLC(c2, 4) ∩NLC(c1, 6) and mo = 2.

Consider Step 2. We know that mo + 1 = 3. Since mo < n
(Line 15), and the third client in the ordering is c4, variable C′ is
set to Cost(c4)(= 8). Since the first client and the second client
in the ordering are c2 and c1, respectively, variableR is updated to
NLC(c2, 8/3) ∩ NLC(c1, 8/2). Since R 6= ∅, R is returned as
the solution by the algorithm.

THEOREM 1. MinMax-Alg returns the optimal solution for the
MinMax query.

PROOF. It is easy to verify the correctness of MinMax-Alg with
Lemma 2 and Lemma 3.

Time and Space Complexities: Consider the time complexity of
Algorithm 2. The major cost of the operations from line 1 to line
13 of this algorithm comes from computing c.dist for all clients
(Line 1), sorting (Line 2) and NLC building (Line 8). Comput-
ing c.dist for all clients take O(|C| · ls) time. The sorting step
takes O(|C| log |C|) time. Let γ be the number of the clients ex-
amined in the algorithm. Note that γ ≤ |C|. Since each NLC
building takes O(|V | log |V |) time, the total NLC building for all
clients examined takes O(γ · |V | log |V |) time. The overall time
complexity of the operations from line 1 to line 13 of this algo-
rithm is O(|C| · ls + |C| log |C| + γ · |V | log |V |). As described

previously, the operations from line 14 to line 27 of this algorithm
(i.e., how to find optimal location in the critical intersection) takes
O(α+ |Θ| · lc · |C′| log |C′|) time. Thus, the total time complexity
of this algorithm isO(|C| · ls + |C| log |C|+γ · |V | log |V |+α+
|Θ|·lc ·|C′| log |C′|). Since ls, lc and α are small constants in prac-
tice, |Θ| = O(|V |) and |C′| = O(|C|), the time complexity can
be simplified as O(γ · |V | log |V |+ |V | · |C| log |C|). It is easy to
verify that the storage complexity of this algorithm isO(|V |+ |C|)
(since this algorithm includes the storage space for running the Di-
jkstra’s algorithm (i.e., O(|V |)) and the storage space for storing
c.dist of all clients c (i.e., O(|C|))).

6. EXTENSION
In this section, we discuss three extensions to the optimal loca-

tion query problem. In Section 6.1, we study to find multiple loca-
tions (instead of a single location) for the optimal location query.
In Section 6.2, we discuss the optimal location query on a three-
dimensional (3D) road network. In Section 6.2, we extend the tech-
niques based on NLC to handle the optimal location query with a
new objective called MaxSum.

6.1 Multiple-Location MinMax Query
The existing optimal location query usually finds one optimal

location in the road network. In practice, we sometimes want to
find multiple locations and set up a server at each of these loca-
tions. Specifically, given a positive integer k, we want to find k
locations, namely p1, p2, p3, ..., pk, in the road network such that
maxc∈C w(c)·(d(c,NNS∪{s(p1),s(p2),...,s(pk)}(c)) is minimized.
We call this problem the multiple-location MinMax query problem.
To the best of our knowledge, this problem has not been studied in
the literature.

Next, we show that this problem is NP-hard and then propose a
greedy algorithm (GA) for this problem.

THEOREM 2. The multiple-location MinMax query problem is
NP-hard.

PROOF. We show the NP-hardness of our problem by trans-
forming an existing NP-complete problem called the exact cover
by 3-sets to our problem.
Exact Cover by 3-Sets (XC3S): Given a positive integer q, a setX
of 3q elements and a set C of size 3 subsets of X , does there exist a
subset C′ of C such that each element in X is in exactly one of the
set in C′?

In order to show the NP-hardness of our problem, we have
to give a decision version of our problem as follows. Given
a set Y of points, we define U(Y) to be maxc∈C w(c) ·
(d(c,NNS∪{s(p)|p∈Y }(c)).
Multiple-Location MinMax Query/Problem (MLMMQ): Given
(1) a set S of servers, (2) a set C of clients where each client c in C
is associated with a weight w(c) which is a positive integer, (3) a
road network G = (V,E) where V is a vertex set and E is an edge
set, (4) a positive integer k, and (5) a non-negative real number H ,
does there exist k points, namely p1, p2, ..., pk, on edges of G such
that U({p1, p2, ..., pk}) ≤ H?

We transform problem XC3S to our problem MLMMQ as fol-
lows. Firstly, we create vertices as follows. For each element
e ∈ X , we create a vertex ve. We initialize a variable A to ∅.
For each set a in C, we create a vertex va and insert it into A. Be-
sides, we create a vertex vo. All vertices created form the vertex
set V . Secondly, we create edges as follows. For each element e
in X , we create an edge (vo, ve) and set its weight to 2. For each
set a in C and each element e in a, we create an edge (ve, va) and

set its weight to 1. All edges created form the edge set E. Thirdly,
we create clients and servers as follows. For each element e in X ,
we create a client ce with its weight equal to 1 and put it at vertex
ve. All clients created form the client set C. Besides, we create a
server so and put it at vertex vo. Only server so forms the server
set S. Fourthly, we set k to q and H to 3q.

Since H is equal to 3q and k is equal to q, we deduce that the k
positions to be found, namely p1, p2, ..., pk, must be at the vertices
in A so that U({p1, p2, ..., pk}) is at most H . It is easy to see that
this transformation can be constructed in polynomial time. It is also
easy to verify that when the problem is solved in the transformed
MLMMQ, the original XC3S problem is also solved. Since XC3S
is an NP-complete problem, the MLMMQ problem is NP-hard.

Since this problem is NP-hard, we propose a greedy algorithm
(GA), a heuristic-based method, for this problem which involves
three steps. The first step is to execute MinMax-Alg (i.e., Algo-
rithm 2) based on the current set S of servers for finding an optimal
location for a new server. The second step is to insert the new server
into S. The third step is an iterative step which executes the first
step and the second step iteratively until k new servers are found.

6.2 Optimal Location Query on 3D Road Net-
work

In some cases, location-based analysis can be performed on a
three-dimensional (3D) road network such as the road network in a
3D map. In general, a 3D road network [10] can be modeled as an
undirected graphG3D = (V3D, E3D) with a vertex (edge) set V3D

(E3D). A vertex in V3D has the coordinates in a 3D space. An edge
in E3D has its left vertex and its right vertex. Clients and servers
are located on the edges of the 3D road network. Usually, each
location in the 3D road network can correspond to the longitude,
latitude and height of this location.

Similar to the 2D road network discussed before, the 3D road
network is also an undirected graph in which each vertex is asso-
ciated with a small number of edges. Thus, the proposed MinMax
query algorithm (i.e., Algorithm 2) originally designed for the orig-
inal optimal location query on the 2D road network and the GA
algorithm (the algorithm described in Section 6.1) originally de-
signed for the multiple-location MinMax query problem on the 2D
road network can be easily extended to handle the original opti-
mal location query and the new multiple-location MinMax query
problem on the 3D road network.

6.3 Optimal Location Query with the Max-
Sum objective

In this section, we study a new objective MaxSum for the optimal
location query problem which is to find a location p in the network
such that

∑
c∈C w(c) · (d(c,NNS(c)) ≥ d(c, p)) is maximized

where (· ≥ ·) returns 1 if it is true and 0 otherwise. We call the op-
timal location query problem with the MaxSum objective the Max-
Sum query. There are many applications for this MaxSum query.
Consider that C and S denote a set of residential estates and a set
of convenience stores, respectively. Different convenience stores
have their competitive relationship. Assume that the customers in
a residential estate would be more interested in visiting a conve-
nience store based on their distances. The MaxSum query returns
all locations for a new convenience store such that if a new store is
built at any of these locations, it would attract the greatest possible
number of customers.

The best-known method proposed by [17] for the MinMax query
can also be adapted for the MaxSum query. Details can be found in
[17]. However, the shortcomings of the adapted method mentioned

(a) time (b) storage

Figure 6: Effect of |S| on SF for the MinMax query

in Section 1 still exist for the MaxSum query. Motivated by this,
we propose an efficient method called MaxSum-Alg which can also
make use of the concept of NLC introduced in Section 4 for the
MinMax query.

Before we introduce MaxSum-Alg, we give a concept called “in-
fluence value” and a lemma, which are used in MaxSum-Alg.

DEFINITION 6. Given a point p on G, the influence value of p,
denoted by Inf(p), is defined to be

∑
c∈Cs.t.p∈NLC(c) w(c).

Based on the above definition, it is easy to verify that the Max-
Sum query is to find the location whose influence value is maxi-
mized.

Next, we generalize the concept of “influence value” from a
point to a point interval. Given a point interval I on an edge of
G, I is said to be consistent if for any two points on I, namely
p and p′, Inf(p) = Inf(p′). Given a consistent point interval I
on an edge of G, I is said to be maximal if there does not exist a
point interval I′′ such that I ⊆ I′′ and I′′ is consistent. Given a
(maximal) consistent point interval I on an edge ofG, the influence
value of I is defined to be Inf(p) where p is a point in I.

Next, we present a lemma which gives hints about where we can
find the optimal solution.

LEMMA 4 (OPTIMAL SOLUTION). Let po be the optimal lo-
cation for the MaxSum query. Let Cpo be a set of clients attracted
by po. If |Cpo | ≥ 2, then po is in the intersection of the NLCs of all
clients in Cpo .

PROOF. Given any optimal location po with the largest in-
fluence value. Assume that all the clients attracted by po are
c1, c2, . . . , cm. Then, we have po ∈ NLC(ci), where 1 ≤ i ≤ m.
Thus, po ∈ ∩m

i=1NLC(ci). That means, any optimal location cor-
responds to the intersection of the NLCs.

The above lemma describes the case when |Cpo | ≥ 2. When
|Cpo | = 1, it is easy to verify that the optimal location is in the
NLC of the client with the greatest weight.

Lemma 4 gives a powerful tool to find an optimal solution.
Specifically, according to Lemma 4, we design the following two-
step algorithm called MaxSum-Alg. The first step is that for each
edge e in E, we find the set of all clients whose NLCs overlap with
e and select the (maximal consistent) point interval on e with the
greatest influence value. The second step is to find the set of all
sub-intervals with the greatest influence value.

It is easy to verify the correctness of this algorithm. This algo-
rithm can be enhanced with some pruning techniques. For the sake
of space, a detailed version of MaxSum-Alg can be found in the full
version of this paper [3].

7. EMPIRICAL STUDIES
In this section, we conducted experiments to show that our al-

gorithms are efficient. In the experiments, we compare our algo-
rithms with the best-known algorithms. We implemented our algo-
rithms in C++ and obtained the source code of the best-known al-
gorithms from the authors (http://www.cs.sjtu.edu.cn/

(a) time (b) storage

Figure 7: Effect of |S| on CA for the MinMax query

(a) time (b) storage

Figure 8: Effect of |C| on SF for the MinMax query

~yaobin/olq/). All the experiments were performed on a
Linux machine with an Intel 3GHz CPU and 4GB memory. The
running time and the storage cost were reported in the experiments.
The experiments include two parts. One part is about the experi-
ments for the MinMax query (Section 7.1). The other part is about
the experiments for the extension to the MinMax query (Section
7.2).

7.1 Experiments for the MinMax Query
In this section, we compared our method, MinMax-Alg, with the

best-known algorithm [17]. Similar to [17], two real road network
datasets, SF and CA, were used in the experiments. SF and CA
are real datasets for the road networks in San Francisco and Califor-
nia, respectively. SF contains 174,955 vertices and 223,000 edges,
andCA includes 21,047 vertices and 21,692 edges. In the real road
network datasets, the max/min/avg number of edges adjacent to a
vertex is equal to 8/1/3, respectively. Most vertices (specifically,
174,231 vertices out of 174,955 vertices) involve at most 4 edges
each. There is only one vertex adjacent to 8 edges. The clients and
servers were generated in the way similar to [17]. Specifically, we
obtained a large number of real building locations in San Francisco
(California) from theOpenStreetMap project. Note that the road
network ofCA has a coarser data granularity and is associated with
fewer building locations. Each building location is projected on one
of the road network edges nearest to this building. Then, we ran-
domly sampled those locations in SF (CA) as servers and clients.
The clients and the servers are stored in two separate lists. Each
client is associated with a weight generated randomly from a Zipf
distribution with a skewness parameter α > 1. By default, α is set
to be∞ and this means that the weight of each client is equal to 1.

The other default settings are as follows. The number of servers
and the number of clients for SF (CA) are equal to 1,000 (250) and
300,000 (40,000), respectively. Note that the best-known method
[17] has an input parameter called the partition parameter θ which
is used to determine a set of vertices randomly picked from the
graph to generate a number of subgraphs of G. As shown in [17],
the best-known algorithm has the best performance when θ is set to

(a) time (b) storage

Figure 9: Effect of α for the MinMax query

(a) time (b) storage

Figure 10: Effect of |S| on SF for the multiple-location MinMax
query

(a) time (b) storage

Figure 11: Effect of |C| on SF for the multiple-location Min-
Max query

1‰ which is also the default setting here.
In the experiments, we study the effects of |S|, |C| and α.

Effect of |S|: We study the effect of |S| on the SF dataset in Figure
6(a) and Figure 6(b). In Figure 6(a), MinMax-Alg is faster than the
best-known method by at least an order of magnitude. In partic-
ular, the time of MinMax-Alg is extremely small and is less than
10 seconds in most cases. This is because the number of clients
examined by MinMax-Alg is very small and thus MinMax-Alg can
find the solution quickly. Besides, the best-known method has to
generate additional vertices for clients and servers in the road net-
work, which increases the search space a lot and thus slows down
the whole algorithm. Besides, the time of MinMax-Alg decreases
and then increases. This is because the time of MinMax-Alg de-
pends on two factors. The first factor is the time of building the
NLCs of all clients and the second factor is the time of process-
ing servers/clients. When |S| is very small, the NLC of each client
becomes larger and thus, the first factor outweighs the second fac-
tor, which increases the overall time of MinMax-Alg. When |S|
becomes larger, the second factor dominates the first factor and
thus the time of MinMax-Alg increases with |S|. Similarly, the
time of the best-known method is large when |S| is small. This
is because the search space examined by the best-known method is
larger when |S| is smaller. In Figure 6(b), the memory consumption
of MinMax-Alg is lower than that of the best-known method since
the best-known method has to maintain a larger search space com-
pared with MinMax-Alg. Similarly, Figure 7(a) and Figure 7(b)
show the experimental results about the effect of |S| on the CA
dataset. Similar trends can also be found in this dataset but with a
shorter time and a lower memory consumption of each algorithm
since CA is smaller. When |S| is very small, the large memory con-
sumption of MinMax-Alg (in Figure 7(b)) could be explained by
the fact that large storage is needed to store the set of point inter-
vals representing the NLCs of all clients and that of the best-known
method is because of its the large search space.
Effect of |C|: We study the effect of |C| on the SF dataset in Figure
8(a) and Figure 8(b). As shown in Figure 8(a), MinMax-Alg is
faster than the best-known method. The time of the best-known
method increases with |C|. The time of MinMax-Alg decreases
and then increases when |C| increases. The decrease trend can be
explained by the fact that the first factor (the time of building NLCs)
dominates the second factor (the time of processing servers/clients)
and the increase trend is due to that the second factor outweighs the
first factor. For the sake of space, the results about the effect of |C|
on the CA dataset can be found in the full version of the paper [3]

(a) time (b) storage

Figure 12: Effect of |C| on 3D for the MinMax query

(a) time (b) storage

Figure 13: Effect of |S| on 3D for the multiple-location Min-
Max query

and the pattern is similar to that on the SF dataset.

Effect of α: The experimental results about the effect of α can be
found in Figure 9(a) and Figure 9(b). These two figures show that
the time and the memory consumption of MinMax-Alg for the SF
dataset and the CA dataset are not sensitive to α.

Results on Large Datasets: We observed that the total number of
all real buildings in San Francisco in theOpenStreetMap project
is more than 10 million. Thus, we also conducted experiments on
massive datasets for the real road networks in San Francisco where
the number of clients (servers) is 10 million (250). The best-known
algorithm performance is much worse due to its poor pruning ef-
fect. However, our algorithm is still efficient in this case. For ex-
ample, the query time of the best-known algorithm is more than 10
hours but the query time of our algorithm is within 3 minutes. Due
to the limit of space, the details are not shown.

7.2 Experiments for Extensions
In this section, we give some experimental results about the ex-

tensions described in Section 6. In the following, for the sake of
space, we only show the experimental results on the SF dataset.
The results on the CA dataset could be found in the full version of
our paper [3].

Multiple-Location MinMax Query: In this section, we study the
performance of the GA algorithm for the optimal multiple-location
query. The experimental results of the effect of |S| on the SF
dataset with different values of k can be found in Figure 10(a) and
Figure 10(b). In Figure 10(a), similar to the original MinMax query
when |S| is small, the time of GA is large. When |S| becomes
larger, the time of GA increases slightly. Besides, when k is larger,
the time of GA increases slightly. In Figure 10(b), similarly, we
have a larger memory consumption of GA when |S| is small. Be-
sides, the memory increases slightly with |S|. Since the memory
consumption of GA is independent of k, the memory consumption
of GA is the same for different values of k.

The experimental results about the effect of |C| on the SF dataset
can be found in Figure 11(a) and Figure 11(b).

MinMax Query on 3D Road Network: In this section, we
study our extension on a three-dimensional (3D) road net-
work. The 3D road network adopted in the experiment is
the three-dimensional (3D) road network dataset downloaded
from https://archive.ics.uci.edu/ml/datasets/
3D+Road+Network+(North+Jutland,+Denmark). The
3D road network dataset was generated based on a 2D road network
in North Jutland, Denmark. Each location point in the 3D road net-

(a) time (b) storage

Figure 14: Effect of |C| on 3D for the multiple-location Min-
Max query

(a) time (b) storage

Figure 15: Effect of |S| on SF for the MaxSum query

work includes its longitude, latitude and height values. The 3D road
network includes more than 90,000 edges and 180,000 vertices. In
this dataset, there are more than 400,000 ground points located on
the edges of the 3D road network which can be regarded as clients
or servers. We randomly sampled points from these ground points
in the 3D road network dataset as servers and clients.

We conducted the experiments for the original MinMax query on
the 3D road network. Figure 12(a) and Figure 12(b) show the time
and the memory consumption of the methods when |C| increases.
In Figure 12(a), similarly, MinMax-Alg performs more efficiently
than the best-known method. Besides, when |C| increases, the time
of MinMax-Alg decreases. Figure 12(b) shows a similar trend as
the one based on the 2D road network.

We also conducted experiments for the multiple-location Min-
Max query on the 3D road network. The experimental results of
the effect of |S| on the 3D dataset are shown in Figure 13(a) and
Figure 13(b). The experimental results of the effect of |C| on the
3D dataset are shown in Figure 14(a) and Figure 14(b).
MaxSum Query: In this part, we study the performance of algo-
rithms for the MaxSum query on the SF dataset. We compared
our MaxSum-Alg with the best-known algorithm. The experimen-
tal results of the effect of |S| are shown in Figure 15(a) and Figure
15(b). In Figure 15(a), MaxSum-Alg perform more efficiently than
the best-known method since MaxSum-Alg uses effective NLC-
based pruning techniques to speed up the MaxSum query process
but the best-known method has to explore a large search space. Be-
sides, similar experimental results of the effect of |C| are shown in
Figure 16(a) and Figure 16(b).
Summary. For the MinMax query, our algorithm, MinMax-Alg, is
faster than the best-known algorithm by at least one order of mag-
nitude on the benchmark datasets with large sizes. In particular,
the MinMax query and the MaxSum query can be answered within
several seconds in most cases. The storage of our algorithm is also
small and often requires less than 10MB.

8. CONCLUSIONS
In this paper, we propose a new algorithm framework based on

the idea of nearest location component for the optimal location
query in the context of road networks. We present an efficient al-
gorithm, namely MinMax-Alg, for the optimal location query. We
also discuss three extensions to the optimal location query. We
conducted extensive experimentst whose results showed that our
algorithms are more efficient than the best-known method. In the
future, we would like to develop techniques for the optimal location
query with moving clients and servers.

(a) time (b) storage

Figure 16: Effect of |C| on SF for the MaxSum query

Acknowledgements: We are grateful to the anonymous review-
ers for their constructive comments on this paper. The research of
Yubao Liu, Zitong Chen, Jiaming Xiong and Ganlin Mai is sup-
ported by NSFC project no. 61070005. The research of Ray-
mond Chi-Wing Wong and Cheng Long is supported by grant FS-
GRF13EG27.

9. REFERENCES
[1] S. Cabello, J. M. Diaz-Banez, S. Langerman, C. Seara, and

I. Ventura. Reverse facility location problems. In CCCG, 2005.
[2] J. Cardinal and S. Langerman. Min-max-min geometric facility

location problems. In EWCG, 2006.
[3] Z. Chen, Y. Liu, R. C.-W. Wong, J. Xiong, G. Mai, and C. Long.

Efficient algorithms for optimal location queries in road networks
(technical report). In
http://www.cse.ust.hk/~raywong/paper/olq-technical.pdf, 2014.

[4] D.-W. Choi, C.-W. Chung, and Y. Tao. A scalable algorithm for
maximizing range sum in spatial databases. PVLDB, 2012.

[5] M. de Berg, M. van Krefeld, M. Overmars, and O. Schwarzkopf.
Computational Geometry: Algorithms and Applications.
Springer-Verlag, 2000.

[6] E. W. Dijkstra. A note on two problems in connexion with graphs.
NUMERISCHE MATHEMATIK, 1(1):269–271, 1959.

[7] Y. Du, D. Zhang, and T. Xia. The optimal-location query. In SSTD,
2005.

[8] M. Erwig. The graph voronoi diagram with applications. Networks,
36(3):156–163, 2000.

[9] J. Hershberger. Finding the upper envelope of n line segments in
o(nlogn) time. Inf. Process. Lett., 4(33):169–174, 1989.

[10] M. Kaul, B. Yang, and C. S. Jensen. Building accurate 3d spatial
networks to enable next generation intelligent transportation systems.
In MDM, 2013.

[11] J. Krarup and P. M. Pruzan. The simple plant location problem:
Survey and synthesis. European Journal of Operational Research,
12(1):36–57, 1983.

[12] Y. Liu, R. C.-W. Wong, K. Wang, Z. Li, C. Chen, and Z. Chen. A
new approach for maximizing bichromatic reverse nearest neighbor
search. Knowl. Inf. Syst., 36(1):23–58, 2013.

[13] J. Qi, R. Zhang, L. Kulik, D. Lin, and Y. Xue. The min-dist location
selection query. In ICDE, 2012.

[14] B. C. Tansel, R. L. Francis, and T. J. Lowe. Location on networks: A
survey. Management Science, 29(4):498–511, 1983.

[15] R. C.-W. Wong, M. T. Ozsu, A. W.-C. Fu, P. S. Yu, and L. Liu.
Efficient method for maximizing bichromatic reverse nearest
neighbor. PVLDB, 2009.

[16] R. C.-W. Wong, M. T. Ozsu, A. W.-C. Fu, P. S. Yu, L. Liu, and
Y. Liu. Maximizing bichromatic reverse nearest neighbor for lp-norm
in two- and three-dimensional spaces. VLDB J., 2011.

[17] X. Xiao, B. Yao, and F. Li. Optimal location queries in road network
databases. In ICDE, 2011.

[18] D. Yan, R. C.-W. Wong, and W. Ng. Efficient methods for finding
influential locations with adaptive grids. In CIKM, 2011.

[19] D. Zhang, Y. Du, T. Xia, and Y. Tao. Progressive computation of the
min-dist optimal-location query. In VLDB, 2006.

[20] Z. Zhou, W. Wu, X. Li, M. L. Lee, and W. Hsu. Maxfirst for
maxbrknn. In ICDE, 2011.

