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Data cleaning is a long-standing challenge in data management. While powerful logic and statistical methods

have been developed to detect and repair data errors in tables, existing methods predominantly rely on

domain-experts to first manually specify data-quality constraints specific to a given dataset. In this work, we

observe that there is an important class of data-quality constraints that we call Semantic-Domain Constraints,

which can be automatically applied to any tables, without requiring domain-experts to manually specify on a

per-table basis.

We develop a principled framework to systematically learn such constraints from table corpora using

large-scale statistical tests, which can further be distilled into a core set of constraints using our optimization

framework, with provable quality guarantees. Extensive evaluations show that this new class of constraints

can both (1) directly detect errors on real tables in the wild, and (2) augment existing data-cleaning techniques

as a new class of complementary constraints. Our code and data are available in https://github.com/qixuchen/

AutoTest for future research.
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1 INTRODUCTION

Data cleaning is a long-standing challenge in the data management community. While there is a

long and fruitful line of research that developed powerful techniques using data-quality constraints

(e.g., FD, CFD, etc.) to detect and repair data errors in tables [11, 16, 25, 35, 35, 41, 55, 67], existing

methods largely depend on domain-experts to first specify data-quality constraints that are specific

to a given table, before data-cleaning algorithms can be performed (while constraint discovery
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Fig. 1. Data cleaning feature for non-technical end-users in Excel. Each automatically detected data-quality

issue in user table is shown as a “suggestion cards” on the side-pane (right), which users only need to review

and accept. [This link] gives an end-to-end demo of how users can stay in control while leveraging capabilities

like SDC to clean data automatically.

methods also exist, they are mainly intended to discover candidate rules that still require humans

to verify [10, 17, 23, 29, 66]). We term this class of sophisticated and powerful approaches as

“expert-driven data cleaning”.

Fig. 2. Real examples of table columns, each representing a distinct “semantic domain” (annotated in the

column header). Each column 𝐶𝑖 has a real data error (which may be a typo, or semantically incompatible

value), that is detected by a corresponding “semantic domain constraint” 𝑟𝑖 in Table 1, which are constraints

automatically learned from running Auto-Test.

While such expert-driven approaches to data cleaning are extremely powerful, when experts are

available to inspect each table and define relevant constraints, we observe that there is an emerging

class of “end-user data-cleaning” use cases that aim to democratize data-cleaning for the average

non-technical users, by working out-of-the-box and without requiring experts to be involved.

For example, in end-user spreadsheet tools such as Microsoft Excel [6] and Google Sheets [5],

that are used by billions of non-technical users, there is a growing need to automatically detect

and repair data errors in user tables out-of-the-box, without requiring users to define constraints or

provide labeled data first.
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Table 1. Example Semantic-Domain Constraints (SDCs), instantiated using CTA-classifiers (in 𝑟1, 𝑟2), text-

embedding (𝑟3, 𝑟4), regex-patterns (𝑟5, 𝑟6), and program functions (𝑟7, 𝑟8), all sharing the same SDC structure.

Each SDC has a (a) Pre-condition: if matching-percentage% of column values in column𝐶 , evaluated using a

domain evaluation function satisfy inner-distance threshold , we recognize that constraint 𝑟 should apply

to column𝐶 , and (b) Post-condition: any value evaluated using the same domain evaluation function satisfy

outer-distance threshold , are predicted as data errors. Each example constraint 𝑟𝑖 in this table would trigger

the detection of a real data error shown in column 𝐶𝑖 of Figure 2. All color-coded components (matching-

percentage, evaluation function, etc.) are parameters to SDC that are learned using Auto-Test.

ID Type Pre-condition 𝑃 : (on what columns should this con-

straint apply)

Post-condition 𝑆 : (what values will be predicted

as errors)

Conf.

𝑟1 CTA 85% column values have their country-classifier

scores > 0.75

values whose country-classifier scores < 0.01 ...

𝑟2 CTA 90% column values have their state-classifier scores

> 0.55

values whose state-classifier scores < 0.05 ...

𝑟3 Embedding 85% column values have their

Glove distances to “january” < 4.0

values whose Glove distances to “january” >

5.5

...

𝑟4 Embedding 80% column values have their

S-BERT distances to “seattle” < 1.2

values whose S-BERT distances to “seattle” >

1.35

0.88

𝑟 ′
4

Embedding 90% column values have their

S-BERT distances to “seattle” < 1.1

values whose S-BERT distances to “seattle” >

1.4

0.93

𝑟5 Pattern 95% column values match pattern “\[a-zA-Z]+\d+”
(match = 1 )

values not matching pattern “\[a-zA-Z]+\d+”
(match = 0 )

...

𝑟6 Pattern 95% column values match pattern “\d+ \[a-zA-Z]+”
(match = 1 )

values not matching pattern “\d+ \[a-zA-Z]+”
(match = 0 )

...

𝑟7 Function 98% column values return true on function

validate_date() (ret = 1 )

values that return false on function

validate_date() (ret = 0 )

...

𝑟8 Function 99% column values return true on function

validate_url() (ret = 1 )

values that return false on function

validate_url() (ret = 0 )

...

Figure 1 shows a screenshot of such a feature in Excel, where automatically detected data-quality

issues are presented as “suggestion cards” on the side-pane, which users can easily review and accept

with the click of a button (without needing the specialized knowledge to define any constraints

first). Google Sheets has a similar feature for error-detection [4]. (Note that users always stay “in

control” in these situations, as they choose to apply or ignore data cleaning suggestions that are

presented to them).

In this work, we study a new class of data-quality constraints previously overlooked in the

literature, which we call Semantic-Domain Constraints (SDC). Importantly, such constraints can be

reliably applied to in a generic fashion to relevant tables, without needing human experts, making

them suitable for both “end-user data cleaning” (e.g., in spreadsheets), and “expert-driven data

cleaning” (as they serve as a new class of constraints to complement existing constraints).

Intuition: leverage “semantic domain” for error detection. The new class of constraints

we study in this work are based on the intuitive notion of “semantic domains”. Specifically, given

any relational table, values in the same column are expected to be homogeneous and drawn from a

“domain” of same semantics, such as date, url, city-name, address, etc. Figure 2 shows an example

table, where the semantics of each column can then be inferred by humans from its values (annotated

in column-headers to assist readability).
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The semantics of a column often implicitly define the “domain” of valid values that can appear

in this column – values falling outside of the “domain” can be picked up by humans as possible

data errors, like the example in Figure 2 would show.

Given that we as humans can reliably infer column semantics, and then use the underlying

“domain of valid values” to identify likely errors in Figure 2 (without needing specialized knowledge

to understand the specifics of a table), the question we ask in this work is whether algorithms

mimic the human intuition, by codifying it into precise, executable data-quality constraints that

can automatically detect data errors.

“Column-type detection”: insufficient for error detection. There is a large literature on the

related topic of “column-type detection”, where the goal is to predict the semantic column type for

a given column 𝐶 , from a pre-defined list of column types (e.g., people-names, locations, phone-

numbers, etc.). The problem has been studied in different settings, leading to a range techniques

tailored to different types of tabular data.

For example, for natural-language-oriented data columns (e.g., people-names, company-names,

address, etc.), this is typically studied as a multi-class classification problem, also known as “column

type annotation” (CTA) [24, 30, 31, 39, 45, 59, 60, 69, 70], where techniques based on machine

learning (ML)-classifiers and text embedding (e.g., Glove [51] and SentenceBERT [54]) are developed

to predict column types.

On the other hand, for machine-generated data columns that are often number-heavy, and with

strong regularity (e.g., ip-address, upc code, time-stamps, etc.), techniques based on (synthesized

and curated) regex-patterns and program-functions, are used to detect such columns in tables [1, 8,

50, 68].

While “column-type detection” is closely related to our goal of using “semantic domain” to detect

errors, we observe that applying column-type detection directly to the task of error detection is

insufficient, because column-type detection focuses on the macro-level prediction of whether a

column𝐶 belongs to a type𝑇 , without being calibrated to make fine-grained, micro-level predictions

of whether a value-instance 𝑣 ∈ 𝐶 must be an error or not in the context of 𝐶 and type 𝑇 .

Auto-Test: Learn reliable “semantic domain constraints”. In this work, we propose a new

class of data-quality constraints called “Semantic-Domain Constraints (SDC)”, that builds upon

and unifies diverse prior techniques for column-type detection, for our new task of error detection.

Table 1 shows examples of SDC constraints. Briefly, each SDC 𝑟 consists of a “pre-condition”

that tests whether a given column 𝐶 is in the relevant semantic domain for 𝑟 to apply, and if so, a

“post-condition” would calibrate the confidence of predicting 𝑣 ∈ 𝐶 as an error, mirroring our fuzzy

intuition of using “semantic domains” for error detection, but codified in precise constraints. The

exact parameters (color-coded components in the table), can be automatically learned from large

table corpora using statistical tests in our proposed Auto-Test, which is the focus of this work.

Note that SDC unifies prior techniques for column-type detection, using an abstraction we call

“domain evaluation functions” (marked in purple in Table 1), as they can be instantiated using

diverse column-type detection, such as CTA-classifiers, text embedding, patterns, and functions,

like shown in Table 1.

Extensive evaluations, using benchmarks with real spreadsheet and relational tables in the wild,

show that Auto-Test can reliably learn high-quality SDC constraints for accurate error-detection.

Overall, our proposed Auto-Test has the following key features:

(1) Consistently more accurate than alternative methods, including language models such as

GPT-4 and even fine-tuned GPT-4 (we give a detailed analysis of why language models may not be

a good fit for the error-detection task in our experiments);
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(2) Generalizable to new and unseen datasets, making it possible to auto-apply SDC on diverse

tables without domain experts;

(3) Extensible to new and different types column-type detection techniques, which are unified in

the same Auto-Test framework;

(4) Highly efficient to detect errors even on large tables, with negligible runtime and memory

overhead compared to alternatives;

(5) Explainable to humans, as our constraints leverage the natural notion of “semantic domains”,

which are not black-box models.

2 RELATEDWORK

Data Cleaning. Data cleaning is a long-standing challenge in the data management community,

with an influential line of research developing constraint-based techniques, including functional

dependency (FD), conditional functional dependency (CFD), denial constraints (DC), etc., to detect

and repair data errors in tables [11, 16, 25, 35, 41, 55, 67]. Differential dependencies [58] and Metric

FD [38] are additional powerful examples that can effectively relax equality constraints using

distance functions.

While existing data cleaning techniques are both flexible and powerful, they generally rely on

complex data-quality constraints (e.g., in first-order logic) to be first defined by experts. Constraint

discovery methods have also been studied, though they are generally designed to discover candidate

rules that still require human experts to verify, in order to ensure accuracy [10, 17, 23, 29, 66].

Outlier detection. There is a large literature of outlier detection methods in the machine

learning and data mining literature, as reviewed in [15, 43, 44], which are conceptually related to

the problem we study. However, classical outlier detection methods predominantly operate only

on local statistical features (e.g., value distribution within a single target column in our context) to

determine outliers, without considering more global corpus-level information (e.g., inferred semantic

types and global data distributions) that our proposed method specifically leverages for the error

detection task on tabular data. We will show in experiments that this gives our method a unique

edge, which substantially outperforms 6 top-performing outlier detection methods (selected based

on a benchmark study [21]).

3 PRELIMINARY: SEMANTIC COLUMN TYPES

Since our SDC constraints are based on “semantic types”, we start with an overview of semantic

types, and techniques to detect them.

Semantic column-type detection methods. As humans, we read tables columns not as string

vs. numbers (primitive types), instead, we interpret the semantics of columns (column types), as

date, url, people-name, address, etc., as shown in Figure 2.

“Column-type detection” refers techniques to identify the “semantic types” for a given column

𝐶 . Diverse techniques have been developed, including ML-classifiers and NL-embedding that are

effective for natural-language data (e.g., people name, address, etc.), and regex-like patterns or

program-functions that are suitable for machine-generated data with syntactic structures (e.g., ip

address, time-stamps, etc.).

We survey existing column-type techniques, and summarize them into four broad categories

below.

(1) CTA-based methods [31, 59, 69]. In Column Type Annotation (CTA), column-type detection is

treated as an ML problem of multi-class classification, that predicts a semantic type from a fixed

set of options. Various ML-classifiers have been developed for this problem, such as Sherlock [31]

classifiers that can detect 78 semantic types (“type-city”, “type-country”, etc., from DBPedia), and

Doduo [59] can further detect 121 semantic types (based on Freebase).

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 133. Publication date: June 2025.



133:6

Qixu Chen, Yeye He, Raymond Chi-Wing Wong, Weiwei Cui, Song Ge, Haidong Zhang, Dongmei Zhang, and Surajit

Chaudhuri

At a conceptual level, a CTA classifier for a semantic type 𝑡𝑖 (say “type-country”)1, can be viewed

as a function 𝑓cta, that given a value 𝑣 (say “Germany”) as input2, can produce a classifier score

CTA-classifier(𝑡𝑖 , 𝑣) in the range of [0, 1], to indicate the likelihood of 𝑣 in type 𝑡𝑖 , written as:

𝑓cta (𝑡𝑖 , 𝑣) = CTA-classifier(𝑡𝑖 , 𝑣)
For example, we may get 𝑓cta (“type-country”, “Germany”) = 0.8, and 𝑓cta (“type-city”, “Germany”) =
0.1, from CTA-classifiers.

Observe that 𝑓cta (𝑡𝑖 , 𝑣) measures “similarity” between type 𝑡𝑖 and value 𝑣 . To unify CTA with

other column-type detection methods, we standardize 𝑓cta into a “distance function”, written as 𝑓 𝑑
cta
:

𝑓 𝑑
cta
(𝑡𝑖 , 𝑣) = 1 − 𝑓cta (1)

With this distance function, we can equivalently write 𝑓 𝑑
cta
(“type-country”, “Germany”) = 0.2, and

𝑓 𝑑
cta
(“type-city”, “Germany”) = 0.9, etc., where a smaller distance indicates a closer association

between value 𝑣 and type 𝑡𝑖 .

(2) Embedding-based methods [51, 54]. Text embedding, such as Glove [51] and SentenceBERT [54],

are popular vector-based representations of text in NLP. In the embedding space, texts with

similar semantic meanings (e.g., month-names like “january”, “feburary”, etc.) tend to cluster closely

together, while those with unrelated meanings (e.g., “january” and color-names like “yellow”) are

positioned further apart [46, 51, 54].

Such embedding provides an effective method to detect semantic types. Specifically, it is natural

to select a “centroid”, say “january”, to represent the semantic-type we want to detect (in this case

month-name), and for a given a column 𝐶 , if most or all values 𝑣 ∈ 𝐶 fall within a small radius of

“january”, we may predict column 𝐶 as type month-name (implied by the centroid “january”).

We view text-embedding as providing another function, 𝑓 𝑑
emb

(𝑐𝑖 , 𝑣), that calculates the “distance”
between a given value 𝑣 , and a centroid 𝑐𝑖 (representing a semantic-type):

𝑓 𝑑
emb

(𝑐𝑖 , 𝑣) = dist(emb(𝑐𝑖 ), emb(𝑣)) (2)

For example, let 𝑐 = “january” be a centroid, we may have 𝑓 𝑑
emb

(𝑐, “february”) = 0.1, indicating

the close proximity of the two values. Alternatively, let 𝑐′ = “yellow” be another centroid (for

color-name), and we may have 𝑓 𝑑
emb

(𝑐′, “february”) = 0.7, showing that “february” is likely not in

the same type as “yellow”. Note that 𝑓 𝑑
emb

is already a distance-function, like 𝑓 𝑑
cta

(Equation 1).

(3) Pattern-based methods [32, 48, 57]. For machine-generated data with clear syntactic structures

(e.g., date, email, timestamp, etc.), regex-like patterns can often detect semantic types [32, 48, 57].

For example, if most values in 𝐶7 of Figure 2 follow the pattern “\d{1,2}/\d{1,2}/\d{4}”, we may

predict the column as type date.

Similar to CTA and embedding, given a semantic type implied by pattern 𝑝𝑖 (e.g.,

“\d{1,2}/\d{1,2}/\d{4}” for date), and a value 𝑣 , we can view the pattern-based detection as

a different “similarity” function 𝑓pat (𝑝𝑖 , 𝑣) between value 𝑣 , and a type represented by 𝑝𝑖 :

𝑓pat (𝑝𝑖 , 𝑣) =
{︄
1, if 𝑣 matches 𝑝𝑖

0, if 𝑣 does not match 𝑝𝑖

We also normalize 𝑓pat (𝑝𝑖 , 𝑣) into a distance-function, 𝑓 𝑑
pat
:

𝑓 𝑑
pat

(𝑝𝑖 , 𝑣) = 1 − 𝑓pat (𝑝𝑖 , 𝑣) (3)

1
While some CTA-classifiers such as Sherlock are framed as multi-class classification, they can be equivalently interpreted

as multiple binary-classifications (one for each type), to simplify our discussions.

2
Note that while some CTA-classifiers take an entire column𝐶 as input, they also produce valid scores for individual values

𝑣 ∈ 𝐶 (since CTA-classifiers need to make predictions for single-value columns such as𝐶′ = {𝑣} too).
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For example, let 𝑝 = “\d{1,2}/\d{1,2}/\d{4}”, 𝑣1 = “12/3/2020” and 𝑣2 = “new facility” in Figure 2.

We have 𝑓 𝑑
pat

(𝑝, 𝑣1) = 0, indicating “distance= 0” between type 𝑝 and a compatible value 𝑣1; and

𝑓 𝑑
pat

(𝑝, 𝑣2) = 1, indicating “distance = 1” between 𝑝 and an incompatible value 𝑣2.

(4) Function-based methods [1, 8, 50, 68]. Finally, various “validation-functions” (in python and

other languages) have been developed, to validate rich semantic types. For example,

credit-card-number and UPC-code are not just random-numbers, but have internal check-sums

and can be validated using special validation-functions
3
(e.g., Luhn’s checksum [2]). Similarly,

date and timestamps can also be validated precisely with functions (in place of simple patterns)
4
.

Such “validation functions” are curated in popular open-source repositories like DataPrep [50] and

Validators [8], to reliably detect semantic column types.

For each validation-function 𝑓𝑖 (to validate a semantic-type), we similarly view it as a function

𝑓fun (𝑓𝑖 , 𝑣), that measures the “similarity” between value 𝑣 and a type represented by 𝑓𝑖 :

𝑓fun (𝑓𝑖 , 𝑣) =
{︄
1, if 𝑓𝑖 (𝑣) returns true
0, if 𝑓𝑖 (𝑣) returns false

which can again be standardized into a distance-function, 𝑓 𝑑
fun

:

𝑓 𝑑
fun

(𝑓𝑖 , 𝑣) = 1 − 𝑓fun (𝑓𝑖 , 𝑣) (4)

where a distance 𝑓 𝑑
fun

(𝑓𝑖 , 𝑣) = 0 indicates that a value 𝑣 is validated true by function 𝑓𝑖 . For example,

let 𝑓𝑖 be the validate_date() function. Then for𝐶7 in Figure 2, we have 𝑓 𝑑
fun

(𝑓𝑖 , “12/3/2020”) = 0, and

𝑓 𝑑
fun

(𝑓𝑖 , “new facility”) = 1.

Observe that different column-type detection methods can have overlapping coverage in the

types they detect – for example, different CTA-classifiers (e.g., from Sherlock, Doduo, Sato, etc.)

all have their own implementations to detect the same semantic type (e.g., type-city). Similarly,

both pattern-based and function-based methods can detect similar types (e.g., timestamps). We do

not attempt to manually determine which method is the best for a type 𝑡 – we simply ingest all

type-detection methods into our framework, which can be reasoned consistently to automatically

select suitable SDC constraints, which is a salient feature of Auto-Test.

Domain-evaluation function. Note that we intentionally characterize all column-type detec-

tion methods as distance functions between value 𝑣 and a type 𝑡 (e.g., 𝑓 𝑑
cta
, 𝑓 𝑑

emb
, 𝑓 𝑑

pat
, and 𝑓 𝑑

fun
in

Equation (1)-(4)), so that they can be reasoned consistently. Specifically, to quantify whether a

value 𝑣 may be “in” vs. “out of” type 𝑡𝑖 for error-detection, we use a notion of “domain-evaluation

functions” that naturally generalizes these distance-functions.

Definition 1. [Domain-evaluation function]. Given a semantic type 𝑡𝑖 defined by an under-

lying column-type detection method (CTA, embedding, etc.), a domain-evaluation function 𝑓 (𝑡𝑖 , 𝑣)
measures the “distance” between type 𝑡𝑖 and value 𝑣 , where 𝑓 can be instantiated as 𝑓 𝑑

cta
, 𝑓 𝑑

emb
, 𝑓 𝑑

pat
,

and 𝑓 𝑑
fun

in Equation (1)-(4).

As a distance function, a smaller 𝑓 (𝑡𝑖 , 𝑣) naturally indicates that 𝑣 is likely “in” the domain of

type 𝑡𝑖 , while a larger 𝑓 (𝑡𝑖 , 𝑣) indicates 𝑣 to be likely “out” of type 𝑡𝑖 .

3
For example, https://yozachar.github.io/pyvalidators/stable/api/card/ for “credit-card-number”, and https://pypi.org/project/

barcodenumber/ for “UPC-code”

4
For example, https://docs.dataprep.ai/user_guide/clean/clean_date.html and https://gurkin33.github.io/respect_validation/

rules/DateTime/ for “date” and “timestamp”.
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4 SEMANTIC-DOMAIN CONSTRAINTS

Given the domain-evaluation functions 𝑓 (𝑡𝑖 , 𝑣) in Section 3, which we will henceforth write

as 𝑓𝑡𝑖 (𝑣) for simplicity, we now describe a new class of data-quality constraints called

Semantic-Domain Constraints (SDC) we propose in this work.

Definition 2. [Semantic-Domain Constraints] A Semantic-Domain Constraint (SDC), de-

noted as 𝑟𝑡 = (𝑃, 𝑆, 𝑐) for semantic type 𝑡 , is a 3-tuple that consists of a pre-condition 𝑃 , a post-

condition 𝑆 , and a confidence-score 𝑐 , where:

• The pre-condition 𝑃 : it determines whether the SDC described in 𝑟 should apply to an input

column 𝐶 , defined as:

𝑃 (𝐶, 𝑓𝑡 , 𝑑𝑖𝑛,𝑚) =
{︄
true if

| {𝑣 |𝑣∈𝐶,𝑓𝑡 (𝑣)≤𝑑𝑖𝑛 } |
| {𝑣 |𝑣∈𝐶 } | ≥ 𝑚,

false otherwise.

When the fraction of values 𝑣 ∈ 𝐶 with domain-evaluation function 𝑓𝑡 (𝑣) no greater than an

inner-distance threshold 𝑑𝑖𝑛 , denoted as
| {𝑣 |𝑣∈𝐶,𝑓𝑡 (𝑣)≤𝑑𝑖𝑛 } |

| {𝑣 |𝑣∈𝐶 } | , is over a matching-percentage𝑚, the

pre-condition 𝑃 evaluates true (in which case 𝑟𝑡 applies to 𝐶), .

• The post-condition 𝑆 : if the pre-condition 𝑃 evaluates true, it will be used to detect values 𝑣 ∈ 𝐶
as errors, whose domain-evaluation function 𝑓𝑡 (𝑣) evaluates to be greater than an outer-distance

threshold, 𝑑𝑜𝑢𝑡 , written as:

𝑆 (𝐶, 𝑓𝑡 , 𝑑𝑜𝑢𝑡 ) = {𝑣 |𝑣 ∈ 𝐶, 𝑓𝑡 (𝑣) > 𝑑𝑜𝑢𝑡 }
• The confidence 𝑐 ∈ [0, 1]: indicates the confidence of the errors detected by the post-condition 𝑆

above.

The pre-condition 𝑃 (𝐶, 𝑓𝑡 , 𝑑𝑖𝑛,𝑚) checks whether a given column𝐶 is in the semantic domain of

the type 𝑡 (before 𝑟𝑡 can apply). Specifically, it uses the domain-evaluation function 𝑓𝑡 (𝑣) for type 𝑡 ,
to calculate the fraction of values 𝑣 ∈ 𝐶 that, when evaluated using 𝑓𝑡 (𝑣), fall within the inner ball

of radius 𝑑𝑖𝑛 (indicating that they belong to type 𝑡 ), written as
| {𝑣 |𝑣∈𝐶,𝑓𝑡 (𝑣)≤𝑑𝑖𝑛 } |

| {𝑣 |𝑣∈𝐶 } | .

The post-condition 𝑆 (𝐶, 𝑓𝑡 , 𝑑𝑜𝑢𝑡 ) would then check whether there are any values 𝑣 ∈ 𝐶 that

fall substantially farther away from the inner ball, to be outside of the outer ball, written as

𝑆 = {𝑣 |𝑣 ∈ 𝐶, 𝑓𝑡 (𝑣) > 𝑑𝑜𝑢𝑡 }. If such values exist in 𝐶 , values in 𝑆 will be predicted as errors, with a

confidence score 𝑐 .

Parameters. Note that three parameters, 𝑑𝑖𝑛 , 𝑑𝑜𝑢𝑡 ,𝑚, are used in each constraint 𝑟𝑡 . These are

clearly hard to set manually, especially when there are many semantic-types, where each type 𝑡

has its own optimal parameters. A key technical challenge in this work is to automatically learn

these parameters from real tables, both efficiently and with quality-guarantees (Section 5).

Why this design of SDC. We design SDC with this structure for the following reasons. First, it

mimics the human intuition of identifying data errors – given a table in Figure 2, humans would read

values in a column, to first identify its semantic type (e.g., city vs. date, which is a “pre-condition”),

before using a fuzzy notion of “domain” of each type to identify errors (post-conditions). Our design

of SDC mimics the reasoning process, by imposing a inner-ball/outer-ball “structure” as a strong

“prior” to restrict the search space of constraints, such that the problem reduces to learning good

parameters (𝑑𝑖𝑛 , 𝑑𝑜𝑢𝑡 ,𝑚), which is more tractable.

Because SDC is based on semantic-domains, the resulting constraints are “explainable” as they

are often associated with types (e.g., the prediction of “germany” in 𝐶2 can be explained using the

CTA-classifier for state), making predictions interpretable.

Finally, the SDC framework is extensible to different column-type detection methods, and it is

easy to add/remove constraints in a white-box fashion, making it easy to deploy and operationalize.
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Problem Statement: Learning SDC. In this work, we want to “learn” high-quality SDCs with

appropriate parameters from a large table corpus, so that they can cover diverse semantic-types

(e.g., in Table 1), and be readily applicable to new and unseen tables.

We leverage a large corpus of tables C (e.g., millions of tables crawled from the web and enter-

prises), and model them as a collection of individual columns C = {𝐶}. Ideally, we want to leverage
C to learn a set of high-quality SDCs, denoted by 𝑅, such that:

(1) the recall of 𝑅 is maximized, or 𝑅 should detect as many true-errors as possible on an unseen

test set C𝑡𝑒𝑠𝑡 .
(2) the false positive rate (FPR) of 𝑅 is minimized (or high precision), for 𝑅 should trigger few

false-positives on C𝑡𝑒𝑠𝑡 ;
(3) the size of 𝑅 is not exceedingly large for latency and efficiency reasons (e.g., the size of Table 1

should be limited).

We give a high-level sketch of our problem below, which will instantiate into concrete problem

variants in later sections.

Definition 3. [Learning Semantic-Domain Constraints]. Given a corpus C, a size constraint
𝐵𝑠𝑖𝑧𝑒 , and a FPR threshold 𝐵𝐹𝑃𝑅 , find a set of SDCs 𝑅 that maximizes Recall(𝑅), while satisfying
|𝑅 | ≤ 𝐵𝑠𝑖𝑧𝑒 and 𝐹𝑃𝑅(𝑅) ≤ 𝐵𝐹𝑃𝑅 , written as:

max

𝑅
Recall(𝑅) (5)

s.t. |𝑅 | ≤ 𝐵𝑠𝑖𝑧𝑒 (6)

𝐹𝑃𝑅(𝑅) ≤ 𝐵𝐹𝑃𝑅 (7)

Note that in balancing the three requirements, we want to bound FPR (e.g., false-positive rate

should not exceed 𝐵𝐹𝑃𝑅 = 1%, for scenarios like Figure 1 has strict precision requirements), and

the size of 𝑅 (e.g., |𝑅 | should not exceed 𝐵𝑠𝑖𝑧𝑒 = 10000) to limit its memory footprint and make

inference efficient, while maximizing recall as much as possible.

5 AUTO-TEST: LEARN SDC USING TABLES

We now describe our proposed Auto-Test that learns high-quality SDCs from a large table corpus

C in an unsupervised manner.

The offline training has three steps, which we will describe in turn below. At a high level, we

will first generate a set of SDC candidates (Section 5.1), and assess their quality using principled

statistical tests (Section 5.2), before we perform holistic optimization of the problem stated in

Definition 3, to select an optimal set of SDCs with quality guarantees (Section 5.3).

5.1 SDC Candidate Generation

Our first step in offline training is a preprocessing step that generates a large collection of SDCs

candidates.

Recall that in Definition 2, each SDC has four parameters: domain-evaluation function 𝑓𝑡 , inner-

distance 𝑑𝑖𝑛 , outer-distance 𝑑𝑜𝑢𝑡 , and matching-percentage𝑚 (all colored-coded in example SDCs

in Table 1 for readability).

Note that 𝑓𝑡 may be instantiated using different “domain-evaluation functions” (Definition 1)

for different column-type detection methods, namely 𝑓 𝑑𝑐𝑡𝑎 , 𝑓
𝑑
𝑒𝑚𝑏

, 𝑓 𝑑𝑝𝑎𝑡 and 𝑓
𝑑
𝑓 𝑢𝑛

in Equation (1)-

(4), for CTA, embedding, patterns, and functions, respectively. Specifically, we use the following

instantiations of 𝑓𝑡 :

• CTA. We use the 78 classifiers in Sherlock [31] (designed to semantic-types in DPBpedia), and

the 121 classifiers in Doduo [59] (for semantic-types in Freebase), for a total of 199 𝑓 𝑑𝑐𝑡𝑎 functions.
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Table 2. A contingency table for an example SDC 𝑟 , on which we perform statistical tests to determine 𝑟 ’s

efficacy.

cols covered by 𝑟

(“in domain” columns)

cols not covered by 𝑟

(“out of domain” columns)

cols triggered by 𝑟

(error detected)

|︁|︁|︁C𝑟𝐶,𝑇 |︁|︁|︁ = 10

|︁|︁|︁C𝑟
𝐶,𝑇

|︁|︁|︁ = 160, 000

cols not triggered by 𝑟

(no error detected)

|︁|︁|︁C𝑟
𝐶,𝑇

|︁|︁|︁ = 990

|︁|︁|︁C𝑟
𝐶,𝑇

|︁|︁|︁ = 40, 000

• Embed. We use the Glove [51] and SentenceBERT [54] embedding, and randomly sample 1000

values as centroids (which may be values like “seattle” and “january” shown in Table 1), to

create a total of 2000 𝑓 𝑑
𝑒𝑚𝑏

functions.

• Pattern. We generate common patterns observed in our corpus C, for a total of 45 𝑓 𝑑𝑝𝑎𝑡 functions.
• Function. We use validation-functions in DataPrep [50] and Validators [8], for a total of 8 𝑓 𝑑

𝑓 𝑢𝑛

functions.

For parameters 𝑑𝑖𝑛 , 𝑑𝑜𝑢𝑡 , and 𝑚, we perform grid-search and enumerate parameters using

fixed step-size (e.g., the matching-percentage 𝑚 is enumerated with a step-size of 0.05, or

𝑚 ∈ {1.0, 0.95, 0.9, . . .}, and 𝑑𝑖𝑛/𝑑𝑜𝑢𝑡 are enumerated similarly). This generates a total of over

100K SDCs as candidates.

Since these SDC candidates are enumerated in an exhaustive manner, only a small fraction of

appropriately parameterized SDCs are suitable for error-detection, which we will identify using (1)

statistical tests and (2) principled optimizations, explained below.

5.2 SDCQuality Assessment by Statistical Tests

In this section, we take all SDC candidates, and use statistical hypothesis tests to assess the quality

of each candidate 𝑟 .

Given an SDC 𝑟 = (𝑃, 𝑆, 𝑐), where 𝑟 .𝑃 is its pre-condition, 𝑟 .𝑆 its post-condition, and 𝑟 .𝑐 its

confidence, from Definition 2. We say a column 𝐶 is “covered by” 𝑟 , if 𝑟 .𝑃 (𝐶) = true (i.e., more than

𝑚 fraction of values in 𝐶 fall inside the inner-ball with radius 𝑑𝑖𝑛), in which case 𝐶 is regarded as

“in the semantic domain” specified by the pre-condition 𝑟 .𝑃 .

Similarly, we say a column𝐶 is “triggered by” 𝑟 , if 𝑟 .𝑆 (𝐶) = true, meaning that the post-condition

𝑟 .𝑆 is producing non-empty results as detected errors in 𝐶 (i.e., there exists some 𝑣 ∈ 𝐶 that fall

outside of the outer-ball with radius 𝑑𝑜𝑢𝑡 ).

Given a large corpus C and 𝑟 , we can analyze 𝑟 ’s behaviour on C, using a contingency table [22, 33]
shown in Table 2, where:

•
|︁|︁|︁C𝑟𝐶,𝑇 |︁|︁|︁ = {𝐶 |𝐶 ∈ C, 𝑟 .𝑃 (𝐶) = true, 𝑟 .𝑆 (𝐶) = true} denotes the number of columns in C that are

both covered by and triggered by 𝑟 (𝐶 is “in the semantic domain” of 𝑟 , with errors detected).

•
|︁|︁|︁C𝑟
𝐶,𝑇

|︁|︁|︁ = {𝐶 |𝐶 ∈ C, 𝑟 .𝑃 (𝐶) = true, 𝑟 .𝑆 (𝐶) = false} denotes the the number of columns in C that

are covered by, but not triggered by 𝑟 (𝐶 is “in domain” for 𝑟 , with no errors detected).

• Similarly,

|︁|︁|︁C𝑟
𝐶,𝑇

|︁|︁|︁ and |︁|︁|︁C𝑟
𝐶,𝑇

|︁|︁|︁ correspond to the number of columns in C that are not covered by 𝑟 (𝐶

is “not in domain” for 𝑟 ), but with and without detection in the post-condition 𝑟 .𝑆 (𝐶), respectively.
Note that the subscript 𝐶 and 𝑇 in these notations would correspond to “cover” and “trigger”,

respectively. We can see that the top-left entry of Table 2 (covered and triggered), corresponds to

set of columns that would be predicted as having errors by 𝑟 .
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Fig. 3. A visualization of inner/outer-balls that find “natural separation” of semantic-domains, in the universe

of all values. Black-dots represent “in-domain” values, triangles represent “out-of-domain” values.

Using the contingency table, we perform statistical analysis to: (1) find suitable inner/outer-balls

in 𝑟 that can naturally separate “in-domain” vs. “out-of-domain” columns, and (2) set each 𝑟 ’s

confidence by the percentage of false-positives it reports among the covered columns. We will

explain each in turn below.

(1) Find suitable inner/outer-balls using effect-size (Cohen’s h). Recall that in Section 5.1, we ex-

haustively enumerate SDC candidates with different parameters (inner/outer-ball, centroid, etc.),

and the hope is that using an unsupervised analysis of the corpus C, we can identify good SDC

that are suitably parameterized.

As we analyze these candidates, we know that a good SDC 𝑟 for a semantic domain 𝑡 should

ideally have an inner-ball with radius 𝑑𝑖𝑛 tightly enclose most “in-domain” values, and an outer-ball

with radius 𝑑𝑜𝑢𝑡 that can filter out most “out-of-domain” values, like visualized in Figure 3, where

dots and triangles represent in-domain and out-of-domain values, respectively.

More specifically, given a table corpus C, when we compute the contingency table for a candidate

𝑟 using C, like shown in Table 2, an ideal 𝑟 with a suitable inner-ball/outer-ball should “cover” a

good number of columns in C (e.g., a domain like “city” will cover many columns in C), reflected
by a large

|︁|︁|︁C𝑟𝐶,𝑇 |︁|︁|︁ + |︁|︁|︁C𝑟
𝐶,𝑇

|︁|︁|︁ on the left of the contingency table, and at the same time should rarely

“trigger” on columns in C, reflected by a small

|︁|︁|︁C𝑟𝐶,𝑇 |︁|︁|︁ at top-left of the table (𝑟 should rarely trigger

on columns in C, because the columns we harvested from relational sources are generally clean

and error-free – our manual analysis suggests that over 98% columns in C are without errors). In

effect, we are looking for 𝑟 whose ratio 𝜌 (𝑟 ) =
|︁|︁|︁C𝑟𝐶,𝑇 |︁|︁|︁ / (︂|︁|︁|︁C𝑟𝐶,𝑇 |︁|︁|︁ + |︁|︁|︁C𝑟

𝐶,𝑇

|︁|︁|︁)︂ is small.

In contrast, if the inner/outer-ball are too small or too large (compared to the ideal balls in

Figure 3), the separations between “in-domain” vs. “out-of-domain” are no longer clean, and the

ratio 𝜌 (𝑟 ) will be indistinguishable from the same ratio for the vast majority of columns that are

“out-of-domain” (the two entries on the right of Table 2), written as: 𝜌 (𝑟 ) =
|︁|︁|︁C𝑟
𝐶,𝑇

|︁|︁|︁ / (︂|︁|︁|︁C𝑟
𝐶,𝑇

|︁|︁|︁ + |︁|︁|︁C𝑟
𝐶,𝑇

|︁|︁|︁)︂ .
Motivated by this observation, we perform statistical tests on 𝜌 (𝑟 ) and 𝜌 (𝑟 ) in the contingency

table (Table 2), to test their effect size [34], which is a principled measure of the magnitude of

difference between 𝜌 (𝑟 ) and 𝜌 (𝑟 ) – namely, the larger the difference between the two ratios, the

better 𝜌 (𝑟 ) can “stand out” from the background noise ratio 𝜌 (𝑟 ), indicating a clean in-domain vs.

out-of-domain separation using 𝑟 . Specifically, we use Cohen’s h [19] to evaluate the effect size of 𝑟 ,
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defined as:

ℎ(𝑟 ) = 2

(︂
arcsin

√︁
𝜌 (𝑟 ) − arcsin

√︁
𝜌 (𝑟 )

)︂
(8)

Cohen’s h has precise statistical interpretations, where ℎ ≥ 0.8 indicates large effect size [19],

which we use to identify SDC candidates with suitably parameterized inner/outer-balls that would

correspond to natural domains (e.g., Figure 3).

Furthermore, we perform “statistical significance test” (complementary to effect size in what is

known as power-analysis [20]), using the standard Chi-squared tests [52] on the contingency table

(Table 2). We discard 𝑟 whose 𝑝 value is not significant at 0.05 level.

(2) Estimate 𝑟 ’s confidence (Wilson’s score intervals). Recall that each SDC 𝑟 = (𝑃, 𝑆, 𝑐) has a
confidence score 𝑐 (shown with examples in the last column of Table 1), which is the probability of

𝑟 not producing false-positives among the “in-domain” columns it covers, that we calibrate using C
with precise statistical interpretations as follows.

Specifically, note that the ratio 𝑐 =

|︁|︁|︁C𝑟
𝐶,𝑇

|︁|︁|︁ / (︂|︁|︁|︁C𝑟𝐶,𝑇 |︁|︁|︁ + |︁|︁|︁C𝑟
𝐶,𝑇

|︁|︁|︁)︂ calculated from our contingency

table is exactly an unbiased estimator of 𝑐 . However, because both

|︁|︁|︁C𝑟𝐶,𝑇 |︁|︁|︁ and |︁|︁|︁C𝑟
𝐶,𝑇

|︁|︁|︁ (the left two
entries of Table 2) can be “rare events” with small counts, whose 𝑐 ratio is therefore susceptible to

over- and under-estimation on small samples. In order to guard against this, we produce a “safe”

lower-bound of 𝑐 (as it is better to under-estimate 𝑐 than over-estimate it, to avoid false-positives),

using binomial confidence interval of 𝑐 , and specifically we useWilson score interval [65] to produce

a lower-bound estimate
5
of the confidence 𝑐 of a candidate 𝑟 as:

𝑐 = 1 −

|︁|︁|︁C𝑟
𝐶,𝑇

|︁|︁|︁ + 1

2
𝑧2|︁|︁C𝑟

𝐶

|︁|︁ + 𝑧2 − 𝑧|︁|︁C𝑟
𝐶

|︁|︁ + 𝑧2
⌜⃓⃓⎷ |︁|︁|︁C𝑟

𝐶,𝑇

|︁|︁|︁ · |︁|︁|︁C𝑟
𝐶,𝑇

|︁|︁|︁|︁|︁C𝑟
𝐶

|︁|︁ + 𝑧
2

4

(9)

where

|︁|︁C𝑟
𝐶

|︁|︁ = |︁|︁|︁C𝑟𝐶,𝑇 |︁|︁|︁ + |︁|︁|︁C𝑟
𝐶,𝑇

|︁|︁|︁, and 𝑧 = 1.65 is the normal interval width at 95% confidence level.

Discussion. We note that while heuristic estimates (e.g., directly using 𝑐 to estimate 𝑐) can still be

used in our end-to-end optimization framework, we confirm in our ablation studies that adopting a

more principled statistical analysis (Wilson’s interval to lower-bound confidence, and Cohen’s h

for effect-size) does provide quality benefits over heuristic estimates.

5.3 SDC Optimizations by LP-Relaxation

Let 𝑅𝑎𝑙𝑙 be the set of all candidate SDCs that meet the statistical tests performed in Section 5.2 (still

a large set in tens of thousands, with overlapping coverage and varying degrees of quality). We

now describe the key final step in offline-training, where we perform holistic optimization like

sketched in Definition 3, to select an optimal set 𝑅 ⊆ 𝑅𝑎𝑙𝑙 with FPR and recall guarantees.

We will first describe how to estimate FPR(𝑟 ) and recall(𝑟 ) below.
Estimating FPR. Recall that the FPR of a constraint 𝑟 is defined as FPR(𝑟 ) = r-false-positive-columns

total-negative-columns
,

or the number of false-positives 𝑟 produces, over the total number of negative (error-free) columns.

While we don’t have labeled data to count these events for 𝑟 precisely (which would be hugely

expensive if we were to label each 𝑟 ), we can approximate these events using a large corpus C in

an unsupervised data-driven manner.

Specifically, since C is extracted from relational sources, its columns are generally clean and

free of errors (for instance, in our manual analysis of a sample of 2400 table columns randomly

5
Note that because the corpus C is not completely clean, the true number of false-triggers among covered columns is bound

to be smaller than the current estimate of

|︁|︁|︁C𝑟
𝐶,𝑇

|︁|︁|︁ using C. However, because this is in the denominator of 𝜌 (𝑟 ) , it does not
affect our lower-bound analysis, as an over-estimate of

|︁|︁|︁C𝑟
𝐶,𝑇

|︁|︁|︁ still leads to a conservative lower-bound of 𝑐 , which is what

we want.
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sampled from spreadsheets and relational tables, we found the error rate of C to be around 2%,

like we will explain in Section 6.1). We can therefore use |C| to approximate the number of total

negative columns in |C|. Also recall that we can estimate false-positives of 𝑟 , based on C𝑟
𝐶,𝑇

in the

contingency table (estimated using C), so putting the two together we can then estimate FPR(𝑟 ) as|︁|︁|︁C𝑟
𝐶,𝑇

|︁|︁|︁
|C| .

Estimating recall. The recall of a 𝑟 , written as Recall(𝑟 ), is the total number of true-positive

errors that 𝑟 can detect.
6
Since we also don’t have labeled data to estimate recall for each 𝑟 , we use

distant-supervision [28, 47, 61] to approximate it.

Specifically, we construct a synthetic corpus for that purpose, written as C𝑠𝑦𝑛 = {𝐶 (𝑣𝑒 ) =

𝐶 ∪ {𝑣𝑒 }|𝐶 ∈ C,𝐶′ ∈ C, 𝑣𝑒 ∈ 𝐶′}, where each column in C𝑠𝑦𝑛 is constructed as 𝐶 (𝑣𝑒 ) = 𝐶 ∪ {𝑣𝑒 },
with𝐶 being a randomly sampled column in C, 𝑣𝑒 being a randomly sampled value from a different

column𝐶′
, such that when 𝑣𝑒 is inserted into𝐶 to produce𝐶 (𝑣𝑒 ), 𝑣𝑒 is likely an error in the context

of 𝐶 (𝑣𝑒 ). Like in distant supervision [28, 47, 61], this then allows us to compute the set of errors

that 𝑟 can detect in C𝑠𝑦𝑛 , as
𝐷 (𝑟 ) = {𝐶 (𝑣𝑒 ) |𝐶 (𝑣𝑒 ) ∈ C𝑠𝑦𝑛, 𝑟 (𝐶 (𝑣𝑒 )) = 𝑣𝑒 } (10)

where 𝑟 (𝐶 (𝑣𝑒 )) = 𝑣𝑒 indicates that 𝑟 can detect the same 𝑣𝑒 as constructed in column 𝐶 (𝑣𝑒 ). We

then simply use Recall(𝑟 ) = |𝐷 (𝑟 ) |, as the estimated recall of 𝑟 . Although there is a small chance

that 𝑣𝑒 might not be an actual error in the context of𝐶 (𝑣𝑒 ), in practice, it leads to only a very small

difference in recall estimation. For example, in a manual examination of 100 randomly sampled

synthetic columns, we identify only 3 cases where 𝑣𝑒 could not be identified as an error/outlier,

confirming our assumption that inaccuracies so introduced is minimal (e.g., 3%), which have

negligible impact for the final SDCs selected by the algorithm as we will show empirically in our

experiments.

Coarse-grained SDC Selection (CSS). We are now ready to instantiate the high-level problem

sketched in Definition 3 as follows.

Definition 4. [Coarse-grained SDC Selection (CSS)]. Given all SDC candidates 𝑅𝑎𝑙𝑙 , find a

set 𝑅 ⊆ 𝑅𝑎𝑙𝑙 such that its recall Recall(𝑅) is maximized, subject to a constraint that the FPR(𝑅)
should not exceed 𝐵𝐹𝑃𝑅 , and a cardinality constraint that the size of 𝑅 should not exceed 𝐵𝑠𝑖𝑧𝑒 ,

written as:

(CSS) max

𝑅⊆𝑅𝑎𝑙𝑙

|︁|︁|︁|︁|︁⋃︂
𝑟 ∈𝑅

𝐷 (𝑟 )
|︁|︁|︁|︁|︁ (11)

s.t. |𝑅 | ≤ 𝐵𝑠𝑖𝑧𝑒 (12)∑︂
𝑟 ∈𝑅

FPR(𝑟 ) ≤ 𝐵𝐹𝑃𝑅 (13)

Note that in the objective function Equation (11), we use Recall(𝑅) = |⋃︁𝑟 ∈𝑅 𝐷 (𝑟 ) | to instantiate

the objective function of the original problem in Definition 3 (Equation (5)), since Recall(𝑅) over a
set of constraints 𝑅 can be calculated as the union of errors detected by each 𝑟 ∈ 𝑅.
Observe that because individual 𝑟 ∈ 𝑅𝑎𝑙𝑙 can often have overlapping coverage (e.g., different

embedding methods, and different CTA-classifiers that can detect columns of a type, say “city”,

are all present in 𝑅𝑎𝑙𝑙 ), this union term in Equation (11) can therefore take the overlaps of recall

into consideration when we optimize for the best solution set 𝑅.

Also note that in Equation (13), we use

∑︁
𝑟 ∈𝑅 FPR(𝑟 ) in place of FPR(𝑅) in Equation (7) of

Definition 3, because it can be verified that FPR(𝑅) ≤ ∑︁
𝑟 ∈𝑅 FPR(𝑟 ) (using an argument similar to

6
We use the absolute version of recall over the relative version for its simplicity, the two versions differ only by a universal

denominator (the total-number-of-positive-columns), and are therefore equivalent in our context.
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union-bound), so that imposing the constraint in Equation (13) esures that the original constraint

FPR(𝑅) ≤ 𝐵𝐹𝑃𝑅 is also satisfied.

We show that the CSS problem in Definition 4 is hard and hard to approximate, using a reduction

from maximum coverage. A proof of this can be found in [3].

Theorem 5.1. The CSS problem is NP-hard and cannot be approximated with a factor of (1 − 1/𝑒),
unless 𝑁𝑃 ⊆ 𝐷𝑇𝐼𝑀𝐸 (𝑛𝑂 (log log𝑛) ).

Despite its hardness, we developCoarse-Select to solve CSS using LP-relaxation and randomized

rounding [53], which has an approximation ratio of (1 − 1/𝑒) (matching the inapproximability

result). Specifically, we first transform CSS into a CSS-ILP problem:

(CSS-ILP) maximize

∑︂
𝐶 𝑗 ∈C𝑠𝑦𝑛

𝑦 𝑗 (14)

s.t.

∑︂
𝑟𝑖 ∈𝑅𝑎𝑙𝑙

𝑥𝑖 ≤ 𝐵𝑠𝑖𝑧𝑒 (15)∑︂
𝑟𝑖 ∈𝑅𝑎𝑙𝑙

FPR(𝑟𝑖 ) · 𝑥𝑖 ≤ 𝐵𝐹𝑃𝑅 (16)∑︂
𝑟𝑖 ∈𝐾𝑗

𝑥𝑖 ≥ 𝑦 𝑗 ∀𝐶 𝑗 ∈ C𝑠𝑦𝑛 (17)

𝑥𝑖 , 𝑦 𝑗 ∈ {0, 1} (18)

Here, we use an indicator variable 𝑥𝑖 for each 𝑟𝑖 ∈ 𝑅𝑎𝑙𝑙 , where 𝑥𝑖 = 1 indicates 𝑟𝑖 is selected into 𝑅,

and 0 otherwise. Let 𝐷 (𝑅) = ⋃︁
𝑟 ∈𝑅 𝐷 (𝑟 ) be the union of all errors detected by 𝑅. We use another

indicator variable 𝑦 𝑗 for each column𝐶 𝑗 ∈ C𝑠𝑦𝑛 , where 𝑦 𝑗 = 1 indicates𝐶 𝑗 ∈ 𝐷 (𝑅), and 0 otherwise.
Finally, for each 𝐶 𝑗 ∈ C𝑠𝑦𝑛 , we define 𝐾 𝑗 ⊆ 𝑅𝑎𝑙𝑙 as the set of constraints that can detect the error

constructed in 𝐶 𝑗 . It can be shown that the CSS-ILP problem so constructed, has the same solution

as the original CSS problem.

From CSS-ILP, we construct its LP-relaxation [53], referred to as CSS-LP, by dropping its inte-

grality constraint in Equation (18). The resulting CSS-LP is a linear program that can be solved op-

timally in polynomial-time, yielding fractional solution for each 𝑥𝑖 . Finally, we perform randomized-

rounding to turn the fraction 𝑥𝑖 into integral solutions 𝑅.

Fine-grained SDC Selection (FSS). While CSS reduces 𝑅𝑎𝑙𝑙 into 𝑅 from the perspective of set-

based optimization, we find in our evaluation, that the confidence produced by the solution 𝑅 ⊆ 𝑅𝑎𝑙𝑙
from CSS, to deviate substantially from the true calibrated confidence (Equation (9) in Section 5.2),

if we use the entire 𝑅𝑎𝑙𝑙 . This is because CSS only focuses on the set-based optimization, without

considering how well the selected 𝑅 can approximate the calibrated confidence from the original

𝑅𝑎𝑙𝑙 , which leads to poor confidence ranking of predicted results, that negatively affects the result

quality (e.g., when evaluated using area under precision-recall curves).

To address this inadequacy, we propose an improved version of CSS that ensures confidence

approximation in the selection process, which we call Fine-grained SDC Selection (FSS). Define

diff(𝐶, 𝑅, 𝑅𝑎𝑙𝑙 ) = conf(𝐶, 𝑅𝑎𝑙𝑙 )−conf(𝐶, 𝑅) as the difference in predicted confidence for any𝐶 ∈ C𝑠𝑦𝑛 ,
between using 𝑅𝑎𝑙𝑙 and 𝑅. We define FSS as follows:

Definition 5. [Fine-grained SDC Selection (FSS)]. Given all SDC candidates 𝑅𝑎𝑙𝑙 , find a set

𝑅 ⊆ 𝑅𝑎𝑙𝑙 to maximize the number of columns detected in 𝐷 (𝑅), whose predicted confidence using

𝑅 does not deviate from its true confidence by 𝛿 (or diff(𝐶, 𝑅, 𝑅𝑎𝑙𝑙 ) ≤ 𝛿), subject to a constraint that
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Table 3. Quality comparisons, reported as (F1@P=0.8, and PR-AUC) for each method, on ST-Bench and

RT-Bench.

Spreadsheet-Table-Bench (ST-Bench) Relational-Table-Bench (RT-Bench)

Method real +5% syn err. + 10% syn err. +20% syn err. real +5% syn err. +10% syn err. +20% syn err.

Ours

All-Constraints 0.23, 0.38 0.36, 0.39 0.47, 0.57 0.50, 0.66 0.21, 0.34 0.30, 0.36 0.36, 0.48 0.36, 0.54

Fine-Select 0.34, 0.45 0.38, 0.52 0.48, 0.62 0.53, 0.68 0.21, 0.34 0.30, 0.46 0.36, 0.56 0.40, 0.62

Coarse-Select 0.25, 0.43 0.35, 0.52 0.41, 0.60 0.52, 0.67 0.05, 0.31 0.25, 0.43 0.28, 0.53 0.39, 0.61

Column-type detection

methods

Sherlock 0, 0.04 0, 0.05 0, 0.10 0.01, 0.21 0, 0.03 0, 0.06 0, 0.14 0, 0.22

Doduo 0.04, 0.06 0.06, 0.09 0.09, 0.17 0.08, 0.31 0, 0.03 0, 0.05 0, 0.10 0, 0.20

Glove 0, 0.10 0.03, 0.18 0.07, 0.26 0.06, 0.35 0.05, 0.10 0.06, 0.13 0.03, 0.18 0.03, 0.28

SentenceBERT 0.08, 0.14 0.12, 0.18 0.11, 0.23 0.18, 0.36 0.09, 0.09 0.14, 0.18 0.11, 0.19 0.09, 0.28

Regex 0.04, 0.25 0.06, 0.30 0.09, 0.41 0.27, 0.51 0, 0.14 0.03, 0.28 0.01, 0.38 0.11, 0.48

DataPrep 0.08, 0.22 0.09, 0.25 0.10, 0.38 0.12, 0.49 0.05, 0.14 0.06, 0.24 0.03, 0.40 0.03, 0.50

Validators 0.04, 0.29 0.03, 0.29 0.01, 0.31 0.01, 0.44 0, 0.03 0, 0.05 0, 0.30 0.03, 0.44

Data-cleaning

AutoDetect 0, 0.18 0, 0.17 0, 0.18 0, 0.25 0, 0.09 0, 0.12 0, 0.15 0.01, 0.25

Katara 0, 0.04 0, 0.05 0, 0.10 0, 0.20 0, 0.03 0, 0.05 0, 0.10 0, 0.19

Outlier detection methods

SVDD 0.04, 0.04 0.06, 0.06 0.09, 0.10 0.09, 0.15 0.05, 0.04 0.06, 0.06 0.03, 0.07 0.03, 0.12

DBOD 0, 0.15 0, 0.23 0, 0.35 0, 0.46 0, 0.12 0, 0.29 0, 0.40 0, 0.51

LOF 0, 0.08 0, 0.12 0, 0.18 0, 0.24 0, 0.04 0, 0.12 0, 0.16 0, 0.22

RKDE 0.04, 0.20 0.06, 0.24 0.09, 0.31 0.24, 0.40 0.05, 0.11 0.06, 0.21 0.03, 0.27 0.12, 0.35

PPCA 0, 0.14 0, 0.15 0, 0.19 0.17, 0.26 0, 0.06 0, 0.12 0, 0.15 0, 0.20

IForest 0, 0.13 0, 0.15 0, 0.19 0.11, 0.25 0, 0.05 0, 0.13 0.11, 0.17 0.12, 0.22

GPT

few-shot-with-COT 0, 0.20 0, 0.30 0, 0.38 0, 0.56 0, 0.16 0, 0.33 0, 0.48 0, 0.53

few-shot-no-COT 0, 0.20 0, 0.32 0, 0.38 0, 0.56 0, 0.10 0, 0.22 0, 0.44 0, 0.56

zero-shot-with-COT 0, 0.15 0, 0.28 0, 0.34 0, 0.53 0, 0.16 0, 0.26 0, 0.43 0, 0.52

zero-shot-no-COT 0, 0.11 0, 0.23 0, 0.25 0, 0.43 0, 0.08 0, 0.21 0, 0.40 0, 0.46

Commercial

Vendor-A 0, 0.18 0, 0.20 0, 0.22 0, 0.27 0, 0.02 0, 0.05 0, 0.11 0, 0.21

Vendor-B 0, 0.02 0, 0.05 0, 0.10 0, 0.21 0, 0.02 0, 0.05 0, 0.11 0, 0.21

the FPR(𝑅) should not exceed 𝐵𝐹𝑃𝑅 , and the size of 𝑅 should not exceed 𝐵𝑠𝑖𝑧𝑒 , written as:

(FSS) max

𝑅⊆𝑅𝑎𝑙𝑙
|{𝐶 |𝐶 ∈ 𝐷 (𝑅), diff(𝐶, 𝑅, 𝑅𝑎𝑙𝑙 ) ≤ 𝛿}|

s.t. |𝑅 | ≤ 𝐵𝑠𝑖𝑧𝑒∑︂
𝑟 ∈𝑅

FPR(𝑟 ) ≤ 𝐵𝐹𝑃𝑅

Observe that when we set 𝛿 = 1, FSS reduces to CSS because the confidence approximation

requirement of diff(𝐶, 𝑅, 𝑅𝑎𝑙𝑙 ) ≤ 𝛿 is trivially satisfied, making it an advanced variant of CSS.

We propose algorithm Fine-Select to solve FSS, also with quality guarantees. The pseudo-code

for Fine-Select is similar to that of Coarse-Select, with two key modifications: (1) for each

column 𝐶 𝑗 ∈ C𝑠𝑦𝑛 , its indicator variable 𝑦 𝑗 = 1 if 𝐶 𝑗 ∈ {𝐶 ∈ 𝐷 (𝑅) | diff(𝐶, 𝑅, 𝑅𝑎𝑙𝑙 ) ≤ 𝛿}, and 0

otherwise; (2) for each 𝐶 𝑗 ∈ C𝑠𝑦𝑛 , we set 𝐾 𝑗 ⊆ 𝑅𝑎𝑙𝑙 as the set that can detect the error constructed

in 𝐶 𝑗 , with the required confidence approximation specified by 𝛿 .

We will show in our technical report [3] that the Fine-Select approach has a (1 − 1/𝑒) ap-
proximation ratio in expectation, with all constraints also satisfied in expectation, like stated

below.

Theorem 5.2. Let 𝑅 ⊆ 𝑅𝑎𝑙𝑙 be the solution produced by Fine-Select, and 𝐸 (·) de-

note expectation. Then the following hold: 𝐸 (|𝑅 |) ≤ 𝐵𝑠𝑖𝑧𝑒 , 𝐸 (
∑︁
𝑟 ∈𝑅 𝐹𝑃𝑅(𝑟 )) ≤ 𝐵𝐹𝑃𝑅 , and

𝐸 (|{𝐶 ∈ 𝐷 (𝑅) | diff(𝐶, 𝑅, 𝑅𝑎𝑙𝑙 ) ≤ 𝛿}|) ≥ (1 − 1/𝑒)𝑂𝑃𝑇 where 𝑂𝑃𝑇 is the optimal value.

We will test both Fine-Select and Coarse-Select and compare their effectiveness in our

experiments.

6 EXPERIMENT

We perform extensive evaluations using real errors from real data. Our code, data, and labelled

benchmarks are available in [3].
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6.1 Experimental Setup

Benchmarks. To test the effectiveness of different algorithms on real tables “in the wild”, we

focus on real relational tables and spreadsheet tables in our evaluation, and create two benchmarks

containing real errors from real tables, described below.

Spreadsheet-Table-Bench (ST-Bench). We randomly sample 1200 spreadsheet columns, ex-

tracted from real spreadsheets (.xlsx files crawled from the web), as our ST-Bench test set.
7
Each

column is carefully labelled and cross-checked by human-labellers, as either clean (no data errors

are present); or dirty, in which case all erroneous values in the column are marked in ground-truth

for evaluation. A total of 22 columns (1.8%) contain real errors.

Relational-Table-Bench (RT-Bench). We also sample 1200 relational table columns from real

tables extracted from BI models (.pbix files crawled from the web), as our second test set. Each

column is similarly labeled as clean, or dirty, with erroneous values identified in the ground-truth.

A total of 25 columns (2.1%) are identified to contain errors.

Existing data-cleaning benchmarks. To test the applicability of learned SDCs on existing data-

cleaning benchmarks, we further compile 9 commonly-used datasets from prior studies [26, 41, 42,

49], which are: adults, beers, flights, food, hosptial, movies, rayyan, soccer and tax. We reuse existing

ground-truth in our evaluation.

Evaluation metrics. We evaluate the quality of different algorithms, using standard preci-

sion/recall, where precision 𝑃 =
num-of-correct-predicted-errors

num-of-total-predicted-errors
, and recall 𝑅 =

num-of-correct-predicted-errors

num-of-total-true-errors

.

Since each algorithm have different score thresholds to make predictions at different confidence

levels, we plot precision-recall curves (PR-Curves) of all algorithms, and summarize the overall

quality of PR-Curves using two standard metrics:

(1) Precision-Recall Area-Under-Curve (PR-AUC) [9], which measures the area under the PR-

curve, where higher is better;

(2) F1-score at Precision=0.8 (F1@P=0.8) [12], which measures the F1 score (the harmonic mean

of precision and recall) at high precision (𝑃 = 0.8). Note that a high level of precision is crucial in

our setting (e.g., to win user trust in end-user data cleaning), which is why we use this metric to

complement PR-AUC.

7
We sample non-numerical columns for testing only, since it is usually trivial to identify non-conforming values (e.g.,

strings) in numerical columns.
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Table 4. Quality and latency comparison for Fine-Select, as we vary the constraint count budget (𝐵𝑠𝑖𝑧𝑒 )

ST-Bench RT-Bench

Constraint count budget (𝐵𝑠𝑖𝑧𝑒 ) 100 200 500 1000 All-Constraints (26673) 100 200 500 1000 All-Constraints (26673)

Quality: F1@P=0.8 0.29 0.31 0.34 0.35 0.23 0.09 0.11 0.21 0.21 0.21

Quality: PR-AUC 0.42 0.41 0.44 0.46 0.38 0.22 0.27 0.34 0.31 0.34

Latency: second per column 0.13 0.16 0.21 0.23 1.44 0.12 0.18 0.24 0.26 2.10

Table 5. Ablation study: contribution of each type of method, reported as (F1@P=0.8, and PR-AUC).

ST-Bench RT-Bench

Fine-Select 0.34, 0.45 0.21, 0.34

no-CTA 0.34, 0.45 0.17, 0.32

no-embedding 0.29, 0.43 0.13, 0.30

no-pattern 0.22, 0.40 0.18, 0.34

no-function 0.15, 0.38 0.17, 0.32

Table 6. Ablation study: contribution of the Wilson score interval and Cohen’s h, reported as (F1@P=0.8, and

PR-AUC).

ST-Bench RT-Bench

All-Constraints 0.23, 0.38 0.21, 0.34

no Wilson score interval 0.12, 0.36 0.18, 0.31

no Cohen’s h 0.23, 0.35 0.21, 0.32

6.2 Methods Compared

We compare with the following methods on quality and efficiency.

• Column-type detection methods. Our first group of baselines directly invoke existing column-

type detection methods. For each method below, we compute the domain evaluation score 𝑓𝑡 (𝑣)
of type 𝑡 (Definition 1), for each value 𝑣 in column 𝐶 , and use the standard z-score on the

resulting distribution of 𝑓𝑡 (𝑣) to identify potential errors [27]. We vary the z-score threshold to

plot PR-curves for each method.

– CTA methods: Sherlock [31], Doduo [59]. We use the CTA-classifier as domain evaluation func-

tion 𝑓𝑡 (·) to compute a score distribution for each column 𝐶 .

– Embedding domains: Glove [51], Sentence-BERT [54]. We use the embedding distance as the

domain evaluation function 𝑓𝑡 (·) to compute a score distribution.

– Function domains: DataPrep [1], Validator [8]. We use the boolean result returned by a type-

validation function (true=1, false=0) as the domain evaluation function 𝑓𝑡 (·).
– Pattern domains: Regex. We use whether a value 𝑣 matches an inferred regex pattern of a

column 𝐶 (match = 1, non-match = 0) as the domain evaluation function 𝑓𝑡 (·).
• GPT-4. Language models such as GPT have shown strong abilities in diverse tasks [14]. Since

our task can also be formulated as a natural-language task, we invoke GPT-4
8
with extensive

prompt optimization, including (1) select few-shot examples [14]; and (2) use chain of thought

(COT) [64] (to require GPT-4 to reason about its detection with possible repairs, so that it can

stay truthful with fewer false-positives). We report 4 variants here based on prompts used, which

are: few-shot-with-COT, few-shot-no-COT, zero-shot-with-COT, and zero-shot-no-COT.

• Katara [18]. Katara performs data cleaning by mapping table columns to Knowledge-Bases (KB)

like YAGO, to identify columns of type city, country, etc., so that errors can be detected. This is

8
Version gpt-4-0125, accessed via OpenAI API in 2024-06.
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Fig. 7. Examples columns with specialized meanings, but are still “covered” by SDCs: each row here corre-

sponds to a real data column, with its column-header and data-values listed. Many of these columns convey

specialized meanings (e.g., specialized contract no., article number, etc.), which are nevertheless covered by

our pattern-based SDCs, as our method learns a generalized notation of what a reliable pattern-domain may

look like, which transcends specific meanings in each column.

Table 7. Sensitivity to different training corpora

Spreadsheet-Table-Bench (ST-Bench) Relational-Table-Bench (RT-Bench)

real +5% syn err. + 10% syn err. +20% syn err. real +5% syn err. +10% syn err. +20% syn err.

Relational-Tables 0.34, 0.45 0.38, 0.52 0.48, 0.62 0.53, 0.68 0.21, 0.34 0.30, 0.46 0.36, 0.56 0.40, 0.62

Tablib 0.15, 0.45 0.34, 0.54 0.45, 0.61 0.53, 0.68 0.13, 0.41 0.37, 0.54 0.40, 0.56 0.46, 0.60

Spreadsheet-Tables 0.05, 0.30 0.18, 0.43 0.28, 0.52 0.45, 0.64 0.02, 0.29 0.25, 0.43 0.25, 0.47 0.27, 0.55

similar in spirit to ours, but is limited to symbolic knowledge-bases, and are based on heuristic

mapping with static thresholds (not trained/calibrated).

• Auto-Detect [28]. This approach detects errors due to incompatible data patterns, based on co-

occurrence statistics. While it also leverages a corpus to produce predictions, it is only applicable

to patterns, limiting its coverage.

• Outlier detection methods. There is a large literature on outlier detection, we select RKDE [36],

PPCA [63] and IForest [40] for comparison, which are shown to be the best-performed methods

in an empirical study [21]. We also include three classical methods: SVDD [62], DBOD [37] and

LOF [13], that compared with in an earlier study [28] similar to our problem setting.

• Commercial. We also test our benchmarks on two commercial software targeting non-technical

end-users, that can automatically detect errors in tables. We refer to these two systems as

Vendor-A and Vendor-B in our experiments.

• Auto-Test. This is our proposed method. We report 3 variants of Auto-Test, which are (1)

All-Constraints, which uses the entire set of candidate constraints 𝑅𝑎𝑙𝑙 after quality-based

pruning (Section 5.2), (2) Coarse-Select (Section 5.3), and (3) Fine-Select (Section 5.3).

We invoke the solver in SciPy [56] to solve our LP. By default, we set 𝐵𝑠𝑖𝑧𝑒 to 500, 𝐵𝐹𝑃𝑅 to 0.1,

and 𝛿 in Fine-Select to 10
−3
.

For training, we use three corpora: (i) 247K relational table columns extracted from real BI models,

henceforth referred to as Relational-Tables, and (ii) 297K real spreadsheet table columns

extracted from real spreadsheets, referred to as Spreadsheet-Tables, and (iii) 298K real table

columns extracted from a publically available corpus Tablib [7]. We kept Relational-Tables and

Spreadsheet-Tables completely separate from RT-Bench and ST-Bench. To test generalizability,

we also train on one corpus (e.g., Relational-Tables) and test on the benchmark from a different

source (e.g., ST-Bench).

All experiments are run on a Linux machine with a 64-core, 2.4 GHz CPU and 512 GB memory.

6.3 Quality Comparisons

Quality comparison with real errors. In Figure 4 and 5, we compare the PR-curves of all methods,

on two benchmarks Relational-Table-Bench (RT-Bench) and Spreadsheet-Table-Bench (ST-

Bench), respectively. To avoid clutter in these figures, we show the best method Fine-Select from
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Table 8. Quality results of applying SDCs learned in Auto-Test on existing data-cleaning benchmarks. Note

that the cell-level precision (reported in the last line) is evaluated by strictly comparing our detection, vs. the

ground-truth “clean” version of the benchmarks, which however underestimates the true precision, because

the current ground-truth labels in some of the benchmarks are incomplete that “miss” real errors. We therefore

also report adjusted precision in parenthesis “()” – for example, our 9-dataset aggregate precision is “95%

(97%)”, meaning that precision is 95% (174/183) if strictly using existing ground-truth, which however increases

to 97% (179/183) if we use augmented ground-truth that is manually labeled and shared at [3].

9-dataset overall adults beers flights food hosptial movies rayyan soccer tax

Dataset statistics

# of total categorical cols 85 9 6 6 10 16 14 8 8 8

# of cols covered by existing

ground-truth

36 1 3 4 1 12 0 8 1 6

Quality: column-level

Coverage: # of cols with new

constraints by using SDC

17 2 2 0 3 4 2 1 2 1

Precision: % of new SDCs

that are correct

94% 100% 67% - 100% 100% 100% 100% 100% 100%

Quality: cell-level

True-positives: # of detected

data errors using SDCs

183 0 5 0 3 13 161 1 0 0

Precision: % of detected data

errors that are correct

95% (97%) - 40% (60%) - 0% (33%) 92% (100%) 99% (100%) 0% (100%) - -

the Auto-Test family, trained using Relational-Tables (additional results can be found in our full

technical report [3]). Similarly, for methods in GPT-4 family, we also only show few-shot-with-COT

since it performs the best, as can be seen in Table 3.

The proposed Fine-Select substantially outperforms all other methods. It is worth noting that

Fine-Select trained using Relational-Tables not only performs well on RT-Bench, but also on

ST-Bench, demonstrating strong generalizability to tables of different characteristics (spreadsheet

vs. relational tables).

Among all baselines, SentenceBERT, DataPrep, and Regex perform better than other domain-

based baselines, while RKDE performs better than other outlier detection baselines, but these

methods still lag significantly behind the proposed Fine-Select. Note that while GPT-4 can detect

many data errors (around 80%), it also produce a large number of false-positives (especially on

columns involving code-names, abbreviations, and proprietary vocabularies that are not standard

English), which affects its quality.

In Table 3, we further summarize the PR-curves using two metric numbers: (1) F1@P=0.8, and

(2) PR-AUC, both of which show a picture similar to what we observe on the PR-curves, where

Fine-Select outperforms alternatives methods.

Quality comparison with real and synthetic errors. In addition to testing on the real RT-Bench

and ST-Bench, we further report 3 settings for each of the benchmark in Table 3, where we inject

synthetic errors (using values randomly sampled from other columns), at 5%/10%/20% levels, on top

of real errors. We observe that Fine-Select continues to dominate all other methods, confirming

its effectiveness across a spectrum of error rates.

Coverage of specialized content. In addition to precision/recall, a question we want to explore is

whether the generated SDCs only cover well-known concepts commonly represented on the web.

Figure 7 shows a sampled analysis, with examples of real columns that have specialized meanings

and structures (corresponding to contract-number, article-number, etc.), some of which are likely

unique to a specialize domain or few datasets. Our pattern-based SDCs can nevertheless reliably

install pattern-based SDCs for such columns, as the method learns a generalized notation of what a

reliable domain-pattern should look like, which transcends specific meanings conveyed in the data,

therefore providing “coverage” even when the underlying domains may be highly specialized.

Additional results, such as training using different corpora (Spreadsheet-Tables), can be found

in [3] in the interest of space.
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Table 9. Details of real SDC that are automatically applied on existing data-cleaning benchmarks, using

Auto-Test. Many of these SDC constraints here offer new mechanisms to identify data errors, that are not

possible using existing constraints from these benchmark data (e.g., note that existing constraints from

these benchmark data do not cover many columns marked as “-”, or existing constraints identify errors

using complementary mechanisms, such as “2 letters” for state columns, while our SDC use ML-based CTA

“state-classifiers” from Sherlock and Doduo, which are more fine-grained in detecting subtle errors).

Dataset Column Example values Existing constraints

in benchmark data

Auto-Test: New SDC con-

straints (pre-condition)

Auto-Test: New SDC con-

straints (post-condition)

New errors SDC can identify if

present (not by existing constraints)

adult race white, black, others,

...

- 80% column values have their

Glove distances to “red” < 5.5

values whose Glove dis-

tances to “red” > 7.5

(Typo): wite, blaack, ...

(Incompatible): seattle, male, ...

adult sex female, male - 80% column values have their

Glove distances to “male” < 7.0

values whose Glove dis-

tances to “male” > 9.5

(Typo): femele, malle, ...

(Incompatible): masculina, finnish, ...

beers city san francisco, colum-

bus, louisville, ...

brewery id → city 80% column values have their

Glove distances to “hawaii” < 6.0

values whose Glove dis-

tances to “hawaii” > 11.0

(Typo): louisvilla, seettle, ...

(Incompatible): maine, 9th ave., ...

beers state or, in, ca, fl, ... brewery id → state,

state (2 letters)

80% column values have their

Sherlock state-classifier scores >

0.5

values whose Sherlock state-

classifier scores ≤ 0

(Typo): ax, xk, ...

(Incompatible): us, xl, ...

food facility

type

restaurant, school,

grocery store, ...

- 80% column values have their

Doduo type-classifier scores > 4

values whose Doduo type-

classifier scores < -1

(Typo): childern’s service, koisk, ...

(Incompatible): asia, dummy_type, ...

food city chicago, schaumburg,

lake zurich, ...

- 80% column values have their

Glove distances to “berlin” < 5.5

values whose Glove dis-

tances to “berlin” > 8.0

(Typo): chiago, buffolo, ...

(Incompatible): upenn, mcdonald, ...

food state il, ilxa city → state 80% column values have their

Doduo state-classifier scores > 4

values whose Doduo state-

classifier scores < -2

(Typo): xx, nt, ...

(Incompatible): usa, tottenham, ...

hospital sample 0 patients, 107 pa-

tients, 5 patients, ...

- 93% column values match pat-

tern “\d+ \[a-zA-Z]+”
values not matching pattern

“\d+ \[a-zA-Z]+”

(Typo): x patients, 3x patients,...

(Incompatible): empty, sample_size, ...

hospital state al, ak zip → state, county

→ state, state (2 let-

ters)

80% column values have their

Sherlock state-classifier scores >

0.5

values whose Sherlock state-

classifier scores ≤ 0

(Typo): ax, xk, ...

(Incompatible): us, xl, ...

hospital hospital

type

acute care hospitals condition, measure

name → hospital

type

80% column values have their

Doduo category-classifier scores

> 4.5

values whose Doduo

category-classifier scores <

-1.5

(Typo): acute caer, clinix, ...

(Incompatible): london, co. kildare, ...

hospital emergency

service

yes, no zip→ emergency ser-

vice

80% column values have their

Glove distances to “no” < 5.5

values whose Glove dis-

tances to “no” > 7.0

(Typo): yxs, nao, ...

(Incompatible): emergency, 95503, ...

movie id tt0054215, tt0088993,

tt0032484, ...

- 85% column values match pat-

tern “\[a-zA-Z]+\d+”
values not matching pattern

“\[a-zA-Z]+\d+”
(Incompatible): iron_man_3,

dark_tide, ...

movie duration 109 min, 96 min, 120

min, ...

- 93% column values match pat-

tern “\d+ \[a-zA-Z]+”
values not matching pattern

“\d+ \[a-zA-Z]+”
(Incompatible): 2 hr 30 min, nan, ...

rayyan article

cre-

ated_at

[1/1/71, 4/2/15,

12/1/06, ...]

- 90% column values return true

on function validate_date()

values that return false on

function validate_date()

(Incompatible): nan, june, ...

soccer position defender, midfield,

goalkeeper, ...

- 80% column values have their

Sherlock position-classifier

scores > 0.1

values whose Sherlock

position-classifier scores ≤ 0

(Typo): strikor, forwrad, ...

(Incompatible): difensore, goleiro, ...

soccer city cardiff, dortmund,

munich, ...

- 80% column values have their

Sentence-BERT distances to

“panama” < 1.2

values whose Sentence-BERT

distances to “panama” >

1.375

(Typo): cardif, munihei, ...

(Incompatible): fl, 744-9007, ...

tax state ma, nv, ar, ... zip→ state, area code

→ state, state (2 let-

ters)

80% column values have their

Sherlock state-classifier scores >

0.5

values whose Sherlock state-

classifier scores ≤ 0

(Typo): ax, xk, ...

(Incompatible): us, xl, ...

6.4 Efficiency Analysis

Online prediction latency. Figure 6 shows the average latency of making predictions for one column.

The proposed Fine-Select takes around 0.2 seconds on average, which is interactive and suitable

for user-in-the-loop scenarios. All-Constraints in comparison, is an order of magnitude slower,

showing the benefit Fine-Select in compressing and selecting most beneficial SDCs. GPT-4 is the

slowest as it takes over 20 seconds for one column on average.

Additional results on latency, including offline latency analysis, can be found in our technical

report [3].
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Table 10. Examples of new errors detected by SDCs, marked in underline, that are not known or labeled

as errors in existing benchmark ground-truth. For example, in the “hospital” dataset, a cell with value

“empty” in the “sample” column (with typical values like “0 patients”, “107 patients”) are not marked in

ground-truth; in the “food” dataset, a cell with misspelled “childern” is not marked in the ground-truth, etc.

This shows that SDCs can complement and enhance existing constraint-based cleaning to identify additional

errors.

Dataset Column Example column

values

Existing constraints

in benchmark data

New SDC constraint

(pre-condition)

New SDC constraint

(post-condition)

New errors detected by SDC

(not known in ground-truth)

hospital sample [0 patients, 107

patients, 5 patients,

...]

- 93% column values

match pattern “\d+
\[a-zA-Z]+”

values not matching

pattern “\d+
\[a-zA-Z]+”

“empty”

food facility type [restaurant, grocery

store, catering, ...]

- 80% column values

have their Doduo

type-classifier scores >

4

values whose Doduo

type-classifier scores

< -1

“childern’s service facility”

rayyan article created_at [1/1/71, 4/2/15,

12/1/06, ...]

- 90% column values

return true on

function

validate_date()

values that return

false on function

validate_date()

“nan”

6.5 Sensitivity Analysis

We analyze the sensitivity of Auto-Test to different parameters.

Sensitivity to the number of constraints. Table 4 shows the effect of varying the number of

constraints 𝐵𝑠𝑖𝑧𝑒 in Fine-Select, using All-Constraints (with 26673 constraints) and GPT-4 as

reference points. Fine-Select shows strong efficiency benefit (7-10x faster) over All-Constraints,

while having the same or even better quality with just 500 constraints (e.g., Fine-Select shows

even higher PR-AUC and F1@P=0.8 than All-Constraints on RT-Bench, likely because it is

forced to select high-quality SDCs).

Sensitivity to training corpora. We summarize the performance of using Relational-Tables,

Spreadsheet-Tables and Tablib as the training corpus in Table 7. Our results show that the

performance with Relational-Tables and Tablib follows a similar trend, both are better than

Spreadsheet-Tables. This can be attributed to the fact that Spreadsheet-Tables are crawled

from human-generated spreadsheet tables, which tend to be noisier than the machine-generated

tables in Relational-Tables and Tablib. This observation suggests that the quality of the training

corpus plays a critical role in the effectiveness of mined SDCs.

Sensitivity to training corpus size. We study the effect of varying training corpus size from 2,000

to 200,000 columns in Figure 8. On both benchmarks, quality improves with more training data,

showing the effectiveness of our data-driven approach.

Robustness to low-quality SDC candidates. To test whether Auto-Test is robust to low-quality

SDCs, we study the effect of injecting 1000 random hashing SDCs candidates (in Section 5.1).

Specifically, a random hashing SDC has a domain-evaluation function 𝑓 𝑑
ℎ𝑎𝑠ℎ

(ℎ𝑖 , 𝑣) = ℎ𝑖 (𝑣) where ℎ𝑖
is a hash function that randomly maps 𝑣 to a real number between 0 and 1. Since hash functions do

not correspond to any meaningful domain, these SDCs are inherently of low quality. We found

that all adversarial SDC candidates are rejected by our statistical test, and consequently have no

effect on our final results (e.g., with no false positive detections produced).

Additional results such as sensitivity to FPR budget, size budget, Cohen’s h, and Wilson, can be

found in [3] in the interest of space.

6.6 Quality on data-cleaning benchmarks

In addition to testing using large-scale real benchmarks collected in the wild (ST-Bench and RT-

Bench), we also test SDCs learned using Auto-Test against 9 existing data-cleaning datasets used
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Fig. 8. Sensitivity to training corpus size

in prior work [11, 16, 25, 35, 41, 55], listed in Table 8. Our goal of this experiment is to test whether

our learned SDCs can identify new constraints to complement existing constraints in these datasets,

thereby augmenting existing data cleaning algorithms.

Table 8 reports our results in terms of (1) column-level coverage, or new constraints that we

discover using SDCs not in existing ground-truth, (2) column-level precision, or the fraction of

new SDCs constraints judged as correct, (3) cell-level true-positives, or the number of erroneous

cells that the new SDCs can detect, and (4) cell-level precision, or the fraction of erroneous cells

detected by SDCs that are correct.

Column-level results. We can see that our approach can indeed discover new SDC constraints

on 16 columns (not known in existing benchmark ground-truth), from a total of 81 columns, in

which 94% new constraints are correct.

Table 9 lists all new SDCs found automatically on existing Data-cleaning benchmarks. Observe

that some of these columns do not originally have applicable constraints in benchmark ground-truth

(marked by “-”), in which case our SDCs auto-applied on such columns would clearly provide

value, by enabling new mechanisms for error detection. While for the rest of the columns existing

constraints do exist, our SDC can nevertheless still augment them. For example, on column “city”

in dataset “beers”, although there is an FD constraint between “brewery id” and “city”, there are

still many errors that cannot be reliably detected by the FD alone – e.g., the FD constraint cannot

find errors for rows with a unique brewery id in the table, while SDC can help to detect errors such

as typos (e.g., “seatle”) and incompatible values (e.g., “9th ave”) in such cases.

Cell-level results. At the cell-level, we can see from Table 8 that these automatically-installed

new SDCs alone (without using any other constraints in benchmark ground-truth, which typically

require human experts to program), can already identify 183 data values as errors, with an overall

precision of 95%, when evaluated against the ground-truth clean data.

Interestingly, using these new SDCs enable us to uncover

new errors not known or labelled in existing ground-truth, some of the example errors, and

their corresponding SDCs, are shown in Table 10. Note that no constraints are programmed on

these example columns in the existing benchmarks (indicated by “-” in the table), but the SDCs

we automatically apply, can find typos (misspelled “childern”), and incompatibility (strings like
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“empty” and “nan” mixed in data columns) that are not known in existing ground-truth. We believe

this demonstrates that SDC has the potential to augment existing data-cleaning methods, to

identify new and complementary data errors not covered by existing constraints.

We want to stress that in expert-driven data-cleaning scenarios and with experts in the loop,

existing data-cleaning algorithms and powerful formalism such as denial constraints are still way

more powerful, such that SDCs are not meant to outperform or replace existing methods in such

settings – this particular experiment is only meant to show that SDCs can serves as a new class of

constraints (auto-applied to relevant table columns), that may complement and augment existing

data cleaning methods.

7 CONCLUSIONS AND FUTUREWORK

In this work, we propose a new class of data-quality constraints that we argue are overlooked in

the literature. We show that such constraints can unify diverse column-type detection methods

in the same framework, and once learned from large table corpora using Auto-Test, can reliably

apply to new and unseen tables.

Future directions include integrating SDCs with existing integrity constraints, and study how

they may complement constraint-driven data cleaning in the expert-driven scenarios. Testing the

coverage of our proposed method on specialized domains and corpora, is another direction of future

work.
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