
Finding Competitive Price

Yu Peng, Raymond Chi-Wing Wong
The Hong Kong University of Science and Technology

{gracepy,raywong}@cse.ust.hk

ABSTRACT
Dominance analysis is important in many multi-criteria de-
cision making applications. Most previous works assume
that the price of a service is given and study how to select
“best” services according to multiple given attributes includ-
ing attribute Price. In this paper, we propose an interesting
data mining problem, finding competitive price, which has
not been studied before. Given a set of existing services, for
a new service, we want to find a price of the new service such
that the new service is not worse than any existing services.
The price found refers to a competitive price. We propose a
spatial approach which makes use of some spatial properties
and thus runs efficiently. Finally, we conducted experiments
to show the efficiency of our proposed method.

Categories and Subject Descriptors
H.2.4 [Database Manager]

General Terms
Algorithms, Experimentation

Keywords
skyline, spatial database.

1. INTRODUCTION
Dominance analysis is important in many multi-criteria

decision making applications. Recently, dominance analy-
sis [21, 13, 24, 12, 25, 17, 15] has received a lot of interest
from both research and applications.

Example 1 (Skyline). Consider four hotels, namely
h1, h2, ..., h4, which are near to a beach a1 in Sydney as
shown in Figure 1(a) where the price of each hotel is shown
in Figure 1(b).

Consider that a customer wants to look for a hotel in Syd-
ney using two factors/criteria: distance-to-beach and price.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SIGSPATIAL’ 13, November 05-08 2013, Orlando, FL, USA
Copyright 2013 ACM 978-1-4503-2521-9/13/11 ...$15.00.
.

We transform the spatial layout in Figure 1(a) and the price
of each hotel in Figure 1(b) into a new table T with two
attributes, namely distance-to-beach and price, as shown in
Table 1. This table is called a decision-making table. For ex-
ample, consider hotel h1. In Figure 1(a), we find the distance
between h1 and a1, denoted by d(h1, a1), equal to 3.0 km.
Besides, in Figure 1(b), the price of h1 is $100. Then, we
construct a tuple for h1 in table T with (distance-to-beach,
price) equal to (3.0, 100).

According to T , we want to determine the best possible
choices for the customer. For two hotels h and l, if h is bet-
ter than l in one factor, and is not worse than l in the other
factor, then h is said to dominate l. We know that shorter
distance to beach and lower price are more preferable. Thus,
h1 dominates h3 because, compared with hotel h3, hotel h1

is closer to beach and has a lower price. Hotel h2 does not
dominate h3 because h3 has a lower price than h2. Similarly,
hotel h3 does not dominate h2 because h2 has shorter dis-
tance to beach than hotel h3. A hotel that is not dominated
by any other hotel is said to be in the skyline. The hotels
in the skyline are the best possible tradeoffs among the two
factors in question. From this table, h1, h2 and h4 are in the
skyline.

Example 2 (Application). Consider that a travel
agency wants to open a new hotel hf at location indicated in
Figure 2. The travel agency has to find a suitable price for
hf called a competitive price of hf so that hf is competitive
in the existing market (including hotels h1, h2, ..., h4). From
Figure 2, we find that d(hf , a1) = 2.0. If we set the price
of hf to $300, according to T , hf will be dominated by h2.
We say that $300 is not a competitive price of hf . However,
if we set the price of hf to $230, hf will not be dominated
by any hotels in the existing market. We say that $230 is a
competitive price of hf .

From the above example, we observe that hf may or may
not be in the skyline with different prices. In this paper, we
are studying to find a competitive price of hf such that hf

is competitive in the existing market. This problem is called
finding simple competitive price.

Finding a competitive price of hf means that, after we set
the price of hf , hf is one of the best choices for the cus-
tomer to choose (because there may be more than one hotel
in the skyline). In order to make sure that hf will be chosen
by a customer in the market with a higher probability, we
would like to set the price of hf such that not only hf is
in the skyline but also hf dominates at least K existing ho-
tels where K is an input parameter. This problem is called

a
1

h
2

h
1

h
3

h
4

Hotel Price($)
h1 100
h2 250
h3 200
h4 220

(a) Spatial layout (b) Price

Figure 1: A running example

a
1

h
2

h
1

h
3

h
4

h f

Figure 2: Hotels in the map with a new hotel hf

finding K-dominating competitive price. The above problem
makes sense since it is assumed that each hotel in the ex-
isting market must be currently chosen by some customers
and thus still exists in the market. If this assumption does
not hold, it is very likely that the hotels do not exist in the
market because no customers choose these hotels. Thus, if
hf dominates these existing hotels, the customers who orig-
inally choose these hotels will choose hf finally.

Example 3 (K-dominating Competitive Price).
If we set the price of hf to $230, according to T , hf does
not dominate any hotels. However, if we set it to $210, hf

dominates one hotel, namely h4. $210 is a price for problem
finding 1-dominating competitive price but $230 is not.

Note that our two problems are not limited to one attrac-
tion. Instead, we consider multiple attractions. In addition
to beach, Opera House and Sydney Aquarium are two other
possible attractions in Sydney. In this paper, we will de-
scribe later how we consider multiple attractions.

Setting a competitive price is common in daily life applica-
tions. One example is setting a selling price (or a rental rate)
of an apartment where attractions can be railway stations
and shopping malls. Another example is setting a parking
fee of a car park where attractions can be shopping malls
and museums.

The following shows our contributions. Firstly, to the
best of our knowledge, we are the first to study problems
finding simple competitive price and finding K-dominating
competitive price. In the problems, one of the objectives is
to find a competitive price of a hotel hf such that hf is in
the skyline. Most existing works in the literature study how
to find all hotels in the skyline if the price of each hotel is
given. Secondly, we propose an effective spatial approach
by using some spatial properties. Thirdly, we conducted
experiments to show the efficiency of our proposed approach
and illustrate with a real case study.

The rest of the paper is organized as follows. Section 2 for-
mulates our proposed problems, namely finding simple com-
petitive price and finding K-dominating competitive price.
Section 3 proposes a spatial approach. Section 4 discusses

Hotel Distance-to-beach(km) Price($)
h1 3.0 100
h2 1.0 250
h3 4.0 200
h4 2.5 220

Table 1: A decision-making table T

some extensions of our problem. Section 5 evaluates the pro-
posed technique through extensive experiments with both
real and synthetic datasets and illustrates the process with
a real case study. Section 6 gives the related work. Section 7
concludes the paper with directions for future work.

2. PROBLEM DEFINITION
We have a set H of m objects, namely h1, h2, ..., hm, in

the Euclidean space, each of which represents a service-site
(e.g., a hotel in Figure 2). We also have another set A
of n objects, namely a1, a2, ..., an, in the same space, each
corresponding to an attraction-site (e.g., a beach). For each
service-site h ∈ H , we use h.p to denote its price. For each
h ∈ H and a ∈ A, the distance between h and a is denoted
by d(h, a).

We consider a general situation where each pair of objects
in each Cartesian product H × {aj} has a distinct distance
for each j ∈ [1, n]. That is, for each attraction-site aj , any
2 service-sites h and h′ have distinct distances to aj (i.e.,
d(h, aj) 6= d(h′, aj)). This assumption allows us to avoid sev-
eral complicated and uninteresting “boundary cases”. When
the assumption is not satisfied, an infinitesimal perturbation
to the positions of some service-sites or attraction-sites can
always be applied, to break the tie of the distances of two
object pairs. Due to the tininess of perturbation, results
obtained from the perturbed datasets should be as useful as
those from the original datasets.

In order to analyze which service-site h in H is bet-
ter than other service-sites in H , we define a table called
a decision-making table T with n + 1 attributes, namely
X1, X2, ..., Xn+1, as follows. For each object h ∈ H , we con-
struct a tuple in form of (x1, x2, ..., xn+1) where xj is equal
to d(h, aj) for each j ∈ [1, n] and xn+1 is equal to h.p. We
denote each value xj by h.Xj for j ∈ [1, n + 1]. Table 1
shows an example of the decision-making table T . In our
running example, since there are 4 hotels and one attraction,
m = 4 and n = 1. Thus, there are two attributes in T where
X1 =“Distance-to-beach” and X2 =“Price”. In T , there are
4 correspondence tuples. Let X = {X1, X2, ..., Xn+1}.

Consider two service-sites h and h′ according to table T .
Service-site h is said to dominate h′ if for any attribute X ∈
X , h.X ≤ h′.X and there exists an attribute X ′ ∈ X such
that h.X ′ < h′.X ′. Given a hotel h, we define D(h) to be a
set of all service-sites which are dominated by h.

Definition 1 (Skyline). A service-site h ∈ H is in
the skyline if h is not dominated by any service-sites in H.

We denote all service-sites in the skyline by SKY (H). In
Table 1, it is easy to verify that h1, h2 and h4 are in the
skyline. Besides, D(h1) = {h3}, D(h2) = ∅, D(h3) = ∅ and
D(h4) = ∅.

Consider that a company wants to start a new service-
site hf and wants to find a competitive price of hf , denoted
by hf .p, such that this new service-site will not be worse
than any existing service-site. Suppose that hf .p is set to

a non-negative value. We say that hf meets the skyline
requirement if hf is in the skyline SKY (H ∪ {hf}).

Consider a scenario that the price of each existing service-
site is non-zero. A trivial solution is to set the price of hf

equal to $0. However, the company wants to earn as much
profit as possible. In Example 2, we learn that if we set the
price of hf too high (e.g., $300), then hf is dominated by
other existing service-sites. Apparently, we should choose
a suitable value for the price of hf which is not too low
and too high. The following monotonicity property helps
to determine a suitable value: Consider two possible non-
negative real numbers p1 and p2 where p1 ≥ p2. If hf meets
the skyline requirement when hf .p is set to p1, then hf meets
the skyline requirement when hf .p is set to p2.

Let ps be a non-negative real number such that hf meets
the skyline requirement when hf .p is set to ps. This mono-
tonicity property suggests that hf meets the skyline require-
ment when hf .p is set to any value at most ps. This means
that hf .p can be set to many possible values such that it sat-
isfies the skyline requirement. In this paper, we are studying
to return a price range of hf (instead of a particular price
value) such that hf satisfies the skyline requirement. Let
pmax,s be the maximum possible price for the skyline re-
quirement. Formally, we define a price range Rs of hf in
form of “0 ≤ hf .p < pmax,s” such that after we set hf .p to
be any possible value in this range Rs, hf satisfies the sky-
line requirement. Note that, in order to avoid discussing the
complicated and uninteresting boundary case, we assume
that hf .p 6= pmax,s in our problem setting.

Problem 1. (Finding Simple Competitive Price) Given
a new service-site hf , we want to find a price range Rs of
hf in form of “0 ≤ hf .p < pmax,s” where pmax,s is a non-
negative real number such that (1) pmax,s is maximized and
(2) hf is in SKY (H∪{hf}) if we set hf .p to be any possible
value in Rs.

After we set the price of hf to a value within Rs, hf is one
of the best choices for the customer to choose (because there
may be more than one service-site in the skyline). In order
that hf becomes more competitive among all the service-
sites in SKY (H ∪ {hf}), we want that hf can attract more
customers who originally chose other service-sites. This mo-
tivates us to propose another problem in which not only hf

is not worse than any existing service-site but also hf dom-
inates at least K existing service-sites. Intuitively, if K is
larger, then hf dominates more service-sites. Consequently,
more customers will choose hf .

We say that hf meets the K-dominating requirement if hf

dominates at least K existing service-sites (i.e., |D(hf)| ≥
K). Similarly, let pmax,d be the maximum possible price for
the K-dominating requirement. We define the price range
Rd of hf in form of “0 ≤ hf .p < pmax,d” such that after
we set hf .p to be any possible value in this range Rd, hf

satisfies the K-dominating requirement.
A service-site hf is said to meet requirement R if hf sat-

isfies both the skyline requirement and the K-dominating
requirement. Note that pmax,s is the maximum possible
price for the skyline requirement and pmax,d is the maximum
possible price for the K-dominating requirement. Thus,
the maximum possible price for requirement R, denoted by
pmax, is equal to min{pmax,s, pmax,d}.

Similarly, requirement R satisfies the monotonicity prop-
erty: Consider two possible non-negative real numbers p1

and p2 where p1 ≥ p2. If hf meets R when hf .p is set to p1,
then hf meets R when hf .p is set to p2.

Problem 2. (Finding K-dominating Competitive
Price) Given a non-negative integer K and a new service-
site hf , we want to find a price range R of hf in form of
“0 ≤ hf .p < pmax” where pmax is a real number such that
(1) pmax is maximized, (2) hf is in SKY (H ∪ {hf}) and
(3) |D(hf)| ≥ K if we set hf .p to be any possible value in
R.

In the above problem formulation, Condition (2) and Con-
dition (3) correspond to the skyline requirement and the K-
dominating requirement, respectively. In the above problem,
we want to maximize pmax. In the following, when we say
the optimal solution, we refer to this maximized value.

Note that problem Finding K-dominating Competitive
Price is more general than problem Finding Simple Compet-
itive Price. This is because when K is equal to 0, problem
Finding K-dominating Competitive Price becomes problem
Finding Simple Competitive Price. In the following, we fo-
cus on solving problem Finding K-dominating Competitive
Price.

A naive approach to this problem is described as follows.
For each possible non-negative real number v, it tries to set
the price of hf to be v and test whether hf satisfies the sky-
line requirement and the K-dominating requirement. If yes,
v is a possible solution for pmax. Finally, it selects the great-
est value such that hf satisfies the requirements. But, since
there are a large number of possible values, this approach is
infeasible. In the following, we propose an approach which
avoids testing the requirements with a large number of pos-
sible values.

3. SPATIAL APPROACH
In this section, we propose a spatial approach which makes

use of some spatial properties and runs efficiently in large
datasets.

Problem Finding K-Dominating Competitive Price has
two requirements, namely the skyline requirement and the
K-dominating requirement. We propose a spatial approach
which meets the above two requirements. Specifically, it
involves the following three major phases.

• Phase 1 (for Skyline Requirement): We find the
maximum possible price for the skyline requirement,
denoted by pmax,s.

• Phase 2 (for K-Dominating Requirement): We
find the maximum possible price for the K-dominating
requirement, denoted by pmax,d.

• Phase 3 (for Requirement R): We compute the
maximum possible price for requirement R (which
combines the above two requirements), denoted by
pmax, to be min{pmax,s, pmax,d}.

In the following, we describe how we make use of some
spatial properties to perform the above three phases effi-
ciently.

3.1 Notations
Given an attraction-site aj and a new service-site hf , we

define the critical region (named as “dominance region” in
[19, 20]) for attraction-site aj , denoted by Rj , to be the

a
1

h
2

h
1

h
3

h
4

h f
a

1

h
2

h
1

h
3

h
4

h f

a
2

a
3

a
1

h
2

h
1

h
3

h
4

h f

a
2

a
3

(a) R1 (b) I(=
⋂3

j=1 Rj) (c) U(=
⋃3

j=1 Rj)

Figure 3: Region

a
1 a

2

a
3

a
4

a
5

a
6

h f
h i a j

ak

S f S f

(a) An example (b) Illustration of proof of Lemma 1

Figure 4: Convex Hull

region occupied by the circle centered at aj with radius equal
to d(hf , aj). For example, in Figure 3(a) which has the same
objects as Figure 2, the shaded region is R1.

The critical region for attraction-site aj is used to effi-
ciently determine whether a service-site hi ∈ H is nearer
to attraction-site aj compared with hf . Specifically, if a
service-site hi is inside Rj , then we know that hi is nearer
to attraction-site aj compared with hf . Otherwise, we know
that hi is farther from aj . For example, in Figure 3(a), since
h2 is in R1, h2 is nearer to a1 compared with hf . On the
other hand, h3 is farther from a1 since h3 is outside R1.

We also define
⋂n

j=1 Rj (
⋃n

j=1 Rj) to be the intersection

(union) among all regions represented by R1, R2, ..., Rn. Let
I =

⋂n

j=1 Rj and U =
⋃n

j=1 Rj . For example, Figure 3(b)

and Figure 3(c) show the same objects as Figure 3(a) with
two additional attraction-sites, namely a2 and a3. The
shaded region in Figure 3(b) denotes I and the shaded re-
gion in Figure 3(c) denotes U .

Given a set A of n objects in a Euclidean space, the convex
hull of A [10] is a minimal set of objects in A such that
these objects form a convex polygon and all objects in A
are inside the region occupied by this convex polygon. Let
the region occupied by the convex polygon for the convex
hull of A be CH(A). For example, Figure 4(a) shows some
objects represented by black dots where A is equal to a set of
all black dots. The convex hull of A is {a1, a2, a3, a4, a5, a6}.
The convex polygon in the figure corresponds to the polygon
for the convex hull of those objects. The shaded region in
the figure corresponds to CH(A) (i.e., the region occupied
by the polygon).

3.2 Properties
In this subsection, we give some spatial properties for

problem Finding K-Dominating Competitive Price which
can be used to speed up the computation.

This problem has two requirements. Consider the first
requirement, the skyline requirement. In order to determine
pmax,s for the skyline requirement, we have the following
two lemmas.

Lemma 1. Suppose hf is inside CH(A). hf is in the sky-
line SKY (H ∪ {hf}) no matter what value pmax,s is.

Proof: We prove by contradiction. Suppose hf .p is set
to a non-negative value such that hf is not in the skyline

SKY (H ∪{hf}). That is, there exists a service-site hi dom-
inating hf .

Since hi dominates hf , we deduce that, for all attribute
X ∈ X , hi.X ≤ hf .X and there exists an attribute X ′ ∈ X
such that hi.X

′ < hf .X
′. Consider that we draw a perpen-

dicular bisector of a line segment joining hi and hf . Fig-
ure 4(b) shows an example that hf is inside CH(A) and
there exists a service-site hi and an attraction-site aj where
d(hi, aj) < d(hf , aj). The dashed line denotes the perpen-
dicular bisector of a line segment joining hi and hf . The
bisector cuts the Euclidean space into two sides: one side
Sf containing hf and the opposite side Sf not contain-
ing hf . It is easy to verify that, for each attraction-site
a which is inside Sf , d(hf , a) < d(hi, a). Since hf is inside
CH(A), we deduce that Sf contains a service-site ak other
than aj in the convex hull of A. Since ak is inside Sf , we
deduce that d(hf , ak) < d(hi, ak). That is, hf .Xk < hi.Xk,
which leads to a contradiction that, for all attribute X ∈ X ,
hi.X ≤ hf .X.

Lemma 2. Suppose hf is not inside CH(A). If we set
pmax,s to be minh∈I h.p, then hf is in the skyline SKY (H ∪
{hf}).

Proof: Note that hi is nearer to all attraction-sites com-
pared with hf if and only if hi is inside I. With notation I,
Lemma 2 can be re-written as follows: “hi dominates hf if
and only if (1) hi is inside I and (2) hf .p ≥ hi.p”. If we set
pmax,s to be minh∈I h.p, since hf .p < pmax,s, hf is in the
skyline SKY (H ∪ {hf}).

From Lemma 1 and Lemma 2, we learn that, if hf is inside
region CH(A), pmax,s can be set to any value and thus hf is
in the skyline SKY (H∪{hf}). Note that we do not need to
scan any service-sites in this case. If hf is not inside region
CH(A), then pmax,s is set to be minh∈I h.p. In this case,
we only need to scan the service-sites in region I.

Consider the second requirement, the K-dominating re-
quirement. In order to determine pmax,d for this require-
ment, we have the following lemma.

Lemma 3. Suppose that there are at least K service-sites
not in U. If we set pmax,d to be the K-th greatest price (i.e.,
h.p) among all service-sites h not in U, then hf dominates
at least K service-sites.

Proof: Note that hi is farther from all attraction-sites com-
pared with hf if and only if hi is not inside U . With notation
U , we re-write Lemma 3 as follows “hf dominates hi if and
only if (1) hi is not inside U and (2) hf .p ≤ hi.p.” If we set
pmax,d to be the K-th greatest price (i.e., h.p) among all
service-sites h not in U , since hf .p < pmax,d, hf dominates
at least K service-sites.

With the above lemmas, in order to meet the K-
dominating requirement, we have to set pmax,d to be the

Algorithm 1 Algorithm for Finding K-Dominating Com-
petitive Price

1: find I and U
2: // Phase 1: To meet the skyline requirement, we find a price

pmax,s

3: find CH(A)
4: if hf is inside CH(A) then

5: pmax,s ←∞
6: else

7: pmax,s ← min
h is inside I

h.p

8: end if

9: // Phase 2: To meet the K-dominating requirement, we find a
price pmax,d

10: pmax,d ← the K-th greatest price among all service-sites not in
U

11: // Phase 3: Finding K-Dominating Competitive Price pmax

12: pmax ← min{pmax,s, pmax,d}
13: return pmax

K-th greatest price among all service-sites not in U . There
are two issues related to the above lemma. The first issue is
how we set pmax,d when there are less than K service-sites
not in U . In this case, we report to the user that hf cannot
dominate at least K service-sites with the current value of
K and suggest the user should provide a smaller value of K.
The second issue is how we set pmax,d when K is set to 0.
In this case, we set pmax,d to ∞.

In order to satisfy requirement R (which combines the
above two requirements), the final price is set to pmax =
min{pmax,s, pmax,d}.

3.3 Algorithm
Algorithm 1 shows the algorithm for finding K-

dominating competitive price. With the above lemmas, it is
easy to verify the following theorem.

Theorem 1 (Correctness). Algorithm 1 returns the
optimal solution of problem Finding K-Dominating Compet-
itive Price.

Some readers may notice that pmax,s can be equal to ∞
(which can be found in line 5 of Algorithm 1) when hf is
inside CH(A). However, if K is greater than 0, then it is
easy to verify that pmax,d is equal to a value at most the
price of one of the service-sites in H and thus is not equal
to ∞. Finally, the competitive price pmax (which is equal
to min{pmax,s, pmax,d}) is not equal to ∞. If K is equal
to 0, then we set pmax,d to ∞. In this case, it is possible
that pmax is ∞ (because pmax,s can be equal to ∞ and
pmax = min{pmax,s, pmax,d}). Since it is not reasonable to
return ∞ as the answer for pmax in real-life applications, in
our implementation, we set pf to be the price of the nearest
service-site of hf .

We know that the lemmas (Lemmas 1, 2 and 3) can help
us to find the competitive price efficiently since we do not
need to scan all service-sites in H . Besides, we make use of
an indexing structure, an R*-tree, to further speed up the
computation of finding some service-sites dominated by a
given service-site. Moreover, we will give a theoretical time
complexity analysis.

3.4 Detailed Steps and Theoretical Analysis
In Algorithm 1, we need to determine two regions I and
U . Besides, we also need to find the service-sites in I and
find the service-sites not in U . In the following, we describe

how we achieve the above steps efficiently by using some
spatial index techniques.

Now, we give the detailed steps of Algorithm 1 and analyze
its complexity. There are five major steps in the algorithm.

Step 1 (Finding I and U): Firstly, for each aj ∈ A, we
construct Rj which is a circle centered at aj with radius
d(hf , aj). Since the circle construction takes O(1) time and
there are n attraction-sites in A, this step takes O(n) time.
Secondly, we construct I (U) by performing an intersection
(union) operation over all Rj ’s. In our implementation, we
conceptually represent I (U) by storing a list L of Rj ’s.
Note that L contains n elements for Rj . This step takes
O(n) time. Thus, Step 1 takes O(n) time.

Step 2 (Finding Convex Hull): Step 2 finds the convex hull
over set A. Let α(N) be the running time to find the convex
hull over a set of size N . Step 2 takes O(α(n)) time. We
adopt the algorithm from [10] to find the convex hull where
the running time of this algorithm is O(N logN) time. Thus,
Step 2 requires O(n log n) time.

Step 3 (Checking whether hf is inside CH(A)): It is easy
to verify that checking whether hf is inside CH(A) requires
O(n) time. If hf is inside CH(A), then we assign pmax,s

with ∞, which takes O(1) time. Otherwise, we do the fol-
lowing step. We find all service-sites in region I. This step
can be done by performing range queries over set H . Specif-
ically, for each Rj in L (representing I), we perform a range
query over set H with a circle centered at aj with radius
d(hf , aj). Let β(N) be the running time of a range query
over the dataset of size N . Since L contains n elements and
each range query takes O(β(m)) time, the running time of
this sub-step is O(n · β(m)). Then, we perform intersec-
tion operations among all results obtained from the above
range queries. With the bitwise implementation, an inter-
section operation with two sets can be done in O(1) time.
Since there are O(n) intersection operations, this step takes
O(n) time. Among all service-sites in region I, we find
the smallest price. The overall running time for Step 3 is
O(n + n · β(m) + n) = O(n · β(m)). If I is empty or there
is no service-site in I, then we assign pmax,s with ∞ imme-
diately.

In the literature, β(m) is theoretically bounded [9]. Let J
be the greatest result size of a range query (i.e., the greatest
number of service-sites in the range). In our problem setting,
since a range query can be executed in O(J + logm) time
[9], Step 3 takes O(n(J + logm)) time.

In our implementation, we adopt an R*-tree [7] to support
range queries. It has been shown that the R*-tree performs
efficiently in real cases and is commonly adopted for range
queries although it does not have good worst-case asymp-
totic performance. Specifically, we build an R*-tree over all
service-sites in H and then perform a range query over this
R*-tree.

Step 4 (Finding the K-th Greatest Price Among all Service-
sites not in U): Firstly, we find a set R of all service-sites in
U . Similar to Step 3, this step can be done in O(n · β(m))
time. Secondly, we find a set S of all service-sites not in U by
H − R, which takes O(1) with the bitwise implementation.
Thirdly, we sort all service-sites in S in descending order
of their prices, which takes O(m logm) time. Fourthly, we
find the service-site h with the K-th greatest price, which
takes O(1) time. This value corresponds to pmax,d. The

running time of Step 4 is O(n · β(m) + 1 + m logm + 1) =
O(n · β(m) +m logm) time.

With the method used in [9], Step 4 can be done in
O(n(J + logm) +m logm) time.

Step 5 (Finding the minimum value from {pmax,s, pmax,d}):
We find pmax with min{pmax,s, pmax,d}, which takes O(1)
time.

Thus, the running time of Algorithm 1 is O(n+α(n)+n ·
β(m) + n · β(m) +m logm+ 1) = O(n+ α(n) + n · β(m) +
m logm) time.

Theorem 2. The complexity of Algorithm 1 is O(n +
α(n) + n · β(m) +m logm).

By using the methods used in [10] and [9], Algorithm 1
takes O(n+n log n+n(J + logm)+m logm) = O(n log n+
n(J + logm) +m logm) time.

4. DISCUSSION
In this section, we focus on three issues related to our

problem. The first one is how to apply our method when
multiple non-spatial attributes are considered (Section 4.1).
The second one is how to find a reasonable value of K for
the K-dominating requirement (Section 4.2).

4.1 Handling Multiple Non-spatial Attributes
In this section, we will extend our problems and our pro-

posed techniques to a general scenario when there are mul-
tiple non-spatial attributes. In this paper, we study one
single non-spatial attributes, namely attribute Price, in or-
der to simplify our discussion. In our running example, each
service-site can have multiple non-spatial attributes. For ex-
ample, in addition to attribute Price, it can have non-spatial
attributes such as star rate. Under this general scenario, the
two problems studied in this paper are still the same except
the definition of dominance relationship among service-sites
for the decision making table.

Formally, suppose each service-site h has q non-spatial
attributes, namely γ1, γ2, ..., γq. Without loss of generality,
let the last attribute γq be attribute Price. For k ∈ [1, q], the
value of each attribute γk for h is represented by h.γj . In this
problem, for each existing service-site h and each non-spatial
attribute γj , h.γj is given. For the new service-site hf , each
non-spatial attribute γj other than γq is given. We want
to find hf .γq to satisfy the skyline requirement and the K-
dominating requirement. That is, we study Problem 2 but
there are multiple non-spatial attributes (instead of a single
non-spatial attribute).

We adapt the construction of the decision-making ta-
ble with n + q attributes as follows. For each ob-
ject h ∈ H , we construct a tuple in form of
(x1, x2, ..., xn, xn+1, xn+2, ..., xn+q) where xj is equal to
d(h, aj) for each j ∈ [1, n] and xj is equal to h.γj−n for
each j ∈ [n + 1, n + q]. We denote each value xj by h.Xj

by j ∈ [1, n + q]. Let X ′ = {X1, X2, ..., Xn+q}. The dom-
inance relationship is defined on X ′ instead of X . With
this adapted dominance relationship, we can define the two
problems accordingly under this general scenario.

Our proposed approach (Algorithm 1) can be adapted to
this general scenario. All changes in the algorithm for this
scenario are related to the adapted dominance relationship
which involves the additional non-spatial attributes. Specif-
ically, there are two changes in the algorithm. The first

Service-site Star rate (γ1) Price (γ2)
h1 3 100
h2 4 250
h3 3 200
h4 4 220

Table 2: The running example with 2 non-spatial
attributes

Hotel Distance-to-beach(km) Star rate Price($)
h1 3.0 3 100
h2 1.0 4 250
h3 4.0 3 200
h4 2.5 4 220

Table 3: A decision-making table T

change is related to the skyline requirement. Let H ′ be
a set of service-sites h inside I such that, for each non-
spatial attribute γ other than attribute Price (i.e., γq),
h.γ ≤ hf .γ. In Line 7 of Algorithm 1, we modify it to
“pmax,s ← minh∈H′ h.p”. The second change is related to
the K-dominating requirement. Let H ′′ be a set of service-
sites h not in U such that, for each non-spatial attribute γ
other than attribute Price (i.e., γq), hf .γ ≤ h.γ. In Line 9
of Algorithm 1, we modify it to “pmax,d ← the K-th great-
est price among all service-sites h in H ′′”. Let us call the
modified algorithm Improved Algorithm

It is easy to verify the following theorem.

Theorem 3. Improved Algorithm returns the optimal
solution of problem Finding K-Dominating Competitive
Price when there are multiple non-spatial attributes.

Example 1 (Multiple Non-Spatial Attributes).
Let us illustrate the algorithm with our running example.
We use the example as shown in Figure 1 but the price table
is changed from the table in Figure 1 (which contains one
non-spatial attribute, namely “price”) to the table in Table 2
(which contains two non-spatial attributes, namely “star
rate” and “price”). Here, attribute “star rate” corresponds
to γ1 while attribute “price” corresponds to γ2. Note that
different from attribute “price” in which a smaller value is
more preferable, in attribute “star rate”, a larger value is
more preferable.

Similarly, we have the corresponding decision-making ta-
ble as shown in Table 3.

In this example, suppose that we set the star rate of the
new hotel hf to 3 and the location of hf to the location as
shown in Figure 2. Let K be 2.

In Phase 1, we find all the hotels in I. Only one service-
site, h2, locates inside I. Since h2.γ1 = 4 > 3 = hf .γ1,
H ′ = {h2}. Therefore, pmax,s is set to the price of h2, $250.

In Phase 2, we find all the hotels not in U. There are three
service-sites, h1, h3 and h4, not in U. And all of them have
a value on γ1 no less than hf . Thus, H ′′ = {h1, h3, h4}.
The 2-nd greatest price among all the hotels in H ′′ is the
price of h3, $200. Therefore, pmax,d is set to be $200.

In Phase 3, we can compute pmax = min{$250, $200} =
$200. Thus, the 2-dominating price of hf is $200.

4.2 How to set K

How to set a proper K is essential for the K-dominating
requirement. In some cases, users have their mind to set
the value of K because they want that hf must dominate
at least K service-sites in the existing market. However, in
some other cases, users do not have any idea about how to
set the value of K. In this section, we propose a method to
help users to determine the value of K in this case.

As we know, different values of K result in different prices,
but which price among those is more reasonable and thus
benefits the new service-site is still not known. In this sub-
section, we propose a model to suggest a way to find an
appropriate value of K based on the well-studied field of
economy and business [8].

There are some existing models in economical and busi-
ness research studying customer retention/attrition [8]. In
this subsection, we borrow the concept of the traditional
demand-and-supply model [8] in the literature to find an
appropriate value of K.

In this model, each service-site h is associated with a de-
mand, denoted by h.d, representing the total number of cus-
tomers that would like to choose this service-site. In our
running example, if there are 50 customers who want to ac-
commodate in hotel h, the demand of this hotel h.d is 50. In
our problem, for each h ∈ H , h.d is given. However, hf .d is
not given. In the following, we propose a model to estimate
hf .d.

The demand of each service-site can be obtained from
some external sources of information about the proportion
of the usage of the service-sites. In our motivating example,
this information can be the proportion of using the hotels [3].
Similar kinds of information are also available in other ap-
plications like setting a selling price of an apartment [2] and
setting a parking fee of a car park [4].

Definition 1 (Potential Loser). Given a service-
site h in H, h is said to be a potential loser if and only
if there exists a non-negative real number p such that when
hf .p is set to p, hf dominates h.

We define the set of all potential losers in H to be PL.
Without loss of generality, we assume that PL contains l
service-sites. Note that hf dominates at most l service-
sites if we set hf .p to a particular non-negative real number.
Thus, the greatest possible value of K that we can set is
l. Without loss of generality, we assume that PL contains
h1, h2, ..., hl where hi.p ≥ hi+1.p for i = 1, 2, ..., l − 1.

Definition 2 (Real Loser). Given a potential loser
h and a non-negative real number p, h is said to be a real
loser with respect to p if and only if hf .p is set to p and hf

dominates h.

Given a non-negative real number p, we define the set of
all real losers with respect to p to be RL(p). If h is a real
loser with respect to p, then we know that hf dominates h.
Thus, we know that some of the current customers choosing
h may change their preference and finally choose hf instead
of h. However, in the real-life applications, not all customers
choosing h are eager to making this change. In order to
capture this, we define an input parameter α which is a
real number between 0 and 1 and denotes the transfer rate
representing the fraction of customers who originally want
to choose h (before hf is set up) and finally choose hf (after
hf is set up). Similarly, the transfer rate α can be obtained

from some external sources of information about customers’
behaviors. There are a lot of studies related to customers’
behaviors in the literature of psychology, sociology, social
anthropology and economics. This information can be found
in the studies about customers’ behaviors [18, 14].

Suppose that hf .p is set to p. According to this transfer
rate, given a real loser h with respect to p, there are α×h.d
customers who originally want to choose h (before hf is set
up) and finally choose hf (after hf is set up). Thus, by
considering all real losers in RL(p), we deduce that the total
number of customers who originally want to choose some real
losers with respect to p and finally choose hf is equal to

∑

h∈RL(p)

α× h.d

Let us denote the above equation by a function f as follows.

f(p) =
∑

h∈RL(p)

α× h.d

Now, we are ready to define a formula for hf .d as follows.

hf .d = f(p)

Next, we describe how to determine the value of K by
using a new concept of utility. Given a non-negative real
number p, the utility of hf with respect to p, denoted by
U(p), is defined as follows.

U(p) = p× f(p)

Note that f(p) corresponds to hf .d. We conclude that p ×
f(p) corresponds to the total income for hf .

Let ui = U(hi.p) for i = 1, 2, ..., l. We deduce that

ui = hi.p× f(hi.p)

Note that hi.p is monotonically decreasing when i increases.
Besides, f(hi.p) is monotonically increasing when i in-
creases. Thus, we do not know whether ui is larger than
ui+1 or not where i = 1, 2, ..., l − 1.

According to u1, u2, ..., ul, we want to determine the value
of K as follows. Firstly, we calculate all values u1, u2, ..., ul.
Secondly, we find an integer io which gives the greatest value
of uio among u1, u2, ..., ul (i.e., io = argmaxiui). Thirdly,
we set K to io.

Example 2 (Finding K). In the running example of
Figure 2, the set of potential losers is {h1, h3, h4}. Thus,
l is 3 and the greatest possible value of K we can set is 3.
Suppose that h.d is set to 100 for each h ∈ H and α is set to
0.1. We obtain that u1 = 2200, u2 = 4000 and u3 = 3000.
Thus, the value K is 2 and the maximum utility is 4000. We
will apply this model in the case study described in Section 5.

5. EMPIRICAL STUDIES
In this section, we verify the scalability of our proposed

algorithms. The algorithms were implemented in C/C++.
All the experiments were performed on a 2.4GHz PC with
4.0GB RAM, on a Linux platform. We ran experiments on
both real and synthetic datasets.

The synthetic datasets were generated as follows. Firstly,
we collect the locations of objects in North American (e.g.,
roads, populated places and cultural landmarks) from Dig-
ital Chart of the World [5]. Let W be the set of objects.

Then, from W , we randomly select m objects as service-
sites and n objects as attraction-sites. These service-sites
and these attraction-sites form set H and set A, respectively.
The location of a new service-site hf is randomly generated.
Since there is no attribute related to price in set H , we
generate the price of each service-site in H as follows. For
each service-site h in H , we find its nearest attraction-site
a and set h.p to be a value which is randomly picked from
a normal distribution with mean equal to x/(1 + d(h, a)2)
and standard derivation equal to σ, where x and σ are two
input parameters. Intuitively, x is the (expected) greatest
possible price of a service-site when we consider the nearest
attraction-site. By default, we adopt x = 150 and σ = 27
since the real dataset (to be described next) has such a dis-
tribution. The default values of the parameters are shown as
follows: m = 200000, n = 20, K = 20, x = 150 and σ = 27.
In the following, we use the default settings unless specified
otherwise.

The real dataset was obtained from Surfy Hotel [6] which
provides information about hotels in North America, includ-
ing price and location. We select 20,000 hotels for our ex-
periment. We chose four attraction-sites, namely Status of
Liberty, Empire State Building, Museum of Art and Wall
Street. Similarly, the location of a new service-site hf is
randomly generated.

We implemented four algorithms, namely (a) Blind-
Naive, (b) Guided-Naive, (c) 3-Phase(No Index) and (d)
3-Phase(Index). (a) Blind-Naive is the naive algorithm we
described at the end of Section 2. In our implementation,
Blind-Naive tries to find a set of possible prices starting from
0 with an incremental count of 0.01 (i.e., 0.00, 0.01, 0.02,
..) such that these prices meet the skyline requirement and
the K-dominating requirement. It continues the process un-
til the largest price which meets the requirements is found.
This largest price corresponds to the answer of Blind-Naive.
(b) Guided-Naive is similar to Blind-Naive. Instead of try-
ing all possible prices in an increment count of 0.01, Guided-
Naive tries to find all possible prices of existing service-sites.
These prices can be considered as candidates for the com-
petitive price. Similarly, it tries to find the largest price
among these prices which meet the requirements as the final
answer. (c) 3-Phase(No Index) corresponds to Algorithm 1
(which is a three-phase algorithm) but it is not equipped
with any index. Specifically, it has to find I and U with-
out using any index in order to determine pmax,s, pmax,d and
pmax. (d) 3-Phase(Index) corresponds to Algorithm 1 and
it is equipped with an index, namely an aggregate R*-tree
[22], for computation. We adopted an aggregate R*-tree [22]
for the range query in 3-Phase(Index) where the maximum
(minimum) number of entries in a node is equal to 20 (10).

In the following, for clarity, we simply denote Blind-Naive
and Guided-Naive as Blind and Guided, respectively.

Since problem Finding K-Dominating Competitive Price
is a more general problem than Finding Simple Competitive
Price, in the following experimental results, we study the
former problem only.

5.1 Scalability
We evaluate the algorithms with two measurements: (1)

Price and (2) Query Time. (1) Price corresponds to three
different types of prices, denoted by pmax,s, pmax,d and
pmax, respectively. Since pmax,s may be equal to ∞ in
some cases, in our experiment, we only report any value

 0

 50

 100

 150

 200

 10 20 30 40

P
ri
ce

($
)

K

pmax, s
pmax, d

pmax

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 10 20 30 40

Q
u
e
ry

 t
im

e
 (

s)

K

Blind
Guided

3-Phase(No Index)
3-Phase(Index)

(a) (b)

Figure 5: Effect of K (Synthetic dataset)

 0

 50

 100

 150

 200

 10 20 30 40

P
ri
ce

($
)

n

pmax, s
pmax, d

pmax

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 10 20 30 40

Q
u
e
ry

 t
im

e
 (

s)

n

Blind
Guided

3-Phase(No Index)
3-Phase(Index)

(a) (b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40

S
to

ra
g
e
 (

M
B

)

n

3-Phase(Index)
Blind,Guided,3-P(No Index)

 0

 20

 40

 60

 80

 100

 120

 10 20 30 40

P
ro

p
o
rt

io
n
 o

f
p
ru

n
e
d
 p

o
in

ts
 (

%
)

n

3-Phase(Index)
Blind,Guided,3-P(No Index)

(c) (d)

Figure 6: Effect of n (Synthetic dataset)

not equal to ∞ for pmax,s. Besides, note that pmax =
min{pmax,s, pmax,d}. (2) Query time refers to the time of
executing the algorithm to find the price. For each mea-
surement, each experiment was conducted 1,000 times and
the average of the results was reported. We studied the
effects of K,n and m as follows.

5.1.1 Effect of K
Figure 5(a) shows when K increases, pmax,d decreases and

pmax,s remains the same. pmax,s is not affected by the num-
ber of dominated service-sites, while pmax,d decreases since
the K-th greatest price of the service-sites outside U de-
creases when K increases. In Figure 5(b), the query time
of each algorithm increased slightly except Guided when K
increases. This is because each algorithm has to find more
existing service-sites which are dominated by hf when K in-
creases. Note that the query time of 3-Phase(Index) is two
orders of magnitude less than 3-Phase(No Index), and much
less than the other two algorithms, because 3-Phase(Index)
does not access a lot of objects due to its pruning fea-
ture. Besides, the query times of the four algorithms de-
crease in the order of Blind, Guided, 3-Phase(No Index),
3-Phase(Index).

5.1.2 Effect of n
In Figure 6(a), when n increases, pmax,s increases. This

is because, if the total number of attraction-sites increases,
then it is less likely that a service-site dominates the new
service-site hf . However, pmax,d decreases slightly when n
increases. This is because, if there are more attraction-sites,
then similarly, it is also less likely that the new service-site

 140

 160

 180

 200

 220

 240

 260

 280

 300

 100 200 300 400

P
ri
ce

($
)

m (in thousands)

pmax, s
pmax, d

pmax

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 100 200 300 400

Q
u
e
ry

 t
im

e
 (

s)

m (in thousands)

Blind
Guided

3-Phase(No Index)
3-Phase(Index)

(a) (b)

Figure 7: Effect of m (Synthetic dataset)

 0

 100

 200

 300

 400

 500

 5 10 15 20

P
ri
ce

($
)

K

pmax, s
pmax, d

pmax

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 5 10 15 20

Q
u
e
ry

 t
im

e
 (

s)

K

Blind
Guided

3-Phase(No Index)
3-Phase(Index)

(a) (b)

Figure 8: Effect of K (Real dataset)

hf dominates other service-sites. However, in Figure 6(b),
the query time of 3-Phase(Index) remains nearly the same
when n increases, but the query time of other three algo-
rithms increases as n increases.

5.1.3 Effect of m
Figure 7(a) shows that, when the number of service-sites

increases, pmax,s decreases. This is because, if there are
more service-sites, then it is more likely that a service-site
dominates the new service-site hf . However, in the figure,
pmax,d increases with the number of service-sites because
it is more likely that hf can dominate other service-sites.
Thus, pmax,d can be higher. In Figure 7(b), the query times
of both all algorithms increase with m. The storage of all the
algorithms increases withm, as shown in Figure 7(c). In Fig-
ure 7(d), the proportion of pruned points of 3-Phase(Index)
increases slightly when m increases.

5.1.4 Effect of K on Real Dataset
We conducted experiments on real datasets, and the ex-

perimental results with the variation of K are shown in Fig-
ure 8. The trends are similar to those for the synthetic
dataset.

We also conducted experiments with the variation of m on
the real dataset and the variation of σ and x on the synthetic
dataset. For the sake of space, we omit the figures.

5.2 Case Study
In order to illustrate the practicality of our algorithm, we

use a real dataset with Manhattan hotels to show how it
can be used in reality. In this dataset, hotels correspond to
service-sites and attractions correspond to attraction-sites
in our problem setting. We choose two attractions, namely
Empire State Building and Bull Sculpture in the Wall Street.
Besides, suppose the new location where we want to set
up a new hotel hf is near to Empire State Building. In
this dataset, there are 154 hotels, and the prices of these
154 hotels ranges from $70 to $463. The average price and
the standard deviation of these hotels are $153 and $67,
respectively. There are 13 1-star hotels, 65 2-star hotels,
48 3-star hotels, 27 4-star hotels and 1 5-star hotel. We
conducted two sets of experiments for the case study. The

Star Rate of hf K = 1 K = 2
1 81 81
2 81 80
3 99 96
4 149 141
5 284 209

Table 4: Value of pmax under different star rates

first set is that each hotel (or service-site) is associated with
its location and its price only. The second set is that each
hotel is associated with its star-rate (one additional non-
spatial attribute) in addition to its location and its price. In
the second set, we adapted our proposed algorithm to deal
with the case with more than one non-spatial attribute.

For the first set, we find that pmax,s = $81. If
we set K = 1, then pmax,d = $126. Thus, pmax =
min{pmax,s, pmax,d} = $81. Similarly, if we set K = 2,
we have pmax,s = $81 and pmax,d = $119. Thus, we have
pmax = $81. For the second set, pmax has different values if
we set the star rate of the new hotel to different star rates.
Table 4 shows the results of pmax with different star rates of
the new hotel hf . In general, if the star rate of hf is higher,
then pmax is higher. This is because usually, an existing
hotel with a higher star rate has a higher price. When K
is higher, pmax decreases. This is because in order that hf

can dominate more hotels, pmax is set to a smaller value.

5.3 Experiment for Determining An Appro-
priate Value of K

In the following, the objective is to determine the value
of K by using the method introduced in Section 4.2. Here,
we also use the real dataset in Section 5.2. There are the
following three major steps. The first step is to obtain the
demands of all the hotels in the existing market. The second
step is to obtain the transfer rate α. The final step is to
find an appropriate value of K according to the information
obtained in the previous steps.

The first step can be done by gathering the information
about the hotel occupation rate (which corresponds to the
proportion of the number of rooms occupied by customers).
According to the NYC statistical report [1], on average, the
occupation rate of a hotel in New York City is around 80%.
With this occupation rate, we can calculate the demand of
each hotel by multiplying the total number of rooms in the
hotel with this occupation rate.

The second step can be done similarly by gathering the
information about customers’ behaviors. We will derive the
transfer rate α from two sources of information. According
to the first source, a statistical report from The Harvard
Business Review, a company loses 50% of their customers
every five years on average [18]. In other words, 10% of cus-
tomers are lost every year. According to the second source,
the report from the U.S. Small Business Administration and
the U.S. Chamber of Commerce [14], about 82% of the cus-
tomers who do not continue choosing the original company
choose the other better companies finally because they are
upset with the treatment they have received from the origi-
nal company. By combining the above two sources, we con-
clude that about 8.2% of all customers who originally choose
a particular company will probably choose other better com-
panies finally. Thus, we obtain α = 0.082.

The third step is to find an appropriate value of K accord-

ing to the information obtained in the previous steps. In this
experiment, we find that the set of potential losers contain
36 hotels. Suppose that we set the star rate of the new hotel
to be 2. According to the method introduced in Section 4.2,
we first find u1, u2, ..., u36. In this experiment, u1 = 894.26
and u2 = 3345.34. We also compute ui for i = 3, 4, ..., 36.
Finally, we find that u35 has the highest value among all
values u1, u2, ..., u36 and it is equal to 26834.46. Thus, we
find the appropriate value of K as 35. After we set K to be
35, we can find the corresponding competitive price of hf as
$79.

Conclusion: We find that 3-Phase(Index) finds the com-
petitive price of a new service-site more efficiently com-
pared with algorithms Blind, Guided and 3-Phase(No In-
dex). Generally, 3-Phase(Index) performs faster than other
algorithms at least two orders of magnitude.

6. RELATED WORK
Skyline has been studied in the literature of databases for

some years [21, 13, 24, 12, 25, 17, 15]. Some examples are
a bitmap method and a branch-and-bound skylines (BBS)
method [16]. Besides, [19, 20] studies how to find the skyline
over some service-sites in a Euclidean space when the price
of each service-site is given.

Recently, due to the usefulness of the analysis with the
concept of skyline, data mining community [24, 12, 11, 25]
has recently started to study the applications using skyline.
Given a service-site h, [24] proposes a decision-making prob-
lem to find what user preferences under which h is in the sky-
line. [12] studies how to mine user preferences with the use
of skyline when the users provide a list of “best” service-sites
in their minds. [11] finds skyline objects over data streams
by considering an arbitrary subset of attributes. Given a set
of products in the existing market and a set of user prefer-
ences, [25] defines an objective function for profit (or more
specifically market share) and tries to find a set of prices for
these products for maximizing the objective function. [25] is
different from us because the dominance relationship defined
in [25] is based on two different objects, namely products and
user preferences. However, the dominance relationship de-
fined here is based on the same type of objects (i.e., service-
sites). Besides, [25] does not consider the spatial location
of products (or services) but we do. [23] is to find a set
of products which are in the skyline. [23] is different from
ours because all attribute values (including attribute Price)
of the products are given but we need to find the value of
attribute Price. Besides, the spatial location of products is
not considered in [23].

To the best of our knowledge, most existing works assume
that an attribute value of a service-site is given. In this
paper, we study how to find an attribute value, specifically
price, of a new service-site.

7. CONCLUSION
In this paper, we identify and tackle two interesting data

mining problems, finding simple competitive price and find-
ing K-dominating competitive price. Although setting price
comes naturally in many real life applications, we are the
first to propose to find the price of a new service-site with
the use of skyline techniques. As future work, in addition
to price, finding the “best” location of a new service-site is
an interesting topic. Secondly, in the proposed model, each

attraction-site is represented by a single point. It is inter-
esting to study when an attraction-site is represented by an
arbitrary region. Thirdly, studying the problem with ob-
jects in the metric space other than Euclidean space is also
a possible topic.

Acknowledgements: We are grateful to the anonymous
reviewers for their constructive comments on this paper.
The research is supported by grants FSGRF13EG27.

8. REFERENCES
[1] Nyc statistics. In

http://www.nycgo.com/?event=view.article&id=78912.
[2] Realfacts. In http://realfacts.com/.
[3] Smith travel research. In

http://www.strglobal.com/News/News.aspx.
[4] Town of riverhead parking management workshop. In

http://www.riverheadli.com/
07.09.parking.management.workshop.pdf.

[5] Rtree portal. In http://www.rtreeportal.org/spatial.html,
2009.

[6] Surfy hotel. In http://www.surfy.com/, 2009.
[7] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider,

and Bernhard Seeger. The R*-tree: An efficient and robust
access method for points and rectangles. In SIGMOD, 1990.

[8] D. Besanko and R. Braeutigam. Microeconomics. Wiley,
December 7, 2004.

[9] B. Chazelle. New upper bounds for neighbor searching. In
Information and Control, 1986.

[10] R. L. Graham. An efficient algorithm for determining the
convex hull of a finite planar set. Inf. Process. Lett.,
1(4):132–133, 1972.

[11] Z. Huang, S. Sun, and W. Wang. Efficient mining of skyline
objects in subspaces over data streams. Knowledge and
Information System, 22:159–183, February 2010.

[12] B. Jiang, J. Pei, X. Lin, D. W-L Cheung, and J. Han.
Mining preferences from superior and inferior examples. In
SIGKDD, 2008.

[13] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in
the sky: An online algorithm for skyline queries. In VLDB,
2002.

[14] W. Maguire. Six reasons we lose customers. August 24,
2007.

[15] M. Nagendra and K. S. Candan. Skyline-sensitive joins
with lr-pruning. In EDBT, 2012.

[16] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and
progressive algorithm for skyline queries. In SIGMOD,
2003.

[17] Y. Peng, R. C.-W. Wong, and Q. Wan. Finding top-k
preferable products. In TKDE, 2012.

[18] F. F. Reichheld. Learning from customer defections.
Harvard Business Review, September 1, 1996.

[19] M. Sharifzadeh and C. Shahabi. The spatial skyline queries.
In VLDB, 2006.

[20] M. Sharifzadeh, C. Shahabi, and L. Kazemi. Processing
spatial skyline queries in both vector spaces and spatial
network databases. In ACM. Trans. Database Syst. 34(3),
2009.

[21] K.-L. Tan, P.K. Eng, and B.C. Ooi. Efficient progressive
skyline computation. In VLDB, 2001.

[22] Y. Tao, D. Papadias, and J. Zhang. Aggregate processing of
planar points. In EDBT, 2002.

[23] Q. Wan, R. C.-W. Wong, I. F. Ilyas, T. Ozsu, and Y. Peng.
Creating competitive products. Proc. VLDB Endow.,
2(1):898–909, 2009.

[24] R. C.-W. Wong, J. Pei, A W.-C. Fu, and K. Wang. Mining
favorable facets. In SIGKDD, 2007.

[25] Z. Zhang, L. Lakshmanan, and A. K.H. Tung. On
domination game analysis for microeconomic data mining.
In TKDD, 2009.

