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ABSTRACT
Bichromatic reverse nearest neighbor (BRNN) has been ex-
tensively studied in spatial database literature. In this pa-
per, we study a related problem called MaxBRNN: find an
optimal region that maximizes the size of BRNNs. Such a
problem has many real life applications, including the prob-
lem of finding a new server point that attracts as many cus-
tomers as possible by proximity. A straightforward approach
is to determine the BRNNs for all possible points that are
not feasible since there are a large (or infinite) number of
possible points. To the best of our knowledge, the fastest
known method has exponential time complexity on the data
size. Based on some interesting properties of the problem,
we come up with an efficient algorithm called MaxOverlap.
Extensive experiments are conducted to show that our algo-
rithm is many times faster than the best-known technique.

1. INTRODUCTION
Bichromatic reverse nearest neighbor (BRNN) search has

been extensively studied as an important operator in spatial
databases [10, 11, 18]. Let P and O be two sets of points
in the same data space. Given a point p ∈ P , a BRNN
query finds all the points o ∈ O whose nearest neighbors
(NN) in P are p, namely, there does not exist any other
point p′ ∈ P such that |o, p′| < |o, p|. Those points o con-
stitute the BRNN set (or simply BRNN) of p, denoted by
BRNN(p,P).

One of the typical applications of BRNN search is “se-
lection of the best service”. For example, consider that we
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want to find customers who would be more interested in vis-
iting a convenience store based on their distances. Figure 1a
shows the spatial layout of a set P of two convenience stores,
namely p1 and p2, and a set O of five customers, namely
o1, o2, o3, o4 and o5. Suppose we want to know which cus-
tomers are interested in a convenience store pi. We obtain
BRNN(p1,P) = {o1, o2} and BRNN(p2,P) = {o3, o4, o5}.

Consider that a new convenience store p3 is being set up
and the company tries to find a location to maximize the
number of customers who will go there. Suppose p3 is set
at a location as shown in Figure 1b. Then, p3 can attract
two customers, namely o1 and o2, which are the BRNN of
p3. But, suppose p3 is set up as shown in Figure 1c. Five
customers, namely o1, o2, o3, o4 and o5, are in the BRNN of
p3. In other words, different placements of p3 give differ-
ent numbers of customers who are interested in p3. In this
case, the placement of p3 in Figure 1c is better than that of
Figure 1b. The company should better set up convenience
store p3 as shown in Figure 1c compared with Figure 1b.

The problem studied in this paper is formulated as follows:
We distinguish two sets of pointsO and P , whereO is the set
of client points and P is the set of server points. All points
have a specific location in a Euclidean space. If a new point
p is added to P , we want to find a region R (or area) such
that when p is placed in R, the size of the BRNN of p is
maximized. We call this problem MaxBRNN. MaxBRNN
can be regarded as an optimal region search problem. In
the convenience store example, P corresponds to the set of
convenience stores and O corresponds to the customer set.
MaxBRNN finds the region R (or area) such that, if a new
convenience store p is set up in R, the size of the BRNN
of p is maximized. Note that different placements of p in
region R have the same BRNN. For example, suppose R
is the optimal region. If the placements of p3 as shown in
Figure 1c and Figure 1d are in R, they have the same BRNN.

Most existing works on BRNN focus on finding the BRNN
of a given point p. A naive adaptation of these techniques
to MaxBRNN can be to find the BRNN of all possible place-
ments. However, there are the following two disadvantages.
Firstly, this adaptation is infeasible, because there are a
large (or infinite) number of placements in the data space.
Secondly, it cannot summarize the region that the customers
are interested in. Problem MaxBRNN returns a single re-
gion in which every point has the same BRNN set. However,
the naive adaption returns a lot of points (in the correspon-
dence region) which have the same BRNN set. Due to the
same output (i.e., BRNN set) for different points, the com-
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Figure 1: An example

putation in this adaption involves a lot of redundant opera-
tions.

Traditional applications which exist in BRNN can also
be applied to MaxBRNN [11]. Service location planning
problem and profile-based marketing are two examples. Our
motivating example is a service location planning problem
where a convenience store is regarded as a service and the ob-
jective is to find a location to open a new convenience store
which can attract as many customers as possible. Other
service location planning applications can be setting up cof-
fee shops, fastfood restaurants, bank ATMs, gas stations
and wireless routers. In addition to daily life applications,
MaxBRNN also applies in some emergency schedules (e.g.,
natural disaster, sudden big event and military application).
In a large scale natural disaster such as the earthquake in
China, placing supply/service centers for rescue or relief jobs
is important. In a big event like US presidential campaign,
placing police force for security is also important. In a mil-
itary application, it is also essential to set up some tempo-
rary depots for gasoline and food. In profile-based marketing
[11], a company wants to set up a new service such as a cell
phone plan and similarly it wants to maximize the number
of customers who are interested in this plan.

To the best of our knowledge, there is no efficient algo-
rithm for MaxBRNN in the L2-norm space. There is only
one related work which is closely related to ours, namely [4].
[4] solves MaxBRNN in the L2-norm space and gives an al-

gorithm whose running time is O(|O| log |P|+ |O|2 +2γ(|O|))
where γ(|O|) is a function on |O| and is Ω(|O|). Since the
running time is exponential in terms of |O|, this algorithm
is not scalable with respect to dataset size.

In this paper, we propose an alternative algorithm called
MaxOverlap that finds the region which gives the maximum
size of BRNN in O(|O| log |P| + k2|O| + k|O| log |O|) time
where k can be regarded as an integer much smaller than |O|.
Compared to the exponential runtime complexity algorithm
mentioned above, our algorithm is much more efficient.

Intuitively, MaxOverlap is more efficient than the existing
work [4] because it utilizes the principle of region-to-point
transformation. It transforms the optimal region search
problem to an optimal point search problem. In the point
search problem, instead of searching all possible points in
the space, MaxOverlap can search a limited number of points
and find the optimal point efficiently. Finally, it can map
the optimal point that it finds to the optimal region in the
original problem. Since the total number of points consid-
ered in the point search problem is limited (more specifi-
cally, at most 2k|O|) while the total number of regions in
the region search problem is exponential in terms of |O|,
MaxOverlap is more efficient than the existing algorithm [4]
(which relies heavily on regions). Our experimental results
show that MaxOverlap performs 1,000,000 times faster than
the exponential-time algorithm in a dataset with 250 tuples.
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Figure 3: Different regions where different client
points are served

Our algorithm runs within 0.1s but the exponential-time al-
gorithm runs for more than 1 day in this dataset.

The rest of the paper is organized as follows. Section 2
formulates the problem MaxBRNN. Section 3 describes the
algorithm MaxOverlap, and analyzes its performance. Sec-
tion 4 evaluates the proposed techniques through extensive
experiments with real data. Section 5 reviews the previ-
ous work. Section 6 concludes the paper with directions for
future work.

2. PROBLEM DEFINITION
Suppose we have a set P of server points in a Euclidean

space D (e.g., convenience stores in Figure 1a). We also
have another set O of client points in the same space. Each
client point o is a distinct location that is associated with
a weight, w(o), which corresponds to the number of clients
at location o. For example, o is a residential estate and
w(o) is the total number of clients in this estate. Define
wmax = maxo∈O w(o), which corresponds to the greatest
number of clients at a client point (or location).

We define a region to be an arbitrary shape in the space D.
For example, Figure 2a shows a spatial layout of two client
points, namely o1 and o2, and two server points, namely p1

and p2. In Figure 2a, R1, R2 and R3 are three regions.

Definition 1 (Consistent Region). A region R is
said to be consistent if, for any two possible new server
points p and p′ in R, BRNN(p,P ∪ {p}) = BRNN(p′,P ∪
{p′}).

A consistent region R contains all possible points p which
have the same bichromatic reverse nearest neighbors. For
example, if we start a new server point p as shown in Fig-
ure 2b, BRNN(p,P ∪ {p}) = {o1, o2}. Similarly, starting a
new server point p′ at another location as shown in Figure 2c
has BRNN(p′,P ∪ {p′}) = {o1, o2}. In Figure 2d showing
that we start a new server point p′′ at another possible lo-
cation, we have BRNN(p′′,P ∪ {p′′}) = {o1}.

Since any two possible points in R1 (e.g., p in Figure 2b
and p′ in Figure 2c) have the same bichromatic reverse near-
est neighbors, R1 is a consistent region. Similarly, R2 is a
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Figure 2: Different regions with the same bichromatic reverse nearest neighbors

consistent region. However, R3 is not a consistent region
because there exists two possible new points p (Figure 2b)
and p′′ (Figure 2d) in R3 such that BRNN(p,P ∪ {p}) 6=
BRNN(p′′,P ∪ {p′′}).

Since a consistent region R contains all possible new server
points p which have the same bichromatic reverse nearest
neighbors, we define the influence set [11] of R equal to the
bichromatic reverse nearest neighbor of any possible point p
in R. This set denotes all client points which are interested
in p.

Definition 2 (Influence Set/Value). Given a con-
sistent region R, we define the influence set of R, denoted
by BRNN-R(R), to be BRNN(p,P ∪ {p}) where p is any
possible point inside R. The influence value of R, denoted
by I(R), is equal to

∑
o∈BRNN-R(R) w(o).

For instance, since R1 is a consistent region, BRNN-
R(R1) is equal to {o1, o2}. Similarly, for another consis-
tent region R2, BRNN-R(R2) is equal to {o1, o2}. Suppose
w(o1) = w(o2) = 1. Both I(R1) and I(R2) are equal to 2.

A region R is said to cover another another region R′ if all
areas of R′ are inside R. For example, in Figure 2a, region
R2 covers region R1.

In Figure 2a, in addition to R2, there are other arbitrary
consistent regions which cover region R1. Denoting all pos-
sible arbitrary consistent regions is not meaningful. Thus,
we propose a maximal consistent region as follows.

Definition 3 (Maximal Consistent Region). A
consistent region R is said to be a maximal consistent
region such that there does not exist another consistent
region R′ where (1) R′ 6= R, (2) R′ covers R, and (3)
BRNN-R(R) = BRNN-R(R′).

In Figure 2a, region R1 is not a maximal consistent region
because there exists another consistent region R2 covering
R1 where BRNN-R(R1) = BRNN-R(R2).

In Problem MaxBRNN, we would like to return the max-
imal consistent region R instead of any non-maximal consis-
tent region because R has its advantage of providing infor-
mation that all possible points having the same BRNN sets
are inside R. Returning non-maximal consistent region R′

misses the information that some points outside R′ have the
same BRNN sets as BRNN-R(R′). Note that there are an
exponential number of maximal consistent regions (in terms
of |O|), which makes the problem challenging.

Problem 1 (MaxBRNN). Given a set P of server
points and a set O of client points, we want to find the max-
imal consistent region R such that, if a new server point p
is set up in R, the influence value of R is maximized. This
problem is called MaxBRNN.

We return one maximal consistent region if there exist any
ties.

There are two challenges in this problem. The first chal-
lenge is that, apparently, it is difficult to find a maximal
consistent region because there are an infinite number of
arbitrary consistent regions. The second challenge is that
we need to return the maximal consistent region with the
greatest influence value.

The first challenge can be addressed easily by using a no-
tion of nearest location circles which can be used to represent
the maximal consistent regions. The second challenge will
be addressed in Section 3.

Definition 4 (Nearest Location Circle (NLC)).
Given a client point o, the nearest location circle (NLC)
of o is defined to the circle centered at o with radius |o, p|
where p is the nearest neighbor of o in P.

For example, Figure 3 shows the same server points and
client points as Figure 2a. The nearest neighbor of o1 in P
is p1 and the nearest neighbor of o2 in P is p2. Thus, the
circle c1 centered at o1 with radius equal to |p1, o1| is the
nearest location circle of o1 and the circle c2 centered at o2

with radius equal to |p2, o2| is the nearest location circle of
o2. In the following, we adopt a convention that an NLC
centered at oi is denoted by ci.

In this figure, we have two NLCs, namely c1 and c2. The
boundaries of these two NLCs partition the data space into
four disjoint regions, namely regions A, B, C and D. Region
A is the region formed by the intersection between the region
occupied by c1 and the region occupied by c2. Region B is
the region occupied by c1 excluding the region occupied by
c2. Region C is the region occupied by c2 excluding the
region occupied by c1. Region D is the region excluding the
region occupied by c1 and the region occupied by c2.

Suppose a new server p is to be set up. If p is located inside
circle c1, then the nearest neighbor of o1 in P will be changed
from p1 to p. Otherwise, p is not a nearest neighbor of o1. By
this reasoning, if p is inside multiple NLCs as shown in region
A, then it will become a nearest neighbor of client points
corresponding to these NLCs. It is easy to verify that regions
A, B, C and D are consistent and the influence set of regions
A, B, C and D are {o1, o2}, {o1}, {o2} and {}, respectively.
Since all of these influence sets are different, we can conclude
that regions A, B, C and D are maximal consistent regions.
Note that, if w(o1) = w(o2) = 1, the influence values of
regions A, B, C and D are I(A) = 2, I(B) = 1, I(C) = 1
and I(D) = 0, respectively.

In Figure 3, it is easy to deduce that region A is the solu-
tion of MaxBRNN because the influence value of A is max-
imized. Note that this region is represented by an intersec-
tion of NLC c1 and NLC c2. In the following, we will show
that the optimal solution of problem MaxBRNN is repre-
sented by an intersection of multiple NLCs only.

Lemma 1 (Intersection Representation). The re-
gion R returned by the MaxBRNN query can be represented
by an intersection of multiple NLCs.



Proof: The proof can be found in the appendix.

Lemma 1 suggests that we need to consider the region
formed by the intersection of some NLCs (like region A) only
for problem MaxBRNN. We do not need to consider some
regions (like region B) which are represented by some NLCs
excluding some other NLCs. For example, by Lemma 1,
region B should not be considered since it is represented by
the region occupied by c1 excluding the region occupied by
c2. Thus, this lemma reduces the search space significantly.

In the following, we are interested in maximal consistent
regions instead of non-maximal consistent regions. In the
following, when we describe regions, we mean maximal con-
sistent regions.

We define some variations on MaxBRNN, namely
MaxkBRNN, lMaxBRNN and lMaxkBRNN, as follows.

1. MaxkBRNN: k-BRNN of p ∈ P , denoted by
kBRNN(p,P), is a set of client points o ∈ O such
that p is one of the k nearest neighbors of o in P . In
MaxkBRNN, we want to find the region R (or area)
such that, if a new server p is set up in R, the size of
k-BRNN of p (i.e.,

∑
o∈kBRNN(p,P∪{p}) w(o)) is max-

imized. I(R) is equal to
∑

o∈kBRNN(p,P∪{p}) w(o) in

the setting with k-BRNN.

2. lMaxBRNN: Instead of finding one region which
gives the greatest size of BRNN, we find l regions which
give the greatest size of BRNN. Formally, let R be the
set of all possible regions. We would like to return
l regions R ∈ R with the greatest I(R) values (with
respect to BRNN).

3. lMaxkBRNN: lMaxkBRNN is a mixture of the
above two problems. We would like to find l regions
R ∈ R with the greatest I(R) values (with respect to
k-BRNN).

In the following, for the sake of illustration, we will first
focus on MaxBRNN. Then, we will extend our discussion to
the above variations of the problem.

3. ALGORITHM
The best-known algorithm [4] for problem MaxBRNN

runs in exponential time because it heavily relies on search-
ing the regions which is exponential in nature. We will
propose an algorithm called MaxOverlap which utilizes the
principle of region-to-point transformation and searches a
limited number of points.

In this section, we present algorithm MaxOverlap that
follows the properties given in Section 3.1. We also describe
how MaxOverlap can be extended to problems MaxkBRNN,
lMaxBRNN and lMaxkBRNN.

3.1 Notation and Properties
From Lemma 1, we know that the desired region R can

be represented by an intersection of multiple NLCs. Based
on this lemma, we propose an algorithm which first cre-
ate the data set D′ containing NLCs from the original data
set D containing points. Some NLCs can represent the re-
gion returned by the MaxBRNN query. Then, we perform
the region-to-point transformation and solve the problem by
searching a certain amount of points.

Specifically, first, for each client point o ∈ O, we find
its nearest neighbor p ∈ P , form an NLC c centered at o
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Figure 4: Overlapping NLCs

NLC L(c)
c1 c2, c3
c2 c1, c3
c3 c1, c2, c4
c4 c3
c5 c6
c6 c5

Table 1: Overlap table

with radius equal to |p, o| and insert it into D′. In addition,
we also define the weight of NLC c, denoted by w(c), to
be w(o). Intuitively, w(c) is the total number of clients at
point (or location) o which nearest location circle (NLC) is c.
Then, based on the overlapping relationship among NLCs,
we develop an algorithm that finds the region of MaxBRNN
query efficiently. For instance, Figure 4 shows six NLCs
where we do not show server points ∈ P in the figure for
clarity. We denote each NLC centered at oi by ci for i =
1, 2, ..., 6. NLC c3 overlaps NLCs c1, c2 and c4. We also say
that an NLC ci covers another NLC cj if all areas of cj are
inside ci. For example, NLC c3 covers NLC c4.

The overlap relationship gives a key to the efficiency of our
algorithm. The intuition is that the region of MaxBRNN
query is the intersection of overlapping NLCs such that the
total weight of overlapping NLCs is maximized. Motivated
by this observation, for each NLC c, we find a list of NLCs
that overlap with c, denoted by L(c). Table 1 shows the
list of overlapping NLCs of Figure 4. Table 1 is called an
overlap table. Each row of the overlap table is called an
entry in form of (c, L(c)). If the context of c is clear, we
write the entry as (c, L).

We define two cases when an NLC c1 covers another NLC
c2 as shown in Figure 5. We say that NLC c1 covers NLC
c2 closely if c1 covers c2 and the boundary of c1 has an
intersection point with the boundary of c2 (Figure 5a). We
say that NLC c1 covers NLC c2 disjointly if c1 covers c2 but
there is no intersection point between the boundary of c1

and the boundary of c2 (Figure 5b). An NLC c is said to
cover a point p if p is inside c or is along the boundary of c.
For example, in Figure 4, both NLC c3 and NLC c1 cover
point q1.

Lemma 2. If an NLC covers another NLC, the bound-
aries of the two NLCs must share at least one point (i.e.,
the NLC must cover another NLC closely).

Proof: We prove by contradiction. Suppose that an NLC c1

covers another NLC c2 but c1 and c2 are disjoint as shown in
Figure 5b. Consider NLC c1 centered at o1. We know that
there exists a server point p1 ∈ P at the boundary of NLC
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c1 such that p1 is the nearest neighbor of o1 in P . Similarly,
for c2 centered at o2, we also conclude that there exists a
server point p2 ∈ P at the boundary of NLC c2 such that
p2 is the nearest neighbor of o2 in P . Since c1 covers c2

disjointly, we deduce that |p2, o1| < |p1, o1|. This leads to a
contradiction that p1 is the nearest neighbor in P from o1.

Let S be a set of NLCs. We define W (S) =
∑

c∈S w(c).
Let So be a set of NLCs whose intersection corresponds to
the region R returned by a MaxBRNN query. Consider two
cases. Case 1: So contains only one NLC, which means that
the optimal solution comes from a single NLC without any
overlap or intersection with other NLCs. It is easy to verify
that W (So) = wmax where wmax = maxo∈O w(o). Case 2:
So contains more than one NLC. In this case, the optimal
solution is an intersection of more than one NLC and we
derive that W (So) > wmax. The following lemma shows an
important property about overlapping NLCs.

Lemma 3 (Vantage Point Identification). Let So

be a set of NLCs whose intersection corresponds to region
R returned by a MaxBRNN query. If So contains more than
one NLC, then there exist two NLCs, say c1 and c2, such
that region R contains (or covers) at least one intersection
point between the boundaries of c1 and c2.

Proof: We prove by contradiction. Suppose there do not
exist two NLCs, say c1 and c2, such that region R contains at
least one intersection point between the boundary of c1 and
the boundary of c2. We deduce that the shape of region R is
an NLC c in So and all other NLCs in So cover c such that
the boundary of c does not have any intersection with the
boundaries of other NLCs in So. An example of this scenario
is shown in Figure 6 where the shaded region corresponds
to R and c2 corresponds to c. By Lemma 2, the above case
is impossible since an NLC must not cover another NLC
disjointly. This leads to a contradiction.

For example, in Figure 4, the shaded region corresponds to
the region R returned by MaxBRNN query. R is formed by
an intersection operation among NLCs in So = {c1, c2, c3}.
There exist two NLCs c1 and c2 such that R contains one in-
tersection point between the boundary of c1 and the bound-
ary of c2, say q1.

From Lemma 3, we can observe that the optimal region R

must contain one of the intersection points between at least
one pair of NLCs. In other words, intersection points of
some (or all) pairs of NLCs can be regarded as candidates
in order to perform the MaxBRNN query. We call these
intersection points vantage points. In the next subsection,
we will describe how to make use of vantage points for the
MaxBRNN query.

In addition to the coverage relationship as shown in Fig-
ure 5a, there are other two kinds of overlapping relationships
as shown in Figure 7a and Figure 7b. From the above three
possible overlapping relationships, we observe that, for any
two overlapping NLCs c1 and c2 in our problem setting, the
boundary of c1 and the boundary of c2 intersect at least one
point and at most two points.

Lemma 4. If NLC c1 and NLC c2 are overlapping, the
number of intersection points between the boundary of c1

and the boundary of c2 is either one or two.

3.2 Algorithm MaxOverlap
Based on Lemma 3 and Lemma 4, we develop an al-

gorithm, MaxOverlap, which takes O(|O| log |P| + k2|O| +
k|O| log |O|) time where k can be regarded as a small integer
compared to |O|. To the best of our knowledge, there are
no existing polynomial-time algorithms for this MaxBRNN
query. We are the first to propose a polynomial-time algo-
rithm for a MaxBRNN query.

The efficiency of our algorithm heavily depends on
Lemma 3. The algorithm is designed based on the principle
of region-to-point transformation. We transform the optimal
region search problem into an optimal vantage point search
problem where the optimal vantage point can subsequently
be mapped into the optimal region. The vantage points for
the search are derived from the intersection points among
NLCs.

For example, in Figure 4, the optimal region is the inter-
section of three NLCs, namely c1, c2 an c3. Our algorithm
starts to find a set of vantage points or intersection points
between pairs of NLCs such as q1, q2, q3 and q4 (instead of
regions or NLCs). These vantage points are used to deter-
mine the optimal region directly. Let Sq be a set of NLCs
covering point q. The influence value of q is defined to be∑

c∈Sq
w(c). If we can find an optimal vantage point (i.e., q

with the largest influence value), the optimal region of our
problem MaxBRNN is equal to region R which is the inter-
section of all NLCs in Sq. For example, in Figure 4, if we can
find the vantage point q3 with the largest influence value = 3
(where Sq3 = {c1, c2, c3}), the optimal region corresponds to
the intersection of all NLCs in Sq3 .

Formally, we describe our algorithm as follows. Suppose
So is a set of NLCs whose intersection corresponds to re-
gion R returned by a MaxBRNN query. As we mentioned
before, it is easy to see that an NLC c with w(c) = wmax

corresponds to an optimal solution if So contains only one
NLC. Let us focus on finding a solution when So contains
more than one NLC. We know that all NLCs among So are
overlapping. We develop a three-step algorithm.

• Step 1 (Finding Intersection Point): We find a



set Q of all intersection points between the boundaries
of any two overlapping NLCs in the dataset. Details
of this step can be found in Section 3.3.1.

• Step 2 (Point Query): For each point q ∈ Q, we
perform a point query for q to find a set S of NLCs
covering q.

• Step 3 (Finding Maximum Size): We choose the
set S obtained in the above step with the largest value
of W (S) as our final solution.

It is easy to verify that the final solution chosen in Step 3 is
the optimal set So with the largest W (So) value by Lemma 3
and Lemma 4.

A straightforward implementation for this three-step al-
gorithm is to perform these three steps one-by-one. For
the first step, we compare all pairs of NLCs and check
whether each pair are overlapping. If so, we find the in-
tersection points of each such pair and insert them into
a set Q. Note that there are O(|O|2) pairs. For each
pair, the checking and processing can be done in O(1) time
(these steps will be described in Section 3.3.1), Step 1 takes
O(|O|2) time. Note that |Q| = O(|O|2). Then, for Step
2, we perform a point query for each q ∈ Q. Suppose
β(N) is the running time for a point query over dataset
of size N , Step 2 takes O(β(|O|) · |O|2) time. It is easy to
verify that the running time of Step 3 is O(|O|2). Thus,
the total running time of this straightforward approach is
O(β(|O|) · |O|2). It is noted that we will improve this run-
ning time to O(|O| log |P|+ k2|O|+ k|O| log |O|) with some
techniques that will be described next.

Although this straightforward approach can find an opti-
mal solution, it is inefficient because Step 1 has to process
all possible pairs of overlapping NLCs. In fact, some pairs
of overlapping NLCs need not be considered and processed
in Step 1 if there exists another pair whose intersection has
a larger influence value and thus is a better choice as a solu-
tion. If we only process those “better” pairs of NLCs instead
of all possible pairs in Step 1, the computation can be im-
proved. The following lemma points to this influence-based
pruning.

Lemma 5 (Influence-based Pruning). Let I be a
lower bound of the optimal influence value Io (i.e., I ≤ Io).
An optimal solution is a region that does not involve any
NLC c where (c, L) is an entry for c in the overlap table T
and W (L) < I − w(c).

Proof: Suppose an optimal solution is a region involving
NLC c. Consider an entry (c, L). NLC c overlaps at most |L|
NLCs. Let Q′ be the set of all intersection points q between
the boundaries of c and c′ where c′ ∈ L. We know that
q′ ∈ Q′ is covered by at most |L|+1 NLCs (including c itself).
The influence value I ′ of q′ ∈ Q′ is at most W (L) + w(c).
That is, I ′ ≤ W (L) + w(c). Since an optimal solution is a
region involving c, by Lemma 3, there exists one q′ ∈ Q′ such
that I ′ ≥ I . For this q′, we derive that W (L) ≥ I − w(c),
which leads to a contradiction.

With Lemma 5, we can safely remove all entries (c, L)
from the overlap table T where W (L) < I−w(c) if we know
the lower bound I of the optimal influence value. For exam-
ple, in Figure 4, suppose that we know the lower bound I is
equal to 3 and w(c) = 1 for each NLC c. Then, entries for

c4, c5 and c6 in Table 1 are removed safely because their cor-
responding overlapping lists L in T have W (L) = 1, which
is smaller than I − w(c) = I − 1 = 3− 1 = 2.

In the following, we propose algorithm MaxOverlap (Al-
gorithm 1) which interleaves the execution of these three
steps and thus a lot of candidate pairs can be pruned.

First of all, we construct an overlap table T . Let So and
Io be the variables that store the set of the optimal solution
and the optimal influence value, respectively, that are found
so far. Initially, So is set to the NLC c with the largest
w(c) value and Io is set to w(c). Then, we process each
entry (c, L) one by one. We introduce a variable A that
stores a set of NLCs whose entries have been processed. A

is initialized to ∅. The purpose of maintaining A is to avoid
processing each pair of NLCs more than once.

Specifically, we iteratively perform the following steps.
First, we remove an entry (c, L) with the largest W (L) value
from T for processing since it is very likely that NLC c is
involved in the optimal solution. For each c′ ∈ L − A, we
compute all intersection points between c and c′. For each
intersection point q, we perform a point query to find all
NLCs covering q. Let S be the result of this point query. If
W (S) > Io, then we update Io with W (S) and So with S.
Next, we insert c into A. Finally, we perform an influence-
based pruning step to remove all unnecessary NLCs from
consideration. We repeat the above computation until all
entries in T are exhausted.

Algorithm 1 Algorithm MaxOverlap

1: for each o ∈ O do
2: construct an NLC for o

3: build the overlap table T
4: choose the NLC c with the largest w(c)
5: So ← {c}
6: Io ← w(c)
7: A← ∅
8: while there exists an entry in T do
9: remove an entry (c, L) with the largest value of W (L)

from T
10: for each NLC c′ ∈ L− A do
11: compute the intersection points between the bound-

ary of c and the boundary of c′ (See Section 3.3.1)
12: for each intersection point q found do
13: perform a point query from q to find all NLCs

covering q
14: let S be the result of the above point query
15: I ← W (S)
16: if I > Io then
17: So ← S

18: Io ← I
19: A← A ∪ {c}
20: remove all entries (c′, L′) from T where W (L′) < Io−

w(c′)

Example 1. Consider the example shown in Figure 4
and the overlap table shown in Table 1. Suppose w(c) = 1
for each NLC c. Firstly, we choose an NLC, say c1, with the
largest w(c) value. Then, we initialize Io = 1, So = {c1},
and A = ∅.

Secondly, we perform the iterative steps as follows. We
remove the entry (c3, L), where L = {c1, c2, c4}, from the
overlap table T since it has the largest W (L) value. We then



consider processing three possible pairs of NLCs between c3

and an NLC in L, namely (c3, c1), (c3, c2) and (c3, c4). Take
(c3, c1) for illustration. We compute the two intersection
points between the boundary of c3 and the boundary of c1,
namely q4 and q3 (as shown in Figure 4).

Then, we perform a point query for q4 and obtain result
S = {c3, c1} which covers q4. Then, I is set to W (S) (i.e., 2).
Since I > Io, we update So = S = {c3, c1} and Io = I = 2.

In addition to q4, we also perform a point query for q3.
Similarly, we obtain S = {c1, c2, c3} which covers q3 and I
= 3. Similarly, since I > Io, we update So and Io to be
{c1, c2, c3} and 3, respectively.

Next, A is updated to {c3}. Since entries for c4, c5 and c6

have their L’s such that W (L) < Io −w(c) (i.e., 1 < 3− 1),
we perform an influence-based pruning step to remove these
entries from the overlap table.

After processing entry (c3, L), we continue with processs-
ing the entry (c1, L), since it has the second greatest W (L)
value. So and Io remain unchanged in this case, and A is up-
dated to A∪{c1} = {c1, c3}. We do not need to remove any
entries with the influence-based pruning in this iteration.

Since only entry (c2, L) is left in the overlap table, we
process it. Since L − A = ∅, this entry is skipped. No
updates are necessary for So and Io, and A is updated to
A ∪ {c2} = {c1, c2, c3}. The algorithm terminates.

The final answer can be found from So and Io. That is,
the optimal solution is the region which is a result of the
interesection of {c1, c2, c3}, and the influence value is 3.

With Lemma 5, it is easy to verify the following theorem.

Theorem 1. Algorithm 1 returns the region R with the
largest influence value (i.e., the optimal solution returned by
the MaxBRNN query).

3.3 Detailed Steps
In this section, we first describe how we compute the inter-

section points between the boundaries of two NLCs. Then,
we analyze the complexity of Algorithm 1.

3.3.1 Intersection Point Computation
In this section, we describe how we compute the intersec-

tion points between the boundaries of two NLCs c1 and c2.
The boundary of an NLC c can be expressed as a mathemat-
ical equation. Consider the Cartesian coordinate system.
Suppose that c1 and c2 are the NLC centered at coordinate
(a, b) with radius r and the NLC centered at coordinate
(c, d) with radius s, respectively. They can be expressed
as (x − a)2 + (y − b)2 = r2 and (x − c)2 + (y − d)2 = s2,
respectively.

Suppose c1 and c2 overlap. By Lemma 4, we know that
the boundaries of c1 and c2 have at most two intersection
points, say q1 and q2. It is easy to derive q1 and q2 given the
centers and the radii of c1 and c2 by elementary mathemati-
cal techniques. Note that the intersection point computation
for q1 and q2 takes O(1) time. Details of the computation
can be found in [16].

3.3.2 Complexity
Algorithm 1 has the following five detailed steps.

Step 1 (NLC Construction): For each o ∈ O, we perform a
nearest neighbor query at o to find the nearest point p in P
from o. Then, we create an NLC centered at o with radius

|o, p|. Let α(N) be the running time of a nearest neighbor
query over the dataset of size N . Since there are |O| data
points in O, Step 1 requires O(|O|α(|P|)) time.

Nearest neighbor queries can be accomplished in logarith-
mic time. Since each nearest neighbor query over N two-
dimensional data points can be solved in O(log N) time with
an index that consumes O(N) space (e.g., a trapezoidal map
over the Voronoi diagram [8]), each nearest neighbor search
over dataset P requires O(log |P|). Thus, the total running
time of this step is O(|O| log |P|).

In our implementation, we adopt the R*-tree [2] which is
available in commercial databases to support nearest neigh-
bor queries. Although R*-tree does not have good worst-
case asymptotic performance, it has been shown to be fairly
efficient in real cases and has been commonly adopted for
nearest neighbor queries. Specifically, we build an R*-tree
RP over all data points in P and then perform a nearest
neighbor query for each o ∈ O.

Step 2 (Overlap Table Construction): For each NLC c cen-
tered at o with radius r, we perform a range query from
o with a radius r to find all NLCs that overlap with this
range. Let L be the result of this range query excluding
c. In the overlap table, we create an entry (c, L) for this
NLC. Let β(N) be the running time of a range query over
dataset of size N . Since there are |O| NLCs, Step 2 requires
O(|O|β(|O|)).

In the literature, β(N) is theoretically bounded. Let k be
the greatest result size of a range query (i.e., the greatest
number of NLCs that overlap a given NLC). Since a range
query can be executed in O(k + log |O|) time [7], Step 2 can
be done in O(|O|(k + log |O|)).

With similar reasons, in our implementation, we also
adopt the R*-tree to support the range querying. Specif-
ically, we build another R*-tree RC over all NLCs that are
created in the above step, and then perform a range query
for each o.

Step 3 (Initialization): We initialize So, Io and A, which
takes O(|O|) time.

Step 4 (Entry Sorting): We sort all entries (c, L) in the
overlap table T in descending order of W (L), which takes
O(|O| log |O|) time.

Step 5 (Iterative Step): We repeat the following steps until
no entry remains in the overlap table T . We pick entry
(c, L) with the greatest W (L) value in T , which takes O(1)
time. Then, for each c′ ∈ L − A, we perform the following
sub-steps.

1. We compute the intersection points between the
boundaries of c and c′. As shown in Section 3.3.1,
the cost of computing the intersection points is O(1).

2. For each intersection point q found in the above step,
we perform a point query for q to find all NLCs cover-
ing q and obtain S. Let θ(N) be the running time of
a point query over a dataset of size N . A point query
over dataset containing NLCs runs in O(θ(|O|)). Since
there are at most two intersection points for one pair
of NLCs, this sub-step requires O(θ(|O|)) time.

Recall that k is the greatest number of NLCs overlapping
with a NLC (i.e., the greatest size of L of an entry (c, L)
in the overlap table T ). Performing the above sub-steps



Dataset Cardinality
CA 62,556
LB 53,145
GR 23,268
GM 36,334

Table 2: Summary of
the real datasets

Default value
(|O|) 50k
(|P|) 2|O|

Table 3: Default syn-
thetic dataset cardinali-
ties

requires O(kθ(|O|)) time. Since there are at most |O| entries
in T , Step 5 takes O(k|O|θ(|O|)) time.

With the techniques described in [6], θ(|O|) = O(k +
log |O|) and thus the running time of Step 5 is O(k|O|(k +
log |O|)).

The overall running time of Algorithm 1 is O(|O|α(|P|)+
|O|β(|O|) + |O|+ |O| log |O|+ k|O|θ(|O|)) = O(|O|α(|P|) +
|O|β(|O|) + k|O|θ(|O|))

Theorem 2 (Running Time). The running time of
Algorithm 1 is O(|O|α(|P|)+ |O|β(|O|)+ k|O|θ(|O|)) where
k is the greatest size of L of an entry (c, L) in the overlap
table T .

Algorithm 1 makes use of nearest neighbor search, range
search and point search, which is an important feature since
it opens the opportunity of leveraging the rich literature
of nearest neighbor search, range query search and point
search to optimize MaxOverlap. For example, since α(|P|)
can be accomplished in O(log |P|) [8], β(|O|) can be done in
O(k+log |O|) [7], and θ(|O|) can be achieved in O(k+log |O|)
[6], the running time can be simplified to O(|O| log |P| +
k2|O|+ k|O| log |O|).

Our algorithm has to store (1) the R*-tree RP built over
all points in P , (2) the R*-tree RC built over all NLCs and
(3) the overlap table. Let the sizes of RP and RC be SP and
SC, respectively. In the overlap table, there are at most |O|
entries and each entry has size at most O(k). The storage of
the overlap table is O(k|O|). The space cost of our algorithm
is equal to O(SP + SC + k|O|).

3.4 Extension to MaxkBRNN, lMaxBRNN and
lMaxkBRNN

Up to now, we have discussed how MaxOverlap solves the
problem of MaxBRNN. Here we discuss how MaxOverlap
can be extended to problems MaxkBRNN, lMaxBRNN and
lMaxkBRNN. We can simply focus on lMaxkBRNN since it
is the most general problem among these problems.

The adaptation of MaxOverlap is straightforward. We
only need to make two modifications in the algorithm.
Firstly, we construct an NLC according to the k-th near-
est neighbor of o in P rather than according to the nearest
neighbor of o in P (See lines 1-2 in Algorithm 1). Secondly,
we maintain l regions with the greatest influence values,
rather than maintaining only one region with the greatest
influence value (See lines 16-18 in Algorithm 1).

4. EMPIRICAL STUDY
We have conducted extensive experiments on a Pen-

tium IV 2.2GHz PC with 1GB memory, on a Linux
platform. The algorithms were implemented in C/C++.
We deployed four real datasets which are available at
http://www.rtreeportal.org/spatial.html. The summary of
the real datasets is shown in Table 2. Specifically, CA,
LB, GR and GM contain 2D points representing geomet-
ric locations in California, Long Beach Country, Greece

 0.01
 0.1

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07

 50  100  150  200  250

E
xe

cu
tio

n 
tim

e 
(s

)

Cardinality

MaxOverlap-P
MaxOverlap-NP

Arrangement
Buffer-Adapt

 100

 1000

 10000

 100000

 50  100  150  200  250

S
to

ra
ge

 (
K

B
)

Cardinality

MaxOverlap-P
MaxOverlap-NP

Arrangement
Buffer-Adapt

(a) (b)

Figure 8: Effect of cardinality (small real data set
where O=GR and P=CA)

and Germany, respectively. For datasets containing rect-
angles, we transformed them into points by taking the
centroid of each rectangle. For all datasets, each di-
mension of the data space is normalized to range [0,
10000]. Since our problem involves two datasets, namely
P and O, we generated four sets of experiments for real
datasets, namely CA-GR, LB-GR, CA-GM and LB-GM ,
representing (P ,O) = (CA, GR), (LB, GR), (CA, GM) and
(LB, GM), respectively.

Similar to [17], we also created synthetic datasets each of
which contains P following Gaussian distribution and O fol-
lowing Zipfian distribution. The coordinates of each point
were generated in the range [0, 10000]. In P , each coordi-
nate follows Gaussian distribution where the mean and the
standard derivation are set to 5000 and 2500. In O, each co-
ordinate follows Zipfian distribution skewed towards 0 where
the skew coefficient is set to 0.8. In both cases, all coordi-
nates of each point were generated independently. Since we
are studying the problem with 2D points, the dimensionality
is set to 2 in the dataset generator.

The weight of each client point in both real datasets and
synthetic datasets is set to 1 in the following experimental
results. We also conducted experiments where the weight of
each client point is any positive integer. Since the results are
similar, for the interest of space, we only report the results
when the weight is equal to 1. In the experiments, we focus
on the study of lMaxkBRNN since it is more general than
MaxBRNN, MaxkBRNN, and lMaxBRNN.

We further divide our proposed algorithm MaxOverlap
into two algorithms called MaxOverlap-P and MaxOverlap-
NP. MaxOverlap-P is our proposed algorithm which consid-
ers pruning described in Lemma 5. MaxOverlap-NP is sim-
ilar but it does not use any pruning according to Lemma 5.
In the following, when we describe MaxOverlap, we mean
both algorithms.

We compare our proposed algorithm with two algorithms.
The first one is the best-known algorithm [4, 3] called Ar-
rangement for problem MaxBRNN. The second one is an
algorithm called Buffer-Adapt which is originally designed
to solve problem MaxBRNN in the L1-norm (instead of the
L2-norm) [9] and is now adapted for problem MaxBRNN in
the L2-norm. Specifically, in Buffer-Adapt, for each client
point o, like [9], its nearest location box is constructed (to-
gether with its nearest location circle). Then, the box is
scaled by

√
2. It is easy to see that, for each client point,

its scaled nearest location box covers its nearest location cir-
cle. A variable called sol is used to store the optimal solution
found so far. Initially, sol is set to ∅. The adapted algorithm
starts the ordinary plane sweep algorithm [9]. Whenever the
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Figure 10: Effect of k (synthetic data set)

algorithm finds a set A of intersecting boxes, if the weighted
size of A is greater than the weighted size of sol, it performs
a refinement step which computes a set B of intersecting
circles (that are covered by the boxes of A) such that the
weighted size of B is maximized. If the weighted size of B is
greater than that of sol, we update sol by B. We iteratively
perform the above steps until we process all boxes. The final
solution can be found in sol.

As indicated earlier, we adopted an R*-tree [2] as an in-
dexing structure for the nearest neighbor search and the k-th
nearest neighbor search where the node size is fixed to 1k
bytes 1. The maximum number of entries in a node is equal
to 50, 36, 28 and 23 for dimensionality equal to 2, 3, 4 and
5, respectively. We set the minimum number of entries in a
node to be equal to half of the maximum number of entries.

We evaluated the algorithms in terms of two measure-
ments: (1) execution time and (2) storage. The execution
time corresponds to the time of executing the algorithms.
The memory usage of MaxOverlap is equal to the memory
occupied by the indexings and the overlap table (i.e., the R*-
tree RP built over all data points in P , the R*-tree RC built
over all NLCs and the overlap table). The memory occupied
by Arrangement is equal to the memory occupied by the
total number of faces between adjacent Voronoi cells used
in the algorithm. The memory occupied by Buffer-Adapt
is equal to the memory occupied by the indexings and the
data structures used in the plane-sweep algorithm (i.e., the
R*-tree RP built over all data points in P , the lookup table
built over all nearest location boxes where each entry of the
table stores a NLC in addition to a nearest location box and
the data structures used in the plane-sweep algorithm).

We have also evaluated algorithm MaxOverlap in terms of
other measurements, namely (3) pruning power, (4) overlap
table storage, (5) R-tree storage, (6) average no. of overlaps
and (7) average influence value. Pruning power is equal to
the number of client points are pruned without any con-
sideration according to the influence-based pruning. R-tree
storage corresponds to the memory consumption of index-

1We choose a smaller page size to simulate practical scenar-
ios where the dataset cardinality is much larger.

ing, namely RP and RC. Average no. of overlaps is the
average number of NLCs which overlap with an NLC in the
data set. The average influence value is the average in-
fluence value of regions in the output of the lMaxkBRNN
query. If l is equal to 1, the average influence value is equal
to the highest influence value.

In the experiments, we study the effect of cardinality, k
and l. All experiments were conducted 100 times and we
took the average for the results.

We present our results into two parts. The first part,
Section 4.1, focuses on the performance comparison among
all algorithms. The second part, Section 4.2, focuses on the
scalability of our proposed algorithm on datasets with larger
cardinality.

4.1 Comparisons
Since algorithm Arrangement is not scalable with respect

to large datasets, we conduct the comparison experiments
with dataset O of a smaller size, namely 50, 100, 150, 200
and 250, and dataset P of size equal to 2|O|. We adopt the
dataset CA-GR where (P ,O) = (CA, GR). Since these val-
ues are smaller than the cardinality of the real datasets, we
sample the data points accordingly. We set l = 1 and k = 1.
Figure 8a shows that the execution time of all algorithms in-
creases with the cardinality of datasets. The execution time
of Arrangement is much greater than that of MaxOverlap.
MaxOverlap performs 1,000,000 times faster than algorithm
Arrangement when |O| = 250. In particular, MaxOverlap
only runs within 0.1s but Arrangement runs more than 1
day on this dataset. This is because MaxOverlap, which
makes use of the overlap relationships among NLCs, runs in
polynomial-time but Arrangement, which considers Voronoi
cells (which is exponential in terms of the total number of
client points), runs in exponential-time. In addition, Buffer-
Adapt performs slower than MaxOverlap by a factor of or-
ders of magnitude. This is because Buffer-Adapt has some
drawbacks related to the L1-norm. Firstly, it introduces an
additional overhead related to the boxes for the L1-norm
(which does not exist in our original problem depending
on the circles for the L2-norm). Secondly, an intersection
among a certain set of boxes used in Buffer-Adapt does not
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Figure 11: Effect of k (real data set CA-GR)
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Figure 12: Effect of k (real data set CA-GM)

imply an existence of an intersection among the correspond-
ing circles (which can represent the optimal solution). Since
Buffer-Adapt has “larger” boxes (compared with circles), it
is more likely that the boxes are intersecting. Thus, more
refinement steps need to be done redundantly. Furthermore,
in these small data sets, the execution times of MaxOverlap-
P and MaxOverlap-NP are similar.

For the same setting, in Figure 8b, the storage usage of
all algorithms increase with the cardinality of the dataset.
The storage requirement of Arrangement is much larger than
that of MaxOverlap. For example, when |O| = 250, Arrange-
ment consumes about 28 times more memory than Max-
Overlap. This is because Arrangement needs to keep track
of Voronoi cells, which consumes considerably more memory
compared to the indexing structures used in MaxOverlap. In
addition, the storage of Buffer-Adapt is slightly greater than
that of MaxOverlap due to the additional storage overhead
of boxes.

As mentioned above, there exists work [9] that addresses
problem MaxBRNN in the L1-norm and this can be adapted
to the problem in the L2-norm. In the following, we apply
the original algorithm (for the L1-norm) to the problem in
the L2-norm directly without any adaption. We call this al-
gorithm Buffer. Specifically, algorithm Buffer returns a sin-
gle point that maximizes its influence value in the L1-norm
only. We took this point for the MaxBRNN query in the L2-
norm and obtained the (weighted) size of BRNN set. The
(weighted) size corresponds to the influence value returned
by Buffer. Since Buffer is not designed for the L2-norm,
the influence value with respect to the L2-norm is smaller
than the influence value returned by algorithm MaxOverlap
(or Buffer-Adapt). In all experiments with the same setup
as above, we found that, on average, the influence value of
the point returned by Buffer in the L2-norm is about 26.9%
of the optimal influence value returned by MaxOverlap (or
Buffer-Adapt), which suggests that Buffer cannot be used
as an approximate algorithm for problem MaxBRNN in the
L2-norm.

We also tried to adapt Buffer so that the adapted ap-
proach returns the optimal region (in form of box) in L1-
norm. Then, we pick a sample of points in the optimal re-

gion to perform the MaxBRNN queries in the L2-norm and
obtain the average (weighted) size of BRNN sets, which cor-
responds to the influence value returned by Buffer. Let N
be the sample size. We tested this adapted approach with
N = 250, 500, 750, 1000. On average, the influence value
returned by Buffer is at most 34.69% of the optimal influ-
ence value returned by algorithm MaxOverlap (or algorithm
Buffer-Adapt).

4.2 Scalability
The experiments reported in the previous section demon-

strates that MaxOverlap is considerably better than Ar-
rangement and Buffer-Adapt in terms of execution time and
memory consumption. In this section, we study the scala-
bility of MaxOverlap for both synthetic datasets and real
datasets (Recall that Arrangement is not scalable to handle
large datasets). The default values of the synthetic datasets
are shown in Table 3. In these experiments, we do not sam-
ple the real datasets. Instead, the cardinality of the real
datasets used in the experiments are shown in Table 2. The
default values of l and k are both 1. Figures 9 and 10 show
the results when we vary the cardinality of the dataset (i.e.,
|P|) and k, respectively.

Effect of Cardinality: Figure 9a shows that the execu-
tion times of algorithms MaxOverlap-P and MaxOverlap-NP
increase with |P| where |P| = 2|O|. Since MaxOverlap-
P prunes some client points but MaxOverlap-NP does
not, MaxOverlap-P runs faster than MaxOverlap-NP. Fig-
ure 9b shows that nearly 99% of client points are pruned
by Lemma 5 in MaxOverlap-P. We observe that although
nearly 99% of client points are pruned, the performance gain
for MaxOverlap-P is not nearly 99%. This is because the
client points c processed in MaxOverlap-P has large sizes
of L(c) which occupies a lot of execution time. However,
the client points c′ pruned in MaxOverlap-P but processed
in MaxOverlap-NP has small sizes of L(c). Thus, the per-
formance gain is not nearly 99%. Figure 9c depicts the ex-
pected increase in the storage requirement for the overlap
table and the R-tree storage with the cardinality of dataset,
because both O and P increase in size. In Figure 9d, the
average no. of overlappings increases slightly with the car-



dinality of dataset, |P|. With more data points, it is more
likely that an NLC overlaps with another NLC. Thus, the
average number of overlaps increases. In addition, from Fig-
ure 9d, the average influence value increases with the cardi-
nality of dataset because the average number of overlaps is
increased.

Effect of k: As shown in Figure 10a, the execution times
of MaxOverlap increase with k. This is because as k in-
creases, we need to find more nearest neighbors. Figure 10b
shows that the pruning power of MaxOverlap-P is robust to
changes in k. From Figure 10c, the overlap table storage
increases with k but the R-tree storage remains unchanged.
With a larger k value, it is more likely that an NLC for a
client point overlaps with another NLC. Then, the number
of NLCs that overlap with an NLC is larger. Thus, the over-
lap table size is larger. Since k is independent of the R-tree
storage, the R-tree storage remains unchanged. Figure 10d
shows that the average number of overlaps and the average
influence value increase with k. As we described, a larger
value of k increases the chance of NLC overlaps and thus the
average number of overlappings. With a larger average num-
ber of overlaps, it is more likely that the average influence
value in the l regions returned by the query is larger.

Effect of l: We have conducted experiments with l values
of 1, 5, 10 and 15. The execution time, the pruning power,
the overlap table storage, the R-tree storage, the average
number of overlaps and the average influence value all re-
main nearly unchanged when l is increased. For the interest
of space, we omit the figures.

Effect of Real Datasets: We have conducted experiments
on the four sets of real datasets, namely CA-GR, LB-GR,
CA-GM and LB-GM . The results are also similar to syn-
thetic datasets. For space reasons, we only show the figures
for CA-GR and CA-GM (Figure 11 and Figure 12, respec-
tively), while we vary k.

Conclusion: We find that MaxOverlap performs efficiently
compared with the best-known algorithm, Arrangement. It
utilizes less memory as well. Our proposed algorithm is
scalable to large datasets, but Arrangement is not.

5. RELATED WORK
Bichromatic reverse nearest neighbor (BRNN) search was

first proposed by [11]. The fastest BRNN algorithm is due
to [13]. BRNN search has been used to to discover the most
“influential” server among a number of servers, which has
the largest BRNN set [18]. Other works on this problem are
[14, 12]. None of the above works, however, can be applied
to solve MaxBRNN, because, as explained in Section 1, there
are a large (or infinite) number of points in the data space,
and it is infeasible to perform a large (or infinite) number
of MaxBRNN queries.

The existing work which are closely related to ours is [4].
[4] considers MaxBRNN for L2-norm space. In [4], this prob-
lem is shown to be 3SUM-hard where it is proved that solv-
ing a 3SUM problem over dataset of size N requires Ω(N2)
time. That is, it is impossible that we can solve problem
MaxBRNN with a subquadratic algorithm. [4] proposes a
method based on the arrangement of NLCs of the client
points. This method involves three major steps. The first
step is to construct a set of NLCs for client points. Simi-
lar to our method, this step can be done in O(|O| log |P|)

time. The second step is to find an arrangement accord-
ing to a set of NLCs. The best-known efficient method to
find an arrangement [1] has the running time of O(N2) time
where N is the number of points in the dataset. In our
case, since each point corresponds to an NLC, N is equal
to |O|. The third step is to find the best region by travers-
ing from a Voronoi cell to another cell by the face between
these two cells iteratively. Since the algorithm heavily re-
lies on the total number of possible faces between adjacent
Voronoi cells used in the arrangement and the total number
of possible faces is O(2γ(|O|)) where γ(|O|) is a function on
|O| and is Ω(|O|), the method is exponential in terms of |O|.
Specifically, the complexity is O(|O| log |P|+ |O|2 +2γ(|O|)).
In other words, this method is not scalable with respect to
dataset size. Besides, [3] is an extended version of [4] with
similar results. Is is noted that there are no empirical studies
in [4, 3] and this is the only known method for L2-norm.

In addition to L2-norm space [4], problem MaxBRNN is
also studied in L1-norm space [9]. The algorithm in [9] finds
an optimal location l instead of a region maximizing the
influence value of l but the work is limited to the L1-norm.

Some other related problems are studied in [5, 19]. Sup-
pose we want to start up a server, [5] proposes to find a
location p for this new server in order to minimize the max-
imum distance between p and any client point o ∈ O. [19]
proposes the min-dist optimal location query. Given a set
P of servers, a set O of client points and a spatial region Q,
the min-dist optimal location query returns a location in Q
which minimizes the average distance from each client point
to its closest server if a new site is built at this location.

6. CONCLUSION
In this paper, we propose an efficient algorithm called

MaxOverlap to address problem MaxBRNN. We conducted
experiments to show the efficiency of our proposed algo-
rithm.

There are a lot of promising research directions. Firstly, it
will be interesting to consider dimensionalities greater than
two. Secondly, some recent works [15, 17] consider the ca-
pacity of each server. In this paper, following the assump-
tion in the literature, each server can serve as many clients
as possible. With the consideration of server capacity, each
client point may be associated with a farther server (instead
of the nearest server) for forming an NLC in order to satisfy
the capacity requirement.
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Appendix: Proof of Lemma 1

Before we give a proof of Lemma 1, we first describe how
we can represent each maximal consistent region by two op-
erations of NLCs, namely intersection and exclusion. We
denote an intersection operation and an exclusion operation
by ∩ and −, respectively.

In Figure 3, as we described before, there are four maximal
consistent regions, namely regions A,B, C and D. Let U be
the universe of the space D (i.e., a region covering all possible
points in D). Let C be the set of all NLCs.

Each maximal consistent region can be represented by
a series of intersection operations and exclusion operations
over some NLCs in C and the universe U . For example, re-
gion A is the region formed by the intersection between the

p l

o l

R

Figure 13: Illustration for the proof of Lemma 1

region occupied by c1 and the region occupied by c2. We
can represent region A by c1 ∩ c2. Region B is the region
occupied by c1 excluding the region occupied by c2. We rep-
resent region B by c1 − c2. Similarly, region C and region
D are represented by c2 − c1 and U − c1 − c2, respectively.

If we introduce the universe U to represent each maximal
consistent region, regions A, B, C and D are represented by
U ∩ c1 ∩ c2, U ∩ c1 − c2, U ∩ c2 − c1 and U − c1 − c2.

Formally, we have the following lemma.

Lemma 6 (Consistent Region Representation).
Suppose R is a maximal consistent region. There exists
a set C′ = {c1, c2, ..., cl} such that C′ ⊂ C and R can be
represented by U � c1 � c2 � ... � cl where � is an operation
equal to ∩ (an intersection operation) or − (an exclusion
operation).

Proof: A formal proof can be found in [16].

Note that the representation (in form of U �c1 �c2 � ...�cl)
in the above lemma can also denote some regions which may
not be consistent. In Figure 3, the region R occupied by the
entire NLC c1 which is not consistent can be represented by
U ∩ c1.

Besides, it can be proved that there exists a minimal set C′
which can represent a maximal consistent region R. Details
can be found in [16]. In the following, we assume that we
adopt the minimal set to represent a maximal consistent
region R.

Lemma 1 (Intersection Representation). The region R re-
turned by the MaxBRNN query can be represented by an
intersection of multiple NLCs.

Proof: Let R be the optimal region which has the greatest
influence value. By Lemma 6, R can be expressed by U �1
c1 �2 c2 �3 ... �l cl where �i is the i-th operation equal to ∩
(an intersection operation) or − (an exclusion operation).

The lemma claims that all �i operations are equal to the
intersection operations (i.e., ∩). We prove by contradiction.
Suppose that there exists an operation which is an exclusion
operation (i.e., −). Without loss of generality, we assume
that the last operation �l is equal to −. Figure 13 shows
an example that �l is − where cl is the NLC of ol. Let
S = BRNN-R(R). Note that S does not contain ol because
R is outside circle cl.

Let �l be ∩. There exists another region R′ represented
by U �1 c1 �2 c2 �3 ...�lcl. If R′ is consistent, BRNN-R(R′) =
S ∪ {ol}. Thus, I(R′) > I(R). This leads to a contradiction
that R is the region with the greatest influence value. If R′

is not consistent, there exists a consistent region R′′ covered
by R′ where (1) R′′ is represented by U �1c1�2c2�3 ...�lcl�l+1

cl+1... �l+N cl+N , (2) ci is an NLC for i ∈ [l + 1, l + N ] and
(3) �i = ∩ for i ∈ [l + 1, l + N ]. Similarly, we deduce that
I(R′′) > I(R), which leads to a contradiction.


