
Hop Doubling Label Indexing for Point-to-Point Distance
Querying on Scale-Free Networks

Minhao Jiang†, Ada Wai-Chee Fu‡, Raymond Chi-Wing Wong†, Yanyan Xu‡

†The Hong Kong University of Science and Technology ‡The Chinese University of Hong Kong
{mjiangac, raywong}@cse.ust.hk {adafu, yyxu}@cse.cuhk.edu.hk

ABSTRACT
We study the problem of point-to-point distance querying for mas-
sive scale-free graphs, which is important for numerous applica-
tions. Given a directed or undirected graph, we propose to build
an index for answering such queries based on a novel hop-doubling
labeling technique. We derive bounds on the index size, the com-
putation costs and I/O costs based on the properties of unweighted
scale-free graphs. We show that our method is much more effi-
cient and effective compared to the state-of-the-art techniques, in
terms of both querying time and indexing costs. Our empirical
study shows that our method can handle graphs that are ordersof
magnitude larger than existing methods.

1. INTRODUCTION
We study the problem of point-to-point distance querying for

massive scale-free networks or graphs. Given a scale-free graph
G = (V,E), we aim to answer queries about the distance of a
shortest path from a vertexs to a vertext in the graph. Such query-
ing is a basic building block in the solutions of many practical prob-
lems including page similarity in web graphs, keyword search on
RDF graphs [21], and network analysis such as betweenness cen-
trality computation [23]. Indirectly it is useful for community de-
tection and locating influential users in the network. We give our
problem definition as follows.

Problem Definition. Let G = (V,E) be a directed unweighted
graph, with vertex setV and edge setE. Each edge(u, v) ∈ E
has a length ofdistG(u, v) = 1. Given an edge(u, v), we say that
v is anout-neighborof u, andu is an in-neighborof v. A path
p = (v1, ..., vl) is a sequence ofl vertices inV such that for each
vi(1 ≤ i < l), (vi, vi+1) ∈ E. (We also denotep by v1 ; vl.)
Thelengthof a pathp, denoted byℓ(p), is the sum of the lengths of
the edges onp. Givenu, v ∈ V , thedistancefrom u to v, denoted
by distG(u, v), is the minimum length of all paths fromu to v. If
no pathu ; v exists, thendistG(u, v) = ∞. A pathu ; v with
a length ofdistG(u, v) is a shortest path fromu to v. We study the
following problem: given a static directed unweighted scale-free
graph G = (V,E), construct a disk-based index for processing

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license.Contact
copyright holder by emailing info@vldb.org. Articles fromthis volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment,Vol. 7, No. 12
Copyright 2014 VLDB Endowment 2150-8097/14/08.

point-to-point (P2P) distance queries, where a P2P distance query
dist(s, t) is : givens, t ∈ V , finddistG(s, t).

Although distance querying can be readily handled by Dijkstra’s
algorithm [16], the emergence of large networks such as social net-
works, RDF graphs, and phone networks has created new chal-
lenges. The problem of P2P distance querying has been well stud-
ied for road networks. Some previous works include [3, 28, 19, 9,
27, 29, 31]. For other graph types, many indexing methods have
been proposed. However, the previous works of [12, 14, 15, 20, 30,
33, 34] can only handle relatively small graphs due to high index
construction cost and large index storage space. For the 2 largest
real graphs tested in these studies, we have|V |=581K and|E|/|V |
= 2.45 [12], and|V | = 694K and|E|/|V | = 0.45 [20], respectively.
The more recent works of IS-Label in [18] and the pruned land-
mark labeling (PLL) scheme in [7] can handle bigger graphs. Both
are 2-hop labeling methods [15].

Challenges.While the labeling technique has been adopted by
the state-of-the-art indexing algorithms, there are some major chal-
lenges related to this technique. The first challenge is thatno exist-
ing work has been able to provide a guarantee of a small label size.
The total label size isO(|V |2) and in the worst case, this is the
same size as that of a pairwise distance table. For general graphs,
it is shown that there exist graphsG = (V,E) for which any 2-hop
labeling index must have a total size ofΩ(|E||V |1/2) [15]. This
high index space complexity will be impractical for large graphs.

The second challenge, which is related to the first, is that noex-
isting work has been able to give an acceptable bounded complexity
on the computation time and the runtime memory space required
for the label construction. Most existing works are in-memory al-
gorithms and require huge memory consumption. The only existing
work that has bounded memory consumption is IS-Label [18]. IS-
Label builds a hierarchy from the given graph by extracting at each
level an independent vertex set. The remaining graph at eachstep
is augmented with edges to preserve distances among the remain-
ing vertices. Labels are constructed top-down in the hierarchy. The
hierarchy need not be completed so that a residual graphGk may
remain in memory and querying is handled by both the labels and a
bi-Dijkstra search inGk. However, IS-Label has no guarantee of a
small label size, and also no guarantee on the scalability ofthe la-
bel construction time. Another problem of IS-Label is that to limit
the number of iterations,k, during the label construction, instead
of building a full index, a residual graphGk is kept in main mem-
ory. However, this is not a pure indexing method since it requires
loadingGk before querying, and the size ofGk can be large.

For the existing in-memory algorithms including [15, 33, 20, 7],
the time complexity ranges fromO(|V |2) to O(|E||V |). For the
PLL scheme in [7], the actual time performance is much betterthan
theO(|E||V |) bound. However, PLL is main memory based and

is not scalable because of a breadth first search process for every
vertex and a pruning process that requires the label index toreside
in memory. Hence, a very large main memory is needed that not
only can hold the input graph but also the entire label index with ex-
tra storage for computation. Using 48GB RAM, the biggest graph
reported in [7] to be handled by PLL is a little over 1GB in size
since the label size is 22GB. Except for IS-Label, all of the above
algorithms assume that the given graph can fit in memory, which
may not be true for massive networks. Hence, scalability remains a
major challenge.

We propose a new indexing method for distance querying to meet
the above challenges. Our design is based on the properties of un-
weighted scale-free graphs, which are prevalent in the realworld
[1, 10, 17, 25]. Important applications such as social networks,
web and most of the collected datasets in [1] belong to this type of
graphs. We offer guaranteed complexity bounds on the label size,
the computation costs and I/O costs. With only 4GB RAM, we are
able to build an index for a graph of 9GB in size, with hundreds
of millions of vertices and edges. Our method is based on a novel
iterative process which minimizes the label size growth at each it-
eration, leading to highly effective labeling for the index.

Our main contributions are summarized as follows: (1) We pro-
pose a novel 2-hop labeling indexing method for P2P distance
querying on unweighted directed graphs, and have developedI/O-
efficient algorithms for index construction when the given graph
and the index cannot fit in main memory. (2) Based on the proper-
ties of unweighted scale-free graphs, we derive the following com-
plexity bounds for our index: the index size isO(h|V |), the com-
putational cost isO(|V |logM(|V |/M+ log|V |)), and the I/O cost
is O(|V |log|V |/M × |V |/B), whereh is a small constant,M is
the memory size andB is the disk block size. (3) We verify the
performance of our method with experiments on large real-world
scale-free networks.

The paper is organized as follows. Section 2 discusses the rele-
vant properties of scale-free graphs. Section 3 introducesour main
algorithm Hop-Doubling. Section 4 describes the I/O-efficient al-
gorithms. Section 5 introduces the Hop-Stepping strategy for per-
formance enhancement. Section 6 is a discussion about the adapta-
tions to undirected and weighted graphs, and about the use ofour
method for general graphs. We report our empirical study in Sec-
tion 7, and conclude in Section 8.

2. 2-HOP LABELING FOR SCALE-FREE
GRAPHS

The 2-hop labeling technique constructslabelsfor vertices, and
a distance query fors, t can be answered by looking up the labels
of s and t only. Eachlabel is a set of label entries and each la-
bel entry is a pair(v, d) wherev ∈ V andd is a distance value.
We say thatv is a pivot. For a directed graphG = (V,E), we
create two labelsLin(v) andLout(v) for each vertexv ∈ V so
that if distG(s, t) 6= ∞, then we can find a pivotu such that
(u, d1) ∈ Lout(s), (u, d2) ∈ Lin(t) andd1 + d2 = distG(s, t),
and there does not exist anyu′ such that(u′, d′1) ∈ Lout(s),
(u′, d′2) ∈ Lin(t) andd′1 + d′2 < distG(s, t). We say that the pair
(s, t) is coveredby u. Hence, the distance querydist(s, t) can be
answered by looking upLout(s) andLin(t) for such a pivotu with
the smallestd1 + d2.

The set of labels for all vertices is called a2-hop cover. The
complexity of finding a minimum 2-hop cover is shown to be NP-
hard [15], and known approximate algorithms are also very costly
[20]. However, in the following discussion, we will show that cer-
tain ordering of vertices may give rise to a good 2-hop cover,which
sheds some light on this hard problem.

Figure 1: A road graph GR

L(a) {(a, 0), (b, 1), (c, 2), (d, 1), (e, 1)}
L(b) {(b, 0), (c, 1), (d, 2), (e, 2)}
L(c) {(c, 0), (e, 3)}
L(d) {(d, 0), (c, 3)}
L(e) {(e, 0), (d, 2)}

Table 1: A label index for GR

Figure 2: A star graph GS

L(a) {(a, 0), (b, 1), (c, 1), (d, 1),
(e, 1), (f, 1)}

L(b) {(b, 0), (c, 2), (d, 2)}
L(c) {(c, 0), (d, 2), (e, 2)}
L(d) {(d, 0), (e, 2), (f, 2)}
L(e) {(e, 0), (f, 2), (b, 2)}
L(f) {(f, 0), (b, 2), (c, 2)}

Table 2: A label index for GS

L(a) {(a, 0)}
L(b) {(b, 0), (a, 1)}
L(c) {(c, 0), (a, 2), (b, 1)}
L(d) {(d, 0), (a, 1)}
L(e) {(e, 0), (a, 1)}

Table 3: A small GR index

L(a) {(a, 0)}
L(b) {(b, 0), (a, 1)}
L(c) {(c, 0), (a, 1)}
L(d) {(d, 0), (a, 1)}
L(e) {(e, 0), (a, 1)}
L(f) {(f, 0), (a, 1)}

Table 4: A small GS index

2.1 Ordering of Vertices for Labeling
The importance of the ordering of vertices can be illustrated by

some very simple graphs. In Figure 1, we show a graphGR for rep-
resenting a simple road system.GR is undirected, but we can treat
it as directed since each edge can be seen as bidirectional. Table 1
is a 2-hop cover forGR whereL(v) = Lin(v) = Lout(v). The
2-hop cover isminimal , meaning that we cannot delete any label
entry and still maintain the correctness of distance query evalua-
tion. The entries of the form(v, 0) are trivial but are needed for
query answering. In Figure 2, we show a star graph,GS . Table 2
is a 2-hop cover forGS which is also minimal. For example, if we
delete(c, 2) from L(b), then for a query ofdist(b, c), we would
return an incorrect distance of 4 from(d, 2) in L(b) and(d, 2) in
L(c). Note that one can add many useless entries to these covers
so that they are still correct but not minimal.

For a given graph, there can be many possible minimal 2-hop
covers, and in Tables 3 and 4, we show smaller minimal 2-hop
covers forGR andGS , which reduce the number of non-trivial
label entries by half or more when compared with those shown in
Tables 1 and 2. Intuitively, for the road network, we are making
use of the huba, which lies on the shortest paths for many pairs
of vertices. Similarly, we make heavy use of the centera of the
star graph, which has a highest degree. The problem of finding
a minimum 2-hop cover is to find a smallest set of label entries
with pivots that cover the shortest paths for answering all distance
queries, and in these special graphs, the hub or center obviously
hits the most number of shortest paths. We can set a ranking onthe
vertices in such a way that higher ranked vertices are likelyto hit
more shortest paths, and then use higher ranked vertices forpivots,
as in the examples. This should result in a smaller label size.

The above idea is more formally treated by the notion ofcanoni-
cal labelingin [4]. If shortest paths are not unique for givens, t, we
may define canonical labeling as follows. Given a total rankingr()
of all vertices inV , a labeling is canonical if a vertexv is a pivot
in Lout(u) if and only if there exists a vertexw such thatr(v) is
the highest among all vertices in all shortest paths fromu tow, and
similarly for Lin(u). The labeling is minimal since deleting any
pivot creates some uncovered pair of vertices. Canonical labeling
calls for thepruning of any entry(v, d) in Lout(u) if by looking
upLout(u) andLin(v) we find a higher rank pivotv′ that gives a

pathp = (u, ..., v′, ..., v) with a length≤ d. This is because ifv is
on a shortest path fromu to another vertexw which is made up of
p′ = (u, ..., v) of lengthd andq = (v, ..., w), thenv′ will also be
on a shortest path fromu tow, which is made up ofp andq. Since
r(v′) > r(v), v should not be chosen as a pivot here.

Given the importance of ranking as illustrated in the above ex-
amples, we expect good indexing results from a good vertex rank-
ing. The independent set approach of IS-Label [18] effectively
gives low ranking to low degree vertices. This ordering is found
to produce good label sizes. The pruned landmark scheme PLL in
[7] builds labels for an unweighted graph by a breadth first search
(BFS) from vertices ordered in non-increasing degrees. Thesearch
frontiers of BFS are halted at vertices where the label entries are
pruned by previously entered entries as described in the above.
Note that such pruning has also been proposed in [4]. This ordering
by degree is found to be highly effective for many real graphs. In
the next subsection, we will derive reasons behind this effectiveness
for scale-free graphs. We make use of the definition ofhitting sets
and a concept similar to thehighway dimensionintroduced in [5,
2] for road networks. However, we should point out that the char-
acteristics of a scale-free graph is very much different from that of
a road network.

2.2 Hitting Sets in Scale-free Graphs
A function f(x) is said to bescale-freeif f(bx) = C(b)f(x),

whereC(b) is some constant dependent only onb. It is common
to call a graph scale-free if the distribution of vertex degrees of the
graph follows apower law: Prob(a vertex has degreek) ∝ k−α,
whereα is a positive real number. This is scale-free since iff(x) =
cx−α, thenf(bx) = c(bx)−α = b−αf(x). Typically, 2 ≤ α ≤ 3
[13, 11, 17]. Existing works [10, 17, 1, 25] have shown that many
real world graphs do follow such power law distributions. Based on
the BA model [8] of scale-free graphs, Bollobas et al. [10] proved
that the diameterD of a scale-free random graph is asymptotically

D = log |V |/ log log |V | (1)

Although this is an asymptotical analysis, it gives very accurate
prediction for many real world scale-free graphs [1, 32].

Newman et al. [25] studied the properties of scale-free graphs
by means of generating functions for the probability distribution of
vertex degrees. Letzi be the average number of vertices that are
i hops away from a randomly chosen vertexv. It is shown that
with very high probability,zm = (z2/z1)

m−1z1. Hencezm =
(z2/z1)zm−1. Thus, theexpansion factorR can be determined by
the average number of vertices that are 1 or 2 hops fromv, respec-
tively, i.e.,R = z2/z1. With an expansion factor ofR, the diameter
of the graph can be estimated to beD = logR|V | = log|V |/logR.
From Equation (1), the expansion factor is given by

R = log|V | (2)

For a graphG = (V,E) that follows a power law distribution,
Faloutsos et al. [17] derived the following relationship between the
degreedegv of a vertexv in G and its rank in terms of the degree.
For a vertexv ∈ V , v has ther(v)-th highest degree inG.

LEMMA 1. [17] The degree,degv, of a vertexv, is a function
of the rank of the vertex,r(v), and the rank exponent,γ, as follows:

degv =
1

|V |γ
(r(v)γ) (3)

In the above,γ is a small real number found to be between−0.8
and−0.7 for many real-world graphs [17]. According to Equation
(3), takingγ = −0.8 for a scale-free graphG1 = (V1, E1), if

|V1|=1M, then less than 500 vertices have degree above 500, and
the top-degree vertexv0 has a degree of 63095. From Equation
(2), the expansion factor is given byR = log |V1| ≈ 20. Since
63095 × 20 > 1M , v0 is expected to reach all vertices within 2
hops.

Let us call the number of hops (edges) on a path itshop length.
Given a set of pathsP , a hitting set for P is a set of verticesS
such that each pathp in P contains at least one vertexv in S (we
say thatp is hit by v). For the above graphG1, a single highest
degree vertex is expected to hit all shortest paths with length ≥ 4.
In general, we make an assumption of asmall hitting set forlong
shortest paths as follows.

ASSUMPTION 1. Given an unweighted scale-free graphG =
(V,E), there exist small integersd0 andh, and a setH of the high-
est degree vertices inV , such that∀u, v ∈ V , if there exist shortest
pathsu ; v with hop length≥ d0, then one such path is hit by
one ofh vertices inH.

In Assumption 1,|H| ≥ h. Given Equations (1) to (3), we can
show that Assumption 1 holds withd0 = 4 andh = 1 for any
undirected unweighted scale-free graphG = (V,E) with |V | ≥
3, and rank exponent−0.8 ≤ γ ≤ −0.7 (typical values in real
world graphs [17]). The analysis goes as follows. From Lemma
1, the degree ofv0 is given by|V |−γ sincer(v0) = 1. With an
expansion factor ofR, if (degv0 × R) ≥ |V |, thenv0 reaches all
vertices in 2 hops. This is the case where(|V |−γ · R) ≥ |V |,
and from Equation 2,R = log |V |; hence the inequality becomes
(|V |−γ−1 · log |V |) ≥ 1, and this holds for all values of|V | ≥ 3
for −0.8 ≤ γ ≤ −0.7. Therefore, when|V | ≥ 3, the highest
degree vertex will reach all other vertices in 2 hops, which means
that each vertex can reach any other vertex within 4 hops. Hence,
d0 = 4 andh = 1.

The above analysis is based on undirected unweighted graphs.
However, the power law distribution is commonly found in directed
graphs by examining the in-degree and out-degree distribution sep-
arately [22, 26]. The study in [25] also considers directed graph,
and by focusing on the vertices that can be reached from a random
vertex, it is found that many results follow as in undirectedgraphs.
Hence, Assumption 1 is also for directed graphs.

Based ond0, we have two types of shortest paths: long ones (i.e.,
those of hop length at leastd0) and short ones (i.e., those of hop
length belowd0). We have identified hitting sets for covering the
long shortest paths based on Assumption 1. Next, we will examine
how the shortest paths of hop length shorter thand0 can be handled.

Let P< be the set of all shortest pathsp such thatℓ(p) < d0,
andP≥ be the set of all shortest pathsp such thatℓ(p) ≥ d0.
The d0-inner-circle of a vertex v is defined to beN<(v) =
{p | p ∈ P< ∧ v ∈ p}. We can visualizeN<(v) as the set of all
shortest paths passing throughv within a ball with radiusd0 cen-
tered atv, where each path has length less thand0. Similarly, the
d0-outer-circle of v is defined asN≥(v) = {p | p ∈ P≥ ∧ v ∈ p}.

We define a neighborhood for vertexv to be used as a hitting set
for short shortest paths throughv. LetN(v) = {u|distG(v, u) <
d0∨distG(u, v) < d0},NH(v) = N(v)∩H, andN ′′(v) ⊆ N(v)
be vertices connected toNH(v) so that for any vertexu ∈ N ′′(v),
there is a shortest path fromv to u or fromu to v which contains a
vertex inNH (v). Then, the set of vertices ofNe(v) = ((N(v) −
N ′′(v)) ∪NH(v)) is called theH-excluded neighborhood ofv. If
there exists a shortest pathp = v ; u with hop length< d0,
thenp is hit by a vertexw, wherew ∈ Ne(v) andw ∈ Ne(u).
If we include entries for all vertices inNe(v) in the label for each
vertexv, such a shortest path will be found from the labels of the 2

endpoint vertices of the path. We make an assumption thatNe(v)
is small.

ASSUMPTION 2. In an unweighted scale-free graphG =
(V,E), for a vertexv, theH-excluded neighborhood ofv, Ne(v),
contains at mosth vertices.

Given an expansion factor ofR, for a scale free graphG =
(V,E), |Ne(v)| for v ∈ V is bounded byRd0−1. If |V | = 1M ,
then R ≈ 20, and if −0.8 ≤ γ ≤ −0.7, d0 = 4. Then,
|Ne(v)| < 203 = 8000. The actual size of|Ne(v)| is much
smaller than this bound since high degree vertices cover a large
number of edges inG and their expansions are excluded inNe(v).

The smallh value assumption is substantiated by our experimen-
tal results on a large number of real graphs. We say that a graph has
hub dimensionh if ∀u ∈ V,∃ a hitting setH< for N<(u) such
that |H<| = O(h) and∃ a hitting setH≥ for N≥(u) such that
|H≥| = O(h). Intuitively, given hub dimensionh, there exists
for each vertexu a set of at mostO(h) vertices hitting all shortest
paths passing throughu, which bounds the optimal label size ofu
by O(h). We state our assumption of small hub dimension.

ASSUMPTION 3. An unweighted scale-free graph has a small
hub dimensionh.

In summary, we provide realistic assumptions for unweighted
directed/undirected scale-free graphs. Based on Assumption 3, the
optimal label size is bounded byO(h) for each vertex. Our empiri-
cal study in Section 7 shows that for all the scale-free real-world
and synthetic graphs that we have tested, the label sizes result-
ing from our algorithm are very small compared to the graph size.
Thus, the assumptions above are strongly supported by experimen-
tal results. The remaining question is how to attain this size bound.

2.3 Existing Algorithms with Vertex Ordering
As discussed in Section 2.1, ranking of vertices by their degrees

has been adopted in PLL [7], and less explicitly in IS-Label [18].
However, as noted in Section 1, both of these methods are not scal-
able. For PLL, the in-memory label construction involves many
iterations of breadth first search (BFS), and BFS does not yield to
an efficient external algorithm to date [24]. More importantly, to
be efficient, the label pruning in PLL requires a main memory that
can hold the labeling index, which is typically much bigger than
the given graph. Hence, it is an open problem to derive an algo-
rithm with scalable bounds on memory and computation consump-
tion and that produces bounded index sizes. We will focus on this
problem for scale-free graphs.

In [13], it is shown that high-degree vertices in power-law graphs
are useful for finding approximate shortest paths by a compact rout-
ing scheme. Arouting tableis built for each vertexv, which keeps
track of shortest paths to high-degree vertices called landmarks and
to vertices closer tov. However, the query evaluation in [13] does
not return exact answers. In the next sections, we shall makeuse of
vertex degree ordering to derive an I/O efficient algorithm for index
construction for exact querying on a large scale-free graph. Our al-
gorithm does not require the knowledge ofh but will seamlessly
attain the label size bound ofO(h|V |) and scalable complexities.

3. PROPOSED SOLUTION
Our proposed solution is made up of the three major components

of algorithmic designs. We first give an outline of each component.

1. The basic framework of our label index construction is an
iterative process with two steps in each iteration: (i) label
entry generation based on a set of rules; and (ii) label pruning
to reduce the label size.

2. The second design component is an I/O efficient algorithm
for implementing the iterative process (see Section 4).

3. The third algorithmic design is an enhancement on the per-
formance based on the idea of hop-stepping (see Section 5).

In this section we describe the iterative process of label genera-
tion and pruning. Based on the discussion in Section 2.2, we design
our labeling algorithm with the assumption that the hittingset of the
majority of paths of longer lengths passing through a vertexv is a
small set ofh high degree vertices inH. Since each label entry
should correspond to a shortest path, if we place the entries(vh, d)
for verticesvh in H in the relevant vertex labels, they would serve
most querying. Analogously, we should try to avoid creatinglabel
entries for shortest pathsp = v ; u wherevh is in p for some
vertexvh ∈ H, andvh 6∈ {u, v}. From our assumptions, there
are many such paths, and hence many possible label entries, which
will lead to large label sizes. We will introduce the notion of trough
pathsfor these purposes.

Our strategy is to rank all vertices uniquely according to non-
increasing degrees, with the highest rank given to the highest de-
gree vertex. Next, our algorithm generates label entries tocover
shortest paths with increasing number of hops. There are several
reasons for this strategy. Firstly, we need to search the neighbor-
hood of each vertex for the coverage of short shortest paths.Sec-
ondly, we need short shortest paths involvingH for pruning other
paths. Hence, we traverse from short to long paths. Thirdly,the
iterative approach can be realized by I/O efficient algorithms with
scalable I/O complexities, as we will show in Section 5. We will
explain these points in the following discussion.

3.1 Iterative Labeling Algorithm
Given a directed unweighted graphG = (V,E), let

{v1, v2, ..., vn} be a ranking of the vertices inV so that the rank
of vi, denoted byr(vi), is equal toi. We rank the vertices in non-
increasing order of their vertex degrees. Thus, vertexv1 has the
highest degree. We break ties arbitrarily for vertices withthe same
degree. Next we introduce the notion of a trough shortest path.

DEFINITION 1 (TROUGH SHORTEST PATH). A trough path
from v to u is a path passing through only vertices with ranks
smaller thanmax{r(u), r(v)}. A trough shortest path is a trough
path that is also a shortest path.

For example, in the graphG in Figure 3 (a), if we rank vertices by
non-increasing degrees, then vertex 0 has the highest rank,the path
(3, 7, 2) is a trough shortest path, while(5, 3, 7) is not. We create
labels for each vertexv with the following labeling objectives:

[O1] if there is a trough shortest path fromv to u, wherer(u) >
r(v), then(u, distG(v, u)) ∈ Lout(v);

[O2] if there is a trough shortest path fromu to v, wherer(u) >
r(v), then(u, distG(u, v)) ∈ Lin(v).

Notations: Given a label entrye1 = (u, d1) in Lin(v), it im-
plies thatr(u) > r(v) and there is a trough pathp1 from u to v
of lengthd1. e1 is called anin-label entry. We also denotee1 by
(u → v, d1). If there is a label entrye2 = (v, d2) in Lout(u), then
r(v) > r(u) and there is a trough pathp2 from u to v of lengthd2.
e2 is called anout-label entry, and is also denoted by(u → v, d2).
In each case, we say thatei coversthe pathpi. Conversely, given
a label entry(u → v, d), then(u, d) ∈ Lin(v); given(u → v, d),
then(v, d) ∈ Lout(u). When the ranking is immaterial, we write
(u → v, d), which impliesr(u) > r(v) or r(u) < r(v).

0

1 2

3
4

5 67

(a)

0

1 2

3
4

5 67

(b)

Figure 3: (a) Given graphG = (V,E) (b) Trough paths covered
after the first iteration (arrows with dotted lines)

Figure 4: Set of label entries generation rules

In our labeling algorithm, initially each vertexv is assigned two
labelsLin(v) = {(v, 0)} andLout(v) = {(v, 0)}. In the initial-
ization process, for each edge(u, v) ∈ E, if r(u) < r(v), we add
label entrye = (v, distG(u, v)) to Lout(u); if r(u) > r(v), we
adde = (u, distG(u, v)) toLin(v).

Our algorithm iteratively generates label entries for all vertices
until no more label entries can be formed. The first iterationis
the initialization process. In each remaining iteration, we have a
set of new label entries which have been generated in the previous
iteration, which we denote byprevLabel. Also we have a set of
all label entries generated from all previous iterations, we refer to
this set asallLabel. In each iteration, we adopt 6 rules repeatedly
to generate all the possible label entries for the iteration. The rules
are encoded in Table 5. The first rule is derived from the first row in
the table as follows:∀(u → v, d) ∈ prevLabel, ∀(u1 → u, d1) ∈
allLabel, generate(u1 → v, d1 + d). Similarly, the other 5 rules
can be derived from the table. The rules are illustrated in Figure 4,
where each solid or dotted arrow indicates a label entry.

prevLabel allLabel generate

Rule 1 (u → v, d) (u1 → u, d1) (u1 → v, d1 + d)
Rule 2 (u → v, d) (u2 → u, d2) (u2 → v, d2 + d)
Rule 3 (u → v, d) (v → u3, d3) (u → u3, d3 + d)
Rule 4 (u → v, d) (v → u4, d4) (u → u4, d4 + d)
Rule 5 (u → v, d) (v → u5, d5) (u → u5, d5 + d)
Rule 6 (u → v, d) (u6 → u, d6) (u6 → v, d6 + d)

Table 5: Set of label entry generation rules

A generated label entry(u → v, d) becomes a new label entry
for the current iteration if there is no existing label entryfor u → v,
or d is a smaller distance compared with that in other generated or
existing label entries foru → v. When we generate label entry
e from two label entriese1 ande2, and given thate1 covers path
p1 = (u1, ..., ui) ande2 covers pathp2 = (ui, ..., uj), then we say
thate coversthe path(u1, ..., ui, ..., uj). We shall show that after
every two iterations, we double the hop length of trough shortest
paths that are covered by the label entries generated. Hence, we
call this methodHop-Doubling Labeling (see Algorithm 1).

EXAMPLE 1. Given the unweighted graph in Figure 3(a). The
vertices are ranked by non-increasing degrees and given ID’s 0 to
7 accordingly, i.e., vertex 0 has the highest rank. Hop-Doubling
Labeling first creates one label entry for each edge:(0 → 1, 1),
(1 → 0, 1), (2 → 0, 1), ... In the first iteration, by Rule 1 or

Lin(0) {(0, 0)}
Lin(1) {(1, 0), (0, 1)}
Lin(2) {(2, 0)}
Lin(3) {(3, 0), (2, 1)}
Lin(4) {(4, 0)}
Lin(5) {(5, 0), (4, 1)}
Lin(6) {(6, 0), (0, 1),

(2, 1)}
Lin(7) {(7, 0), (3, 1),

(2, 2)1}

Lout(0) {(0, 0)}
Lout(1) {(1, 0), (0, 1)}
Lout(2) {(2, 0), (0, 1), (1, 2)1}
Lout(3) {(3, 0), (1, 1), (2, 2)1, (0, 2)1}
Lout(4) {(4, 0), (0, 1), (1, 1), (3, 2)1,

(2, 4)2}
Lout(5) {(5, 0), (3, 1), (1, 2)1, (2, 3)2,

(0, 3)2}
Lout(6) {(6, 0)}
Lout(7) {(7, 0), (2, 1)}

Figure 5: Labeling for graph G in Figure 3. The superscript of
an entry indicates the iteration in which the entry is generated.

4, we generate(2 → 1, 2) from (2 → 3, 1) and (3 → 1, 1).
Similarly, (4 → 3, 2) and (3 → 2, 2) are generated. By Rule 2
or 3, we generate(5 → 1, 2) and (3 → 0, 2), and Rule 5 or 6
generates(2 → 7, 2). In the second iteration, Rule 2 generates
(4 → 2, 4) from (4 → 3, 2) and(3 → 2, 2), Rule 2 also generates
(5 → 2, 3) and (5 → 0, 3). In the third iteration, no new label
entry is generated and the labeling is completed. The resulting
labels are shown in Figure 5.

Algorithm 1: Hop-Doubling Labeling

Input : G = (V, E)
Output : (Lin,Lout)

// Initialization
1 rank the vertices by non-increasing degrees;
2 allLabel = prevLabel = set of labels covering all edgese ∈ E;

// iterative construction
3 while prevLabel 6= ∅ do
4 UpdateprevLabel, allLabel using the set of label entry

generation rules;

5 build index of(Lin,Lout) from allLabel;

Next, we show that distance querying based on the labels con-
structed by the algorithm is correct. First, we need a lemma.

LEMMA 2. Hop-Doubling labeling achieves the labeling ob-
jectives of[O1] and[O2] given in Section 3.1.

PROOF: Consider a trough shortest pathp from v to u. Let the
path bep = (v = w1, w2, ..., wk = u). We show by induction
on the hop length ofP . The base case is trivial since we always
include(v, 0) in Lin(v) andLout(v). Next, assume the statements
in [O1] and[O2] true for all paths of hop length 1 tok−1. Consider
the pathp = (v = w1, w2, ..., wk = u). There are two possible
cases. Case A :r(wk) > r(w1); Case B:r(w1) > r(wk). Let
use first consider Case A. Letr(wi) > r(wj) for all j < k and
j 6= i. Sincep is a shortest path fromv to u, the sub-pathp1
= (w1, ..., wi) must be a shortest path fromw1 to wi. Similarly,
the sub-pathp2 = (wi, ..., wk) is a shortest path fromwi to wk.
Clearly,distG(w1, wk) = distG(w1, wi)+distG(wi, wk). Since
r(wi) is the second highest rank inp, both p1 andp2 are trough
shortest paths. There are two subcases:

Case A1 :r(wi) < r(w1) < r(wk). By the induction hypoth-
esis,e1 = (wk, distG(wi, wk)) will be inserted intoLout(wi),
and e2 = (w1, distG(w1, wi)) will be inserted intoLin(wi).
Note thate1 = (wi → wk, distG(wi, wk)) and e2 = (w1 →
wi, distG(w1, wi)). e1 ande2 may be inserted at the same itera-
tion or at different iterations. Ife1 is inserted in a later round than
e2, then by Rule 1,e3 = (wk, distG(w1, wi) + distG(wi, wk))
for Lout(w1) will be generated. Ife2 is inserted in a later round,
then by Rule 4,e3 will be generated forLout(w1).

Figure 6: 4 sufficient rules for label entry generation

Case A2 : r(w1) < r(wi) < r(wk). By the induc-
tion hypothesis,e1 = (wk, distG(wi, wk)) will be inserted into
Lout(wi), and e2 = (wi, distG(w1, wi)) will be inserted into
Lout(w1). Note thate1 = (wi → wk, distG(wi, wk)) and
e2 = (w1 → wi, distG(w1, wi)). If e1 is inserted beforee2, then
whene2 is newly added, by Rule 3,e3 = (wk, distG(w1, wi) +
distG(wi, wk)) will be added toLout(w1). If e2 is inserted before
e1, thene3 will be added toLout(w1) by Rule 2.

Similar arguments hold for Case B with subcase B1, where Rules
1 and 4 apply, and subcase B2, where Rules 5 and 6 apply.

THEOREM 1. The labels constructed by Hop-Doubling Label-
ing return correct answers for point-to-point distance queries.

PROOF: By construction, each label entry(w, d) in
Lin(v)(Lout(v)) covers a pathw ; v (v ; w) in the
graph with lengthd. Given a distance query fromu to v, consider
a shortest pathp from u to v. Letw be the vertex with the highest
rank inp. Note thatw can beu or v. Then the sub-pathsu ; w
andw ; v of p are trough shortest paths. From Lemma 2 we
have an entry(w, distG(u,w)) in Lout(u) and also an entry
(w, distG(w, v)) in Lin(v). Hence we get the correct distance
value ofdistG(u, v) = distG(u,w) + distG(w, v) when we look
up the labels foru andv.

3.2 Minimizing the Rules for Labeling
As illustrated by Figure 4, we use 6 rules for generating new

label entries. In this subsection, we show how to minimize the set
of rules to accelerate the generation of new entries. For simplicity,
here we refer to a label(u → v, d) as(u → v).

LEMMA 3. Rules 1,2,4,5 generate the same results as Rules
1,2,3,4,5,6.

PROOF: We first prove by induction that label entries generated
by Rule 3 can be generated by Rule 1 and Rule 2. Assume the
lemma holds for all iterations up to thei-th iteration. At the(i+1)-
th iteration, suppose Rule 3 can generate(u → u3) from (u → v)
and(v → u3) where(u → v) is generated in thei-th iteration and
(v → u3) is in allLabel, then there are two cases of how(u → v)
is generated in thei-th iteration. (See Figure 7.)

Case 1: (u → v) is generated by(u → w) and (w → v)
wherer(u) < r(w) < r(v). Hence in thei-th iteration, we have
(u → w), (w → v) and(v → u3). By Rule 2 we have(w → u3)
before the(i + 1)-th iteration. Hence, by Rule 2 we can generate
(u → u3) from (u → w) and(w → u3).

Case 2 :(u → v) is generated by(u → w) and(w → v). Hence
in the i-th iteration, we have(u → w), (w → v) and(v → u3).
Thus we also have(w → u3) before the(i+1)-th iteration, and by
Rule 1 we can generate(u → u3) from (u → w) and(w → u3).

Thus,(u → u3) can be generated in another way with Rule 1 or
Rule 2 in the same iteration. Similarly, we can prove that Rule 6 is
covered by Rule 4 and Rule 5.

Other than removing Rules 3 and 6, next, we show that Rules 1
and 4 can be further simplified as follows.

u3

v v

wu

u

u3

Case 1

Higher Rank

v

w

u

u3

Case 2 Lower Rank

Figure 7: Eliminating Rule 3

1. ∀(u → v, d) ∈ prevLabel, ∀(u1 → u, d1) ∈ allLabel, where
r(v) > r(u1) > r(u), generate(u1 → v, d1 + d)

4. ∀(u → v, d) ∈ prevLabel, ∀(v → u4, d4) ∈ allLabel, where
r(u) > r(u4) > r(v), generate(u → u4, d4 + d)

Previously, Rule 1 may also generate (u1 → v), now it only
generates(u1 → v). Similar change applies for Rule 4. The 4
simplified rules are illustrated in Figure 6.

LEMMA 4. The simplified Rules 1,2,4,5 generate the same re-
sults as the original Rules 1,2,4,5.

PROOF: Consider Rule 1. Originally, we generate(u1 → v)
from an old label entry(u1 → u) and a label entry(u → v) from
the previous iteration. (1) Ifr(u1) < r(v), then(u1 → v) is also
generated by the simplified Rule 1. (2) Ifr(u1) > r(v), then the
label(u → v) must have been generated by either Rule 1 or 2 from
(u → w) and(w → v) for somew. In the previous iteration or
earlier, we have(u1 → u), (u → w), and(w → v), by which we
also generate(u1 → w). Then, the simplified Rule 4 will generate
(u1 → v). The arguments for Rule 4 are similar.

With the above results, the set of rules in Algorithm 1 now con-
sists of the 4 simplified rules. We will show that after every 2it-
erations, we double the maximum hop length of paths covered by
labeling. LetDH be the maximum number of edges among all the
pairwise shortest paths. We shall refer toDH as thehop diameter
of the graph.DH is the diameter of the graph for an unweighted
graph. We call a path withk hops or edges ak-length path.

THEOREM 2. For all 0 ≤ i ≤ ⌈log(DH)⌉, after the2i-th iter-
ation, for each positive integerk ≤ 2i, the label entries covering
all k-length trough paths are generated.

PROOF: We say that a pathp is processed if the label entry cover-
ingp is generated in the label sets. We prove by induction. The base
case wherei = 0 is straightforward. Assume the statement true for
i ≤ j. We want to show that in the(2j + 2)-th iteration, the label
entries for allk-length trough paths are generated wherek ≤ 2j+1.
Consider ak-length trough pathp =(v1,v2,..., vk+1), k = 2j+1.
Without loss of generality, assumer(v1) < r(vk+1). Let vj be the
midpoint ofp, so thatp is divided into 2 pathsp1 = (v1, ..., vj)
andp2 = (vj , ..., vk+1). Obviously,p2 is a trough path and it has
a hop length of2j , and by induction, its label entry has been gen-
erated latest in the2j-th iteration. Letvh be the vertex of highest
rank amongv1, ...vj . Then, fromp1, we have two trough paths
p11 = (v1, ..., vh) andp12 = (vh, ..., vj). The hop lengths ofp1
andp2 are bounded by2j , and hence both of them are processed
latest in the2j-th iteration. Hence latest at the(2j + 1)-th iter-
ation, the label entries for the trough path linkingp12 andp2, i.e.
(vh, ..., vk+1) will be created. Therefore latest at the(2j+2)-th it-
eration, the pathp which concatenatesp11,p12 andp2 will be found
and processed. The same argument applies fork ≤ 2j+1

3.3 Reducing Index Size by Label Pruning
While the iterative process generates new label entries fortrough

shortest paths of increasing hop lengths, such a shortest path p =

u ; v may be hit by a higher degree vertexvh. We can discover
such a case if we find label entries(u → w, d1) and(w → v, d2),
sincew is a higher degree vertex. We add a pruning step in order
to remove such generated label entries. This step is appliedto all
generated label entries at each iteration after the label generation
step at Line 4 of Algorithm 1.

Label Pruning: A label entry(u → v, d) is pruned if there exist
label entries(u → w, d1) and(w → v, d2) whered1 + d2 ≤ d.

EXAMPLE 2. For our example in Figure 3, in the first iteration,
(2 → 1, 2) is generated from(2 → 3, 1) and(3 → 1, 1). However,
there exist label entries(2 → 0, 1) and (0 → 1, 1) before this
iteration. By the above pruning step,(2 → 1, 2) will be pruned.

We want to show that with the pruning steps, the labeling result is
still correct. A similar pruning step is used in PLL [7], but PLL cre-
ates label entries by decreasing rank order of the pivots, and thus,
the correctness follows from canonical labeling. It is not obvious
in our case since we do not create label entries in rank order.To
show the correctness, we need some definitions. For the labeling
without pruning, letL(k) be the set of labels at the end of iteration
k, andL be the set of labels in the final index. For the labeling with
pruning, letL′(k) be the set of labels at the end of iterationk, and
L′ be the set of labels in the final index.

THEOREM 3 (CORRECTNESS). Distance querying by the in-
dex built by Hop-Doubling labeling with pruning is correct.

PROOF: Given a distance query froms to t in G, consider the
setP of all shortest paths froms to t. Let p ∈ P contain the
highest ranked vertexvm in all paths inP. Note thatvm can be
s or t. Then, subpaths(s ; vm) and(vm ; t) in p are trough
shortest paths. By Lemma 2,e1 = (s → vm, distG(s, vm)) and
e2 = (vm → t, distG(vm, t)) are generated inL. We want to
show thate1 and e2 are also inL′. We prove by contradiction.
Supposee1 6∈ L′, then it has been pruned at some iterationk, so
that e1 ∈ L(k) − L′(k). By the pruning mechanism, at itera-
tion k, there exist label entries(s → w, d1) and(w → vm, d2)
from previous iterations, andd1 + d2 = distG(s, vm). There-
fore there exists a path(s, ..., w, ..., vm, ..., t) with a length of
d1 + d2 + distG(vm, t) = distG(s, vm) + distG(vm, t), and it
is a shortest path froms to t. However,r(w) > r(vm). This con-
tradicts our assumption thatvm is the highest ranked vertex in all
shortest paths froms to t. The argument for the case wheree2 6∈
L′ is similar. Hence, we conclude thate1 ande2 exist inL′ and the
answer to the query is correct.

COROLLARY 1. Latest at iterationk = 2⌈logDH⌉, for any
shortest pathu ; v, there exist the label entries(u → vm, d1)
and(vm → v, d2) in L′(k) such thatd1 + d2 = distG(u, v).

The corollary follows from the above proof and Theorem 2, con-
sidering thatvm is the highest ranked vertex among all shortest
pathsu ; v. Now, we are ready to bound the number of iterations
of our algorithm.

THEOREM 4. The number of iterations of Hop-Doubling with
pruning is upper bounded by2⌈logDH⌉.

PROOF: Consider iterationk = 2⌈logDH⌉ + 1, if a label cov-
ering a pathp, (u → v, d), is generated by one of the 4 rules, then
there exists a trough pathu ; v, and therefore a shortest path
from u to v. From Corollary 1, there exist inL′(k − 1) the label
entriese1 = (u → vm, d1) ande2 = (vm → v, d2) such that

Algorithm 2: Candidate Generation (Rules 1 and 2)
Input : prev, old (label entries)
Output : candidate label entries

// prev (u → v) are sorted by u in file
// old (u1 → u) are sorted by u in file
// old (u2 → u) are sorted by u2 in file

1 allocate bufferBL to load next batch ofprev (u → v), (u → v′), ...
andold (u1 → u), (u′

1
→ u), ... , inBL;

2 allocate bufferBR to load old(u2 → u), (u2 → u′)... , and
candidates(u2 → u′′), (u2 → u′′′)..., inBR;

3 foreach blockBL do
4 sort the(u1 → u) entries inBL by u1;
5 foreach blockBR do

// Generation by Rule 1
6 foreach old (u2 = u1 → u) in BL do
7 foreach prev (u → v) in BL do
8 generate candidate

(u2 → v) = (u2 = u1 → u → v);

// Generation by Rule 2
9 foreach (u2 → u) in BR do

10 foreach prev (u → v) in BL do
11 generate candidate(u2 → v) = (u2 → u → v);

d1 + d2 = distG(u, v), and these entries will not be pruned in
L′(k). If vm = v, then(u → v, d1) ∈ L′(k − 1), and(u → v, d)
will not be generated as a new label. Similarly, ifvm = u. If
vm 6= v andvm 6= u, the label(u → v, d) will be pruned by
e1 ande2, and will not survive as a new label. We conclude that
no new label will be generated after2⌈logDH⌉ iterations and the
process stops.

As we shall see in our empirical studies, the above bound is very
helpful for some datasets which deviate from the small diameter
property of scale-free graphs.

4. I/O EFFICIENT ALGORITHMS
In this section, we describe the implementation of Hop-Doubling

with pruning and analyze the time complexity and I/O complexity.
There are two steps in each iteration: (1) label generation,which we
call candidate generationhere, and (2) label pruning. For the anal-
ysis of I/O complexity, we adopt the following conventions from
[6]. Let scan(N) = Θ(N/B), whereN is the amount of data
being read or written from or to disk,M is the main memory size,
andB is the disk block size(1 << B ≤ M/2).

4.1 Candidate Generation
We assume that main memory may not be able to hold the la-

bel index or even the input graph. Hence we devise an I/O effi-
cient mechanism that resembles a nested loop join for candidate
generation. In the following, for clarity, we refer to a label entry
(u → v, d) as (u → v). In each iteration, we have three types
of label entries:prev entriesare generated in the previous iteration
and survived pruning,candidatesare generated in the current it-
eration, andold entriesare all label entries that survived pruning
before the current iteration. Hence, the set ofold entries includes
theprev entries.

The pseudo code for candidate generation by Rules 1 and 2 is
shown in Algorithm 2. We loadprev label entries(u → v) and
old label entries(u1 → u) into memory in the outer loop, which
are sorted byu in the corresponding files. We make sure that for
eachu where there is aprev out-label entry(u → v), we load the

u related label entries into memory, i.e.(u → v), (u → v′), etc.,
and(u1 → u), (u′

1 → u), etc. Next, we sort all the loaded entries
(u1 → u) by u1. Note that theprev entries(u → v) are still
sorted by theu values. In the inner loop, for eachu2 where there is
anold entry(u2 → u), we load all theold entries starting fromu2

into memory, i.e.(u2 → u), (u2 → u′), etc. Candidates are also
loaded in the inner loop block. After loading the 3 kinds of entries,
we generate label entries started fromu2 by Rule 1 and Rule 2. For
generation by Rule 1, we findold in-label entries(u1 → u) loaded
in the outer loop block withu2 = u1 by a linear scan of the entries
(u1 → ...). For eachu, we use a binary search to locateprev out-
label entries(u → v), and then enumerate them by a linear scan to
generate(u2 → v) from (u2 = u1 → u) and(u → v). We avoid
duplicates of(u2 → v) by a binary search among label entries of
(u2 → ...). For generation by Rule 2, based onu2, we findprev
out-label entriesu → v to generate(u2 → v) from (u2 → u) and
(u → v). Similarly, we generate candidates from Rules 4 and 5.

Next we analyze the CPU time complexity for candidate gen-
eration. We consider only Rule 1 since the other rules take sim-
ilar time. From Theorem 4, there areO(logDH) iterations. In
each iteration, for each outer loop block, we scan theold la-
bel entries and any candidate label entries generated in this it-
eration so far. Let|old|, |prev|, and |cand| stand for the to-
tal sizes ofold, prev, and candidate label entries, respectively.
There areO((|old|)/M) outer loop blocks. The total CPU time is
given byO(logDH(|old|)/M ×|V ||label|× (logM + |label|)×
log |label|), where|label| bounds the label size of a vertex. The
term |V | comes from eachu2 considered in the inner loop block.
For each suchu2, we scanLin(u2) in the outer block, thus in-
troducing the factor of|label|. For each scanned entry, the binary
search and the linear scan introduce a factor of(logM + |label|).
Finally, O(log |label|) time is spent for each candidate to avoid
duplicates.

For the I/O complexity, we scanold andprev label entries once
in the outer loop, and for each outer loop block, we scan theold
and candidate label entries once. The total I/O cost is thus given by
O(logDH⌈|old|/M⌉ × scan(|old|+ |cand|)).

4.2 Label Pruning
In each iteration, after the label candidate generation, weap-

ply the pruning step as discussed in Section 3.3. For IO efficient
computation, we adopt a nested loop join strategy. We prune an
out-label entry(u → v) of u by (u → w) and(w → v) where
r(w) > r(v) > r(u). A similar method is adopted for in-label
entry(u → v) wherer(u) > r(v).

We allocate half of the memory for the outer loop and another
half for the inner loop. In the outer loop, we loadold label entries
(u → w), (u → w′), ..., and candidates(u → v), (u → v′), ...,
both of which are sorted byu, into memory. In the inner loop, we
scan all theold in-label entries(w → v), (w′ → v), ..., which
are sorted byv. We scan each(u → v) in the outer loop block.
For each(u → v), we findv related entries(w → v) in the inner
loop block by a binary search. Then, we linearly scan theu related
entries(u → w) in the outer loop block together with thev related
(w → v) for possible pruning of(u → v). After all (u → v)
entries are checked, we load another batch of(w → v) in the inner
loop to check the unpruned(u → v) until all (w → v) have been
loaded into memory once for pruning all the possible(u → v) in
memory from the outer loop. We continue this process for all the
remaining batches of label entries in the outer loop until the end.

We analyze the CPU complexity for the pruning step. For each
candidate orold entry of (u → v), we perform a binary search
and a scanning of the labels foru and for v, hence the time re-

quired isO(logDH(|cand| + |old|)(logM + |label|)). For I/O
complexity, in each iteration, all theold label entries are loaded
into memory forO(⌈(|cand| + |old|)/M⌉) times, by nested loop.
With O(logDH) iterations, it requiresO(logDH(⌈(|cand| +
|old|)/M⌉ × scan(|old|) + scan(|cand|+ |old|))) I/Os.

5. ENHANCEMENT BY HOP-STEPPING
For Hop-Doubling labeling, the I/O complexity is given by

O(logDH⌈(|old| + |cand|)/M⌉ × (|old| + |cand|)/B). Let
us consider|cand|. The candidates are generated from the la-
bels created in the previous round of execution. From Equation
(2), the expansion factor isR = log |V |. In each iteration, from
Theorem 4, the path hop length can expand by at mostDH/2,
whereDH is the hop diameter of the graph. Hence,|cand| =

O(|prev|(log |V |)DH/2). The factor of(log |V |)DH/2 can greatly
affect the I/O cost. It is caused by the hop doubling property, where
in each iteration we may cover paths with hop lengths up to double
that in the previous round. To deal with this issue, we consider an
alternative strategy whereby we increase the number of hopsby one
in each iteration. We show that after each iteration, the label size
is bounded byO(h|V |). SinceR = log |V |, the value of|cand|
in the complexity analysis becomesO(h|V | log |V |). We call this
methodHop-Stepping.

5.1 Hop Length i+ 1 from i and 1
Hop-Stepping retains all the steps of the Hop-Doubling labeling

method. However, the 4 rules as illustrated in Figure 6 for gener-
ating labels are refined as follows: at iterationi + 1, hop length
of the path covered byu → v is i; while we have unit hop length
for the paths covered by the following labels:u1 → u in Rule
1; u2 → u in Rule 2;u → u4 in Rule 4; andu → u5 in Rule
5. Only edges inE have unit hop lengths. E.g., Rule 1 becomes
∀(u → v, i) ∈ prevLabel, ∀(u1 → u, 1) ∈ allLabel, where
(u1, u) ∈ E andr(v) > r(u1) > r(u), generate(u1 → v, i+ 1).

EXAMPLE 3. For the graphG in Figure 3, in the second itera-
tion of Hop Stepping,(4 → 2, 4) will not be generated, since the
hop lengths of both(4 → 3, 2) and (3 → 2, 2) are 2. (4 → 2, 4)
is generated in the next iteration from(4 → 5, 1) and(5 → 2, 3).

Let us consider the correctness and other properties of Hop-
Stepping. First, we show that it generates label entries forpaths
of unit increasing hop-lengths in subsequent iterations. In the fol-
lowing, we refer to a path withi hops as ani-length path.

LEMMA 5. For 1 ≤ i ≤ DH , at thei-th iteration, the label
entries covering alli-length trough shortest paths are generated.

PROOF: We prove by induction. The base case wherei = 1 is
straightforward. Assume the statement true for1 ≤ i ≤ j. Con-
sider a(j + 1)-length trough shortest pathp = (v1,v2, ..., vj+2).
Supposer(v1) < r(vj+2). p is made up of two sub-pathsp1 =
(v1, v2) andp2 = (v2, ..., vj+2). Obviouslyp2 is a trough shortest
path and it has a hop length ofj, by induction, the label entry cov-
eringp2 has been generated at thej-th iteration.p1 = (v1, v2) is
also a trough shortest path with a hop length of 1, so the covering
entry has also been generated. By the Hop-Stepping algorithm, p
will be generated at the(j+1)-th iteration by either Rule 1 or Rule
2. Similar arguments hold forr(v1) > r(vj+2) by using Rule 4
and Rule 5.

Next, we add the pruning steps to each iteration. We show that
the resulting labeling is correct for distance querying.

THEOREM 5 (CORRECTNESS). Distance querying by the in-
dex built by Hop-Stepping labeling with pruning is correct.

The proof is similar to that for Hop-Doubling. From Lemma 5,
we also have the following bound on the number of iterations.

THEOREM 6. The number of iterations of Hop-Stepping label-
ing with pruning is upper bounded byDH .

5.2 A Bound on the Label Size
In this section we derive a bound on the label size. First we

show that afterd0 iterations, only label entries involving vertices in
H (see Assumption 1) will be added to the labels of each vertex.

LEMMA 6. Let l(p) = (u → v, d) be a label entry which
covers trough shortest pathp, where the hop length ofp is k and
k ≥ d0. Then,l(p) is pruned at iterationk unlessu ∈ H or v ∈ H.

PROOF: From Lemma 5,l(p) is generated at iterationk. Since
p has a hop length ofk ≥ d0, by Assumption 1,p is hit by some
vertex inH. Consider the setP of all shortest paths fromu to v
with k hops, letw be a vertex inH with the highest rank inP. Let
h1 be the hop length of the shortest path fromu tow andh2 be that
from w to v. So,h1 + h2 = k. Hence,h1 ≤ k andh2 ≤ k. Let us
define label setsL(i) andL′(i) as in Section 3.3. From Lemma 5,
e1 = (u → w, distG(u,w)) ande2 = (w → v, distG(w, v)) are
generated at or before iterationk. We prove by contradiction thate1
ande2 are inL′(k). Supposee1 6∈ L′(k), then since it is inL(k),
it has been pruned. By the pruning condition, there exists a higher
rank vertexx, with r(x) > r(w), such thatp2 = (u, ..., x, ..., w)
has a length ofdistG(u,w). Thus,x is a higher ranked vertex
that is on a shortest path fromu to v, compared tou andw, a
contradiction to the fact thatw has the highest such rank. Similarly,
we prove thate2 is in the label ofv in L′(k). Thus,l(p) is pruned
at iterationk, except whenw = u or w = v.

Assumption 2 in Section 2.2 states that paths of distance below
d0 are hit by a small set of at mosth vertices in the close neighbor-
hood ifH is excluded. Thus, we derive the following.

LEMMA 7. For each label for each vertexv in the label index
L, the number of entries(u, d) whereu 6∈ H is bounded byh.

PROOF: We need only considerv 6∈ H since otherwise(u, d)
cannot be in its labels.Lout(v) initially contains the entries involv-
ing out-neighbors ofv, then expanding to the close neighborhood
with increasing hop lengths. If no high degree vertex is expanded,
this neighborhood is kept small. Consider a vertexw ∈ H in the
neighborhood atk hops fromv. Thus,r(w) > r(v). Let the pathp
from v to w via thek hops be a shortest path of distanced1. Con-
sider an out-neighboru of w, wherer(u) < r(w), andu is k + 1
hops fromv. Let the path fromv tou via p andw be a shortest path
of distanced1 + d2. The candidate entry(u, d) will be generated
from p and(w, u) with d = d1 + d2 at the(k + 1)-th iteration.
From Lemma 5, the entries(v → w, d1) and(w → u, d2) have
been generated in previous iterations since their corresponding hop
lengths are less thank + 1. Candidate(u, d) will be pruned by
(v → w, d1) and(w → u, d2) sinced1 + d2 = d, and will not be
added toLout(v). Similar arguments hold forLin(v). The lemma
then follows from Assumption 2 and Lemma 6.

THEOREM 7. Given an unweighted scale-free graphG, the la-
bel size of any vertex at any iteration of Hop-Stepping with Pruning
is O(h).

Theorem 7 follows from Lemmas 6 and 7, and Assumptions 1 to
3. Note that this is an optimal label size if the value ofh is a tight
bound on the hitting set size. It is easy to show that Hop-Doubling
generates all the label entries that are generated in Hop-Stepping,
and by exhaustive pruning, the label size is the same as that of Hop-
Stepping and is bounded byO(h).

5.3 Complexity Analysis
The detailed algorithm for Hop-Stepping with Pruning is similar

to that for Hop-Doubling, except that we only consider theold la-
bel entries with only one hop. Thus, the analysis is similar to that
described in Section 4, except that we haveDH iterations. From
Theorem 7,|old| = |prev| = O(h|V |). Since|cand| = |prev|×R,
whereR = log |V |, |cand| = O(h|V | log |V |). Therefore, label
generation requiresO(DH⌈h|V |/M⌉×h log h|V |×(logM+h))
CPU time andO(DH⌈h|V |/M⌉×scan(h|V | log |V |) I/Os. Also,
in total label pruning takesO(DHh|V | log |V |)(logM + h) CPU
time andO(DH × ⌈h|V | log |V |/M⌉ × scan(h|V |)) I/Os.

THEOREM 8. With the assumptions of smallDH and h,
the total CPU time for Hop-Stepping with pruning is given
by O(|V |logM(|V |/M + log|V |)), and the I/O complexity is
O(|V |log|V |/M × |V |/B).

5.4 Hop-Stepping and Hop-Doubling
It is possible to combine the strengths of Hop-Doubling withthat

of Hop-Stepping. Hop-Stepping can trim the fast growth of the
lengths of paths covered by label entries at the earlier iterations,
when the hop lengths are small. For graphs where the hop diameter
is not very small, a small fraction of the shortest paths willhave
long hop lengths. In such a case, to avoid the larger number of
iterations, we can continue the growth by Hop-Doubling.

LEMMA 8. If we begin the label construction with Hop-
Stepping and switch to Hop-Doubling after a number of iterations,
with the pruning step applied to all iterations, distance querying
based on the resulting labeling is correct.

6. UNDIRECTED, WEIGHTED, AND GEN-
ERAL GRAPHS

Our algorithms can be easily extended to handle undirected
graphs. Instead of having two labelsLin(v) andLout(v) for each
vertexv, we need only one labelL(v). To cover an undirected path
of lengthd betweenu an v, wherer(u) < r(v), we use the la-
bel entry(v, d) in L(u). It is simpler than the directed case, since
Rule 1(2) will be identical to Rule 4(5), when the directionsof
paths are removed. Hence we only need Rules 1 and 2. For in-
stance, Rule 1 says that: from(u1 → u, d1) and (u → v, d),
wherer(v) > r(u1) > r(u), generate(u1 → v, d1 + d). For
undirected graphs, this rule becomes: from(u1, d1) ∈ L(u) and
(v, d) ∈ L(u), wherer(v) > r(u1), generate(v, d1+d) in L(u1).
Rules 2 is similarly converted. For distance querying, the labels
L(s) andL(t) are looked up for a given query ofdist(s, t).

While our discussions so far have focused on unweighted graphs,
all our mechanisms also apply to weighted directed/undirected
graphs with positive edge weights. Though our complexity anal-
ysis is based on unweighted scale-free graphs, our experiments on
real weighted graphs show highly promising results.

For graphs that are not scale-free, the ranking by degree maynot
be effective. For example, road networks do not have high degree
vertices. However, our algorithms are still relevant for the gen-
eral graphs since they work with any total ranking of vertices. As
discussed in Section 2, higher ranked vertices should hit a large

G = (V,E) |V | |E|
Max |G| Index size (MB) Indexing time (sec) Memory query time (µs) Disk query time (ms)

deg (G) (MB) IS-Label PLL HopDb IS-Label PLL HopDb BIDIJ IS-Label PLL HopDb IS-Label HopDb

undirected unweighted
Delicious 5.3M 602M 4M 9446 — — 12748 — — 31999 — — — — — 30.1
BTC 168M 361M 106K 7550 — — 13971 — — 11401 — — — — — 28.4
FlickrLink 1.7M 31M 27K 452 — — 4068 — — 4284 25513 — — — — 22.7
Skitter 1.7M 22M 36K 344 — — 3732 — — 4888 5011 — — 3.06 — 24.6
CatDog 624K 16M 81K 231 — 836 656 — 145 1152 24127 — 0.98 0.78 — 16.3
Cat 150K 5M 81K 67 171 141 61 628 7 102 1880 2.3 0.31 0.22 15.7 7.3
Flickr 106K 2M 5K 30 — 226 238 — 42 269 1497 — 2.06 2.06 — 12.6
Enron 37K 368K 1K 5 138 33 10 37 0.5 3 108 4.8 0.14 0.08 6.9 0.6
directed unweighted
wikiEng 17M 240M 2M 4447 — — 31904 — — 99686 — — — — — 38.9
wikiFr 5.1M 113M 1M 1964 — — 8661 — — 18532 5317 — — — — 31.2
wikiItaly 2.9M 105M 825K 1755 — — 9707 — — 32397 4384 — — — — 28.2
Baidu 2.1M 18M 98K 271 — — 5184 — — 6737 1842 — — — — 29.4
gplus 102K 14M 21K 182 — — 337 — — 623 717 — — 2.41 — 11.6
wikiTalk 2.4M 5M 100K 74 — — 1464 — — 377 201 — — 0.33 — 20.4
slashdot 77K 517K 2K 7 1035 — 65 439 — 19 49 7.2 — 0.49 18.4 5.7
epinions 76K 509K 3K 6 1126 — 68 517 — 20 76 9.2 — 0.61 19.1 4.5
EuAll 265K 420K 2K 6 343 — 65 31 — 9 23 8.3 — 0.19 11.7 6.3
synthetic
syn1 10M 700M 3M 8998 — — 9030 — — 49612 — — — — — 40.1
syn2 20M 600M 4M 8118 — — 20272 — — 56460 — — — — — 37.9
syn3 15M 450M 3M 5990 — — 13552 — — 31920 — — — — — 38.2
syn4 10M 200M 2M 2633 — — 6825 — — 7804 — — — — — 35.5
syn5 1M 5M 95K 61 7987 876 161 878 14 43 3685 40.4 0.26 0.14 24.4 15.4
syn6 100K 1M 18K 10 262 88 14 25 1.4 3 305 3.9 0.18 0.08 11.2 1.2
undirected weighted
amaRating 3.3M 11M 12K 197 — — 15934 — — 22609 61450 — — — — 27.7
epinRating 876K 27M 162K 376 — — 1846 — — 2994 12550 — — 6.11 — 22.1
movRating 9746 2M 3K 24 120 — 23 452 — 50 369 18.672 — 7.80 4.8 0.8
bookRating 264K 867K 9K 13 4533 — 223 2444 — 99 112 — — 2.28 25.4 14.8

Table 6: Performance comparision of BIDIJ, IS-Label, PLL and HopDb on complete 2-hop indexing for different graphsG.

number of shortest paths. The direct approach to determine such
a vertex ranking requires the computation of the shortest paths for
all pairs of vertices, which may not be practical for large graphs.
Hence, some heuristical method to approximate this rankingmay
be helpful. With such a ranking, our algorithms can be applied, and
all analyses hold except for those in Sections 5.2 and 5.3, where
assumptions based on scale-free graphs are adopted.

7. EXPERIMENTAL RESULTS
We implemented our algorithms in C++, and tested the perfor-

mance of our algorithms using a Linux machine with an Intel 3.3
GHz CPU, 4GB RAM and 7200 RPM SATA hard disk. We com-
pared with three state-of-the-art algorithms, IS-Label [18], PLL [7],
and HCL [20], with coding provided by their authors. We con-
ducted experiments on various real-world networks. We useda
32-bit integer for each vertex in the vertex set and an 8-bit inte-
ger for the distance value in the graph. The information about the
datasets is listed in Table 6. Most of the datasets are obtained from
the Stanford Network Analysis Project and KONECT [1]. We se-
lected graphs with power-law degree distributions. We shall label
our algorithm as HopDb. By default, we adopt the hybrid approach
where we apply Hob-Stepping with pruning in the first 10 iterations
and switch to Hob-Doubling with Pruning from the 11-th iteration
until the last iteration.

The networks tested in our experiment are as follows. Delicious
is the user-tag network on delicious.com. BTC is the semantic
graph from Billion Triple Challenge 2009. FlickrLink is thelink
network on flickr.com. Skitter is an Internet topology graph. Cat-
Dog and Cat are social networks. Flickr is the image sharing net-
work on flickr.com. Enron is an email communication network.
WikiEng/WikiFr/WikiItaly is the wikilinks from Wikipedia. Baidu
is the internal links network on baidu.com. Gplus and slashdot
are social networks. wikiTalk records the discussions of wikipedia

users. Epinions is a who-trust-who network. EuAll is a Euro-
pean email network. AmaRating and EpinRating are customer-
product rating networks. MovRating and BookRating are networks
of movie rating and book rating, respectively. For directedgraphs,
we rank vertices by non-increasing product of in-degree andout-
degree due to its better performance. We have also considered
synthetic scale-free networks generated based on the GLP (Gen-
eralized Linear Preference) model [11]. The GLP model is based
on the BA model [8] but allows more flexibility. The required pa-
rametersm andm0 are set to 1.13 and 10, respectively, as in [11],
which gives a power law exponent of 2.155. Unweighted undi-
rected graphs of varying vertex set sizes and densities are gener-
ated, syn1 to syn6 are six such datasets.

Performance Comparison: We compared our algorithm with the
only external algorithm IS-Label [18] which is capable of building
full indices. We also compared our algorithm with the two best
existing main memory based indexing methods, namely PLL [7]
and HCL [20]. We examined the index size, indexing time, disk
based querying time and memory based querying time (with in-
dex in memory). We measured the performance of IS-Label when
building the complete index. We also compared with baselinebi-
Dijkstra search for in memory querying.

The PLL coding provided by the authors of [7] only handles
undirected unweighted graphs and it incorporated a bit-parallel
mechanism for efficient querying, which is applicable to any2-
hop index on undirected unweighted graphs. Hence, we have also
added an enhanced bit-parallel component in HopDb for handling
the graphs that can be handled by PLL. The idea of bit-parallel is
to select a small set of vertices as roots, e.g. 50 by default in PLL’s
code, and to merge the label entry of the form(v, d) with (r, d′),
wherev is a neighbour of a root vertexr in the given graph. More
details can be found in [7]. We also added a bit-wise method to
look up common roots in two labels for efficient query processing.

 60

 70

 80

 90

 100

 110

 120

 0 0.2 0.4 0.6 0.8 1

la
be

l c
ov

er
ag

e(
%

)

top vertices(%)

BTC
Skitter

 60

 70

 80

 90

 100

 110

 120

 0 0.2 0.4 0.6 0.8 1

la
be

l c
ov

er
ag

e(
%

)

top vertices(%)

wikiEng
wikiTalk

EuAll

 60

 70

 80

 90

 100

 110

 120

 0 0.2 0.4 0.6 0.8 1

la
be

l c
ov

er
ag

e(
%

)

top vertices(%)

syn1
syn2
syn5

Figure 8: Label coverage by top ranked vertices

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70
 0

 50

 100

 150

 200

 250

G
ra

p
h

 S
iz

e
(G

B
)

A
vg

 |
la

b
e

l|
P

e
r

V
e

rt
e

x

|E|/|V|

Graph Size
Avg |label|

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30
 0

 50

 100

 150

 200

 250
G

ra
p

h
 S

iz
e

(G
B

)

A
vg

 |
la

b
e

l|
P

e
r

V
e

rt
e

x

|V| (Million)

Graph Size
Avg |label|

(a) (b)
Figure 9: Results for synthetic scale-free data. (a)|V | = 10M
(b) |E|/|V | = 20

From the results as shown in Table 6, HopDb outperformed the
other methods in nearly all aspects. HCL could not finish all the
datasets after running for 24 hours, except for Enron, for which
all the costs are 3 orders of magnitude higher than HopDb, so the
results are not included in Table 6. PLL has a smaller indexing
time since it is a main memory based algorithm, while HopDB is
a disk based algorithm. However, PLL could not handle most of
the datasets because of the large main memory requirement for the
index construction. IS-Label could not finish the medium or large
sized datasets after running for 24 hours. With the dataset Flickr,
the intermediate graphGi has grown to become bigger than the
original graph in the second iteration, and continued to grow.This
is because the pruning strategy of IS-Label is much less effective
compared with our pruning method.

For the smaller datasets, PLL, IS-Label and HopDb built the
complete 2-hop index successfully, but the index sizes of our al-
gorithm are significantly smaller than those of IS-Label andalways
smaller than PLL, and hence the querying efficiency of HopDb is
also substantially better than IS-Label and better than PLL.

We have also conducted experiments on weighted graphs. While
we assume small hitting sets for unweighted graphs only, theresults
on weighted real graphs also indicate small hitting sets forweighted
graphs. This is a promising evidence that the assumptions may also
hold for many weighted scale-free graphs.

Results on Small Hitting Set:We verify the concept of small hit-
ting set in the real life datasets by showing small average number
of label entries (|label|) per vertex and high coverage of label en-
tries by top vertices in Table 7. A label entry(v, d) is said to be
covered byv. From our discussion in Section 5.2, the size of the
final label set can be bounded byO(h|V |) with a smallh, which is
consistent with the small average|label| values listed in the table,
and is the guarantee for the high efficiency of our query processing.
Moreover, from the label coverage by top vertices, we know that an
extremely small amount of top vertices, given by the percentages
in the last three columns of Table 7, can cover most label entries,
like 70%, 80%, and90% listed in the table. The top1% of vertices
often cover close to100% of the label entries, as shown in Figure
8. These top vertices formed the setH for the small hitting sets.

Graph
number of Avg |label| top vertices coverage
Iterations per vertex 70% 80% 90%

BTC 14 12 0.01% 0.01% 0.02%
Skitter 13 456 0.13% 0.21% 0.43%
CatDog 9 275 0.83% 1.55% 3.25%
Cat 6 104 0.78% 1.33% 2.79%
Flickr 7 515 7.62% 13.80% 16.72%
Enron 7 321 0.60% 1.02% 2.29%
wikiEng 15 192 0.03% 0.05% 0.13%
wikiItaly 15 343 1.69% 2.34% 3.73%
gplus 8 342 2.87% 4.37% 7.56%
wikiTalk 7 60 0.02% 0.04% 0.07%
slashdot 9 84 0.73% 1.12% 1.89%
epinions 9 91 0.89% 1.31% 2.10%
EuAll 7 22 0.04% 0.06% 0.09%

Table 7: Results supporting the assumptions of small hub di-
mensionh and small hitting sets (|label| = number of label en-
tries)

Graph
Indexing time (sec) number of iterations

Double Step Hybrid Double Step Hybrid
BTC — 21081 11401 — 38 14
Skitter — 6400 4888 — 21 13
wikiItaly — 47558 32397 — 59 15
gplus 4205 642 642 5 8 8
wikiTalk 2221 378 378 5 7 7
slashdot 145 19 19 5 9 9
epinions 157 20 20 5 9 9

Table 8: Comparing Hop-Doubling, Hop-Stepping, and Hybrid

Results on Synthetic Scale-free Data:We have generated scale-
free networks with different densities in GLP to show the scalabil-
ity of HopDb. In our first experiment, the number of vertices of the
graphs is fixed to 10 million, and the densities|E|/|V | are varied
from 2 to 70. The number of iterations varies from 7 to 5, which
confirms our assumption of a small diameter for scale-free graph.
The graph sizes and the average number of label entries in a vertex
are reported in Figure 9. As the graph size increases linearly, the
average label size remains very small and approaches a flat value
below 200. The results strongly support our assumptions of small
hitting sets and small hub dimension for scale-free graphs.

Similarly, we tested the scalability of HopDb in scale-freenet-
works with growing number of vertices by the GLP model. We set
the density|E|/|V | to 20, and varied the number of vertices from
2 millions to 30 millions. The greatest average label size isaround
200, which is very small compared to|V |. This indicates that our
assumption of small hub dimension holds for all graph sizes.

Effects of Hop-Stepping and Pruning:To show the effectiveness
of the hop-stepping and pruning strategies, we compared theef-
ficiency of adopting different strategies in Table 8 and Figure 10.
We considered the three alternatives: only hop-doubling, only hop-
stepping, and our default hybrid approach. The hybrid approach
achieved the best performance as listed in the column hybrid. Only
adopting doubling strategy may lead to too many candidates in the
beginning, so it took a long time to finish the large datasets.In
the first 10 iterations, hybrid utilized the hop-stepping strategy to
limit the growth of candidates and label size. From the 11-thiter-
ation, the hybrid approach switched to hop-doubling to accelerate
the process of candidate growing and limit the number of iterations.
In datasets with large diameters, the hybrid approach couldlimit the
number of iterations and finish the whole process earlier.

We analyze the running process of a large dataset, wiki-Eng,to
show the power of the pruning strategy and hop-stepping in Figure
10. We introduce two numbers, i.e. growing factor and pruning
factor, to show the effectiveness. For each iteration, the growing

 0
 10
 20
 30
 40
 50

 0 3 6 9 12 15
 0
 30
 60
 90
 120

G
ro

w
in

g
F

ac
to

r

P
ru

ni
ng

 F
ac

to
r(

%
)

iteration

Growing Factor
Pruning Factor

 0
 40
 80

 120
 160
 200

 0 3 6 9 12 15
 0

 10

 20

 30

 40

S
iz

e
R

at
io

(%
)

T
im

e
R

at
io

(%
)

iteration

|candidates|/|final index|
|old label|/|final index|

|prev label|/|final index|
iteration time/total time

Figure 10: Growth and pruning results for wiki-English

factor is the ratio of (number of candidates generated in this iter-
ation) to (number of label entries generated in the previous itera-
tion). The pruning factor is the percentage of pruned label entries
in one iteration, i.e. it is the ratio of (number of pruned candi-
date) to (total number of candidates). The pruning strategy was
powerful throughout the whole process. In the first 10 iterations
when adopting hop-stepping, the growing factor was successfully
limited at about 3 to 4, this is in line with the small expansion fac-
tor described in Section 2.2. After switching to hop-doubling, the
growing factor increased to around 25. Thus, hop-doubling accel-
erated the label generation and led to earlier termination.In this
phase, the effectiveness of the pruning strategy is also shown by
the pruning factor, with up to about90% of the candidates pruned.
The runtime of these iterations is short since very few candidates
are generated. Figure 10 also shows that the size of the candidate
set did not exceed 1.5 times the size of the final index size. Hence,
the growth in candidates was well under control.

8. CONCLUSION
We introduce a new disk-based indexing algorithm for distance

querying on a large scale-free graph. With scalable indexing com-
plexities, our method performs well on different types of scale-free
networks and can handle graphs many times larger than existing
methods. The consistently small label sizes resulting fromour label
indexing with all our tested graphs strongly support our assumption
of small hub dimension. The experimental result also verifies the
scalability of our algorithm and the small label sizes give rise to
highly efficient query evaluation both in-memory and on-disk.

ACKNOWLEDGEMENTS : We thank the authors of [7] for
the PLL coding, and the authors of [20] for the HCL coding. We
are grateful for the data collections from SNAP and KONECT. We
thank James Cheng for suggestions on the presentation and review
responses to another conference. This work was supported bythe
Hong Kong RGC GRF grant 412313 and grant FSGRF12EG50.

9. REFERENCES
[1] http://konect.uni-koblenz.de/networks.
[2] I. Abraham, D. Delling, A. Fiat, A. V. Goldberg, and R. F. F.

Werneck. Vc-dimension and shortest path algorithms. InICALP (1),
pages 690–699, 2011.

[3] I. Abraham, D. Delling, A. V. Goldberg, and R. F. F. Werneck. A
hub-based labeling algorithm for shortest paths in road networks. In
SEA, 2011.

[4] I. Abraham, D. Delling, A. V. Goldberg, and R. F. F. Werneck.
Hierarchical hub labelings for shortest paths. InESA, 2012.

[5] I. Abraham, A. Fiat, A. V. Goldberg, and R. F. F. Werneck. Highway
dimension, shortest paths, and provably efficient algorithms. In
SODA, pages 782–793, 2010.

[6] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting
and related problems.Commun. ACM, 31(9):1116–1127, 1988.

[7] T. Akiba, Y. Iwata, and Y. Yoshida. Fast exact shortest-path distance
queries on large networks by pruned landmark labeling. InSIGMOD,
2013.

[8] A. L. Barabasi and R. Albert. Emergence of scaling in random
networks.Science, (286):509–512, 1999.

[9] R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, D. Schultes, and
D. Wagner. Combining hierarchical and goal-directed speed-up
techniques for dijkstra’s algorithm.ACM Journal of Experimental
Algorithmics, 15, 2010.

[10] B. Bollobas and O. Riordan. The diameter of a scale-freerandom
graph.Combinatorica, 24(1):5–34, 2004.

[11] T. Bu and D. Towsley. On distinguishing between internet power law
topology generators. InINFOCOM, 2002.

[12] L. Chang, J. Yu, L. Qin, H. Cheng, and M. Qiao. The exact distance
to destination in undirected world.The VLDB Journal, 2012.

[13] W. Chen, C. Sommer, S. Teng, and Y. Wang. A compact routing
scheme and approximate distance oracle for power-law graphs.ACM
Transactions on Algorithms, 9(1):4:1–4:26, 2012.

[14] J. Cheng and J. X. Yu. On-line exact shortest distance query
processing. InEDBT, pages 481–492, 2009.

[15] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachability and
distance queries via 2-hop labels.SIAM Journal of Computing,
32(5):1338–1355, 2003.

[16] E. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269 – 271, 1959.

[17] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law
relationships of the internet topology. InSIGCOMM, 1999.

[18] A. Fu, H. Wu, J. Cheng, and R. Wong. Is-label: an independent-set
based labeling scheme for point-to-point distance querying. In
PVLDB, volume 6, April 2013.

[19] R. Geisberger, P. Sanders, D. Schultes, and D. Delling.Contraction
hierarchies: Faster and simpler hierarchical routing in road networks.
In WEA, pages 319–333, 2008.

[20] R. Jin, N. Ruan, Y. Xiang, and V. E. Lee. A highway-centric labeling
approach for answering distance queries on large sparse graphs. In
SIGMOD Conference, pages 445–456, 2012.

[21] M. Kargar and A. An. Keyword search in graphs: Finding r-cliques.
In VLDB, 2011.

[22] J. Kunegis and J. Preusse. Fairness on the web: Alternatives to the
power law. InWebSci, 2012.

[23] M. Lee, J. Lee, J. Park, R. Choi, and C. Chung. Qube: a quick
algorithm for updating betweenness centrality. InWWW, 2012.

[24] K. Mehlhorn and U. Meyer. External-memory breadth-first search
with sublinear i/o. InESA, 2002.

[25] M. Newman, S.H.Strogatz, and D. Watts. Random graphs with
arbitrary degree distributions and their applications.Physical Review,
64(026118):1–17, 2001.

[26] V. Pareto. Manuale di economia politica con una introduzione alla
scienza sociale (manual of political economy).Milano : Societa
Editrice Libraria, 1919.

[27] H. Samet, J. Sankaranarayanan, and H. Alborzi. Scalable network
distance browsing in spatial databases. InSIGMOD, 2008.

[28] P. Sanders and D. Schultes. Highway hierarchies hastenexact
shortest path queries. InESA, pages 568–579, 2005.

[29] J. Sankaranarayanan, H. Samet, and H. Alborzi. Path oracles for
spatial networks.PVLDB, 2(1):1210–1221, 2009.

[30] R. Schenkel, A. Theobald, and G. Weikum. Hopi: An efficient
connection index for complex xml document collections. InEDBT,
pages 237–255, 2004.

[31] Y. Tao, C. Sheng, and J. Pei. Onk-skip shortest paths. InSIGMOD,
pages 43–54, 2011.

[32] X. Wang and G. Chen. Complex networks: Small-world, scale-free
and beyond.IEEE Circuits and Systems Magazine, (First
Quarter):6–20, 2003.

[33] F. Wei. Tedi: efficient shortest path query answering ongraphs. In
SIGMOD Conference, pages 99–110, 2010.

[34] Y. Xiao, W. Wu, J. Pei, W. Wang, and Z. He. Efficiently indexing
shortest paths by exploiting symmetry in graphs. InEDBT, 2009.

