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ABSTRACT

Trajectory data is central to many applications with moving objects.

Raw trajectory data is usually very large, and so is simplified before

it is stored and processed. Many trajectory simplification notions

have been proposed, and among them, the direction-preserving tra-

jectory simplification (DPTS) which aims at protecting the direc-

tion information has been shown to perform quite well. However,

existing studies on DPTS require users to specify an error tolerance

which users might not know how to set properly in some cases (e.g.,

the error tolerance could only be known at some future time and

simply setting one error tolerance does not meet the needs since

the simplified trajectories would usually be used in many differ-

ent applications which accept different error tolerances). In these

cases, a better solution is to minimize the error while achieving

a pre-defined simplification size. For this purpose, in this paper,

we define a problem called Min-Error and develop two exact al-

gorithms and one 2-factor approximate algorithm for the problem.

Extensive experiments on real datasets verified our algorithms.

1. INTRODUCTION
Trajectory data, which records the traces of moving objects, is

ubiquitous nowadays due to the popularity of GPS devices. People

use trajectory data for many different purposes, e.g., traffic analy-

sis [23], route recommendation [26, 35], social relationship analy-

sis [30, 37], and user behavior analysis [39, 33].

Raw trajectory data is usually of large volume, which incurs high

storage and processing costs. Thus, common practice is to simplify

the raw trajectory data before it is stored and processed. This pro-

cedure is called trajectory simplification [24].

Most existing trajectory simplification techniques aim to pre-

serve the position information when trajectory data is simplified,

which is referred to as position-preserving trajectory simplification

(PPTS) [4, 31, 27]. PPTS guarantees that at any time stamp, the

distance is bounded between the position captured by the original

trajectory and the position captured by the simplified trajectory.

Recently, Long et al. [24] proposed a new trajectory simplifi-

cation framework called direction-preserving trajectory simplifica-

tion (DPTS) which aims to preserve the direction information when
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trajectory data is simplified. DPTS guarantees that at any time

stamp, the angular difference between the direction of the move-

ment captured by the original trajectory and the direction of the

movement captured by the simplified trajectory, which corresponds

to the error of the simplified trajectory, is bounded. According

to [24], DPTS is superior over PPTS since DPTS not only preserves

the direction information but also bounds position information loss,

but the converse is not true. In this paper, we focus on DPTS.

The DPTS problem studied in [24] is to simplify a given trajec-

tory such that the error of the simplified trajectory is at most a given

error threshold and its size is minimized. Here, the size of a sim-

plified trajectory is defined to be the total number of positions kept

in the trajectory. We call this problem the Min-Size problem. The

Min-Size problem is suitable only when users have clear knowl-

edge about the error tolerance.

In some cases, users might not know how to specify the error

tolerance clearly. This could be because the simplified trajectories

will be used in the future and thus the details are not available at

the moment or the simplified trajectories will be used in different

applications which might have different accuracy requirements and

thus it is not suitable to specify one error tolerance for simplifying

trajectories. In these cases, a better way is to retain the accuracy as

much as possible while achieving a certain degree of compression

rate for simplifying trajectories. Specifically, we are given a stor-

age budget denoting the greatest size of a simplified trajectory to

be stored (note that the storage budget implies a compression rate

requirement), and the goal is to minimize the error of the simpli-

fied trajectory. We call this problem the Min-Error problem which

corresponds to the dual problem of the Min-Size problem.

In this paper, we develop multiple algorithms for the Min-Error

problem, both exact and faster approximate algorithms. Specifi-

cally, our major contributions are summarized as follows. First, we

define a new problem called Min-Error which minimizes the sim-

plification error under a storage budget. Second, to solve the Min-

Error problem exactly, we explore the idea of dynamic program-

ming and binary search, resulting in two different algorithms, with

the time complexities of O(Wn3) and O(n2C log n), respectively

(W is the storage budget, n is the size of the trajectory and C is a

small constant). Third, motivated by the relatively high complex-

ities of the exact algorithms, we further develop an approximate

algorithm which runs in O(n log2 n) time and gives a 2-factor ap-

proximation. Fourth, we conducted extensive experiments on real

datasets which verified our proposed algorithms.

The remainder of this paper is organized as follows. Section 2

defines the Min-Error problem. Section 3 and Section 4 introduce

our exact and approximate algorithms, respectively. Section 5 gives

our empirical study. Section 6 studies the related work and Sec-

tion 7 concludes the paper.
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Figure 1: A trajectory (used as the running

example throughout this paper)
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Figure 2: direc-

tion
Segments p1p2 p2p3 p3p4 p4p5 p5p6 p6p7 p7p8
Directions 0.785 5.820 1.107 0 0.464 5.498 5.961

Table 1: Directions of the segments (running example)

2. PROBLEM DEFINITION
A trajectory corresponds to the spatial and temporal trace of a

moving object and is usually represented by a sequence of (po-

sition, time stamp)-pairs: (p1, t1), (p2, t2), ..., (pn, tn) which im-

plies that the object is located at position pi at time stamp ti for

i = 1, 2, ..., n. An implicit assumption here which is commonly

used is that the object moves along the line segment linking pi and

pi+1 from time stamp ti to time stamp ti+1 for i = 1, 2, ..., n− 1.

Since we aim at preserving the direction information of a tra-

jectory (which will be introduced later) when doing trajectory sim-

plification and the direction information of a trajectory is solely

captured by the sequence of positions of the trajectory, we rep-

resent the trajectory by the sequence of its positions only, e.g.,

T = (p1, p2, ..., pn) corresponds to a trajectory of the moving ob-

ject appearing at p1, p2, ..., pn sequentially. We define the size of

T , denoted by |T |, as the number of positions involved in T .

Let T = (p1, p2, ..., pn) be a trajectory. Each line segment link-

ing two adjacent positions ph and ph+1 (1 ≤ h ≤ n − 1) in a

trajectory which we denote by phph+1 is called a segment of the

trajectory. That is, T with size n involves n− 1 segments.

To illustrate, consider Figure 1 where there is a trajectory T =
(p1, p2, ..., p8). T has 8 positions, i.e., p1, p2..., p8, and thus the

size of T is equal to 8. T has 7 segments, i.e., p1p2, p2p3, ..., p7p8,

which correspond to the solid line segments in the figure.

Let T = (p1, p2, ..., pn) be a trajectory. We denote by T [i : j]
the portion of T from pi to pj , i.e., T [i : j] = (pi, pi+1, ..., pj).

We say that trajectory T ′ is a simplification of T if T ′ =
(ps1 , ps2 , ..., psm) where m ≤ n and 1 = s1 < s2 < ... <
sm = n. That is, any trajectory resulted from T by dropping

some positions (that are not the first nor the last position) corre-

sponds to a simplification of T . T ′ has m positions and m−1 seg-

ments. Segment pskpsk+1 in T ′ (1 ≤ k ≤ m − 1) approximates

the sequence of segments between psk and psk+1 in T , namely

pskpsk+1, psk+1psk+2, ..., psk+1−1psk+1 .

To illustrate, consider our running example in Figure 1. T ′ =
(p1, p5, p8) is a simplification of T . T ′ has 3 positions and 2 seg-

ments which correspond to the dash line segments in the figure.

Segment p1p5 in T ′ approximates p1p2, p2p3, p3p4, p4p5 in T and

p5p8 in T ′ approximates p5p6, p6p7, p7p8 in T .

Direction-based Error Measurement Ed. [24] Let pipj be a line

segment. The direction of pipj , denoted by θ(pipj), is defined to

be the angle of an anticlockwise rotation from the positive x-axis to

a vector from pi to pj . Thus, all directions fall in range [0, 2π).
Let T = (p1, p2, ..., pn) be a trajectory. We denote by θ[i : j]

the set containing the directions of the segments between pi and pj ,

i.e., θ[i : j] = {θ(phph+1)|h ∈ [i, j)}.
For example, Figure 2 shows that θ(p1p2) = 0.785 radian and

θ(p6p7) = 5.498 radian. In the following, by default, all an-

gles/directions are measured in radians. The directions of all seg-

ments of T in Figure 1, i.e., θ[1 : 8], are shown in Table 1.

θ1 = θ(p2p3) = 5.820

θ2 = θ(p3p4) = 1.107

x

y

Figure 3: angular

range
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△(θ(p1p2), θ(p3p4)) =
|1.107− 0.785| = 0.322

θ(p1p2) = 0.785

θ(p6p7) = 5.498

x

y

△(θ(p1p2), θ(p6p7)) =
2π−|5.498−0.785| = 1.570
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Figure 4: angular difference

Let θ1 and θ2 be two directions. An angular range in the form

of [θ1, θ2] is defined to be the range of all possible directions of a

vector when it is rotated anticlockwise from θ1 to θ2. To illustrate,

consider Figure 3. Angular range [θ1, θ2] covers all the directions

in the sector area in darker color while angular range [θ2, θ1] covers

all the directions in the sector area in lighter color.

Let θ1 and θ2 be two directions. The angular difference between

θ1 and θ2, denoted by △(θ1, θ2), is defined to be the smaller one

between the angle of an anticlockwise rotation from θ1 to θ2 and

that from θ2 to θ1. We have

△(θ1, θ2) = min{|θ1 − θ2|, 2π − |θ1 − θ2|} (1)

To illustrate, consider Figure 4(a) where △(θ1, θ2) = |θ1 − θ2|
and Figure 4(b) where △(θ1, θ2) = 2π − |θ1 − θ2|. Note that

the angular difference between two directions is symmetric, i.e.,

△(θ1, θ2) = △(θ2, θ1).
Let T ′ = (ps1 , ps2 , ..., psm) be a simplification of T . The

simplification error of segment pskpsk+1 in T ′, denoted by

ǫ(pskpsk+1), is defined to be the greatest angular difference be-

tween the direction of pskpsk+1 and the direction of a segment in

T that is approximated by pskpsk+1 . That is,

ǫ(pskpsk+1) = maxsk≤h<sk+1
△(θ(pskpsk+1), θ(phph+1))

Then, the simplification error of T ′, denoted by ǫ(T ′), is defined

to be the greatest simplification error of its segments [24]. That is,

ǫ(T ′) = max1≤k<m ǫ(pskpsk+1) (2)

To illustrate, consider our running example in Figure 1. Suppose

T ′ = (p1, p5, p8). Since θ(p1p5) = 0.322 and θ(p1p2) = 0.785,

we know △(θ(p1p5), θ(p1p2)) = 0.463. Similarly, we can com-

pute △(θ(p1p5), θ(p2p3)) = 0.785, △(θ(p1p5), θ(p3p4)) =
0.785, and △(θ(p1p5), θ(p4p5)) = 0.322. Thus, we know

ǫ(p1p5) = max{0.463, 0.785, 0.785, 0.322} = 0.785. Besides,

we can compute ǫ(p5p8) = 0.742. Thus, we know ǫ(T ′) =
max{ǫ(p1p5), ǫ(p5p8)} = max{0.785, 0.742} = 0.785.

In the following, when we write ǫ(pipj) (0 ≤ i < j ≤ n), we

mean the simplification error of pipj when it is used to approximate

the segments between pi and pj in T .

Problem Statement of Min-Error. The Min-Error problem is to

simplify a given trajectory such that the error of the simplified tra-

jectory is the smallest and the size of the simplified trajectory is

at most a given positive integer W called the storage budget. The

formal definition is as follows.

PROBLEM 1 (MIN-ERROR). Given a trajectory T and a pos-

itive integer W , the Min-Error problem is to find a simplification

T ′ of T such that |T ′| ≤W and ǫ(T ′) is minimized.

To illustrate, consider the Min-Error problem with its input tra-

jectory as T in Figure 1 and its input storage budget as 3. Then,

T ′ = (p1, p5, p8) is the optimal solution since we cannot find any

other simplification of T with its size at most 3 and its error smaller

than ǫ(T ′) (= 0.785).

We summarize the notations used in this paper in Table 2.



Notation Description

T = (p1, p2, ..., pn) a trajectory

T ′ = (ps1 , ps2 , ..., psm ) a simplification of trajectory T

pi the ith position of trajectory T

phph+1 the hth segment of trajectory T

T [i : j] the portion of T from pi to pj

θ(pipj) the direction of segment pipj

θ[i : j] the set containing θ(phph+1) for h ∈ [i, j − 1]
[θ1, θ2] the angular range formed by rotating a vector anti-

clockwise from θ1 to θ2
△(θ1, θ2) the angular difference between θ1 and θ2

ǫ(psk
psk+1

) the simplification error of segment psk
psk+1

ǫ(T ′) the simplification error of T ′

W the storage budget

T ′

o the optimal solution of the Min-Error problem

ǫo the error of T ′

o

ξ([θ1, θ2]) the span of angular range [θ1, θ2]
D the set of the directions of all possible segments in T

D
′ a subset of D

mcar(D′) the maximum covering angular range of D′

ξ(T ′) the span of T ′

T ′

ξ the optimal solution of the Min-Span problem

ξo the span of T ′

ξ

L = (θ1, θ2, ..., θn−1) the sorted list of the directions in D

Θ a (n− 1)× (n− 1) matrix with Θ[i][j] defined

in Equation (9)
S the multi-set of all entries in the matrix Θ

Θ[s : e][j] the array containing the values between the sth po-

sition and the eth position of the jth column of Θ
A the set containing Θ[1 : j][j]’s and Θ[j + 1 :

n − 1][j]’s for j ∈ [1, n − 1]
T the index triplet set of A as defined in Equation (10)

b(s, e, j) the bisector of Θ[s : e][j]
A(ξ,−),A(ξ,=),A(ξ,+) groups of arrays in A with bisectors smaller than,

equal to, and larger than ξ, respectively
N(A(ξ,−)), N(A(ξ,=
)), N(A(ξ,+))

numbers of arrays in A(ξ,−), A(ξ,=), and

A(ξ,+), respectively
B the multi-set of the bisectors of all arrays in A

Table 2: Summary of notations

3. EXACT ALGORITHMS
Given a simplification T ′ of T , we say that T ′ is affordable iff

|T ′| ≤ W . Let T ′
o be the optimal solution of the Min-Error prob-

lem and ǫo be the error of T ′
o, i.e., ǫo = ǫ(T ′

o). Then, T ′
o corre-

sponds to one affordable simplification with the smallest error.

LetF be the set containing all affordable simplifications of T . A

naive method for the Min-Error is to perform an exhaustive search

over F and find the one with the smallest error, which, however,

is not feasible since the size of F is exponential in terms of W
(specifically, |F| =

(

n−2
W−2

)

). A better way is to design a dynamic

programming algorithm since we have the following sub-problem

optimality property: If T ′ = (ps1 , ps2 , ..., psm) is an optimal so-

lution for the Min-Error problem instance with its input trajectory

of T and its input storage budget of W , then T ′′ = (ps2 , ..., psm)
is also an optimal solution for another Min-Error problem instance

with its input trajectory of T [s2 : n] and its input storage bud-

get of W − 1. We call this dynamic programming algorithm DP,

and since there is not much surprise in the development of DP,

we omit the details of DP here and put them in our technical re-

port [25]. Unfortunately, DP has a time complexity of O(Wn3),
which is prohibitively expensive on large datasets. Thus, in the fol-

lowing, we design a binary search algorithm called Error-Search

for the Min-Error problem. Error-Search has a time complexity of

O(n2C log n) (C is usually a small constant) which is significantly

smaller than that of DP.

Let E be the set containing all ǫ(pipj)’s for 1 ≤ i < j ≤ n,

i.e., E = {ǫ(pipj)|1 ≤ i < j ≤ n}. Note that |E| = O(n2). We

observe that the minimized error ǫo is contained in E , i.e., ǫo ∈ E .

This could be easily verified by the fact that any simplification has

its error equal to the greatest simplification error of its segment,

which is covered by E by definition.

Given a non-negative real value ǫ, we say that ǫ is an affordable

θ(p1p2)
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θ(p3p4)

θ(p4p5)

θ(p1p5)

θ(p1p5)
−

Figure 5: Opposite direction
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error if there exists an affordable simplification T ′ in F such that

ǫ(T ′) ≤ ǫ. Thus, ǫo corresponds to the smallest affordable error.

In view of the above discussion, we design an algorithm called

Error-Search as follows. Firstly, we construct the search space E .

Secondly, for each ǫ ∈ E , we check whether there exists an afford-

able simplification T ′ with ǫ(T ′) ≤ ǫ (i.e., we check whether ǫ is

an affordable error) which we call the error affordability check on

ǫ. We note here that we can adopt a binary search strategy (instead

of a linear scan strategy) for searching on E since we have the fol-

lowing monotonicity property: if ǫ is an affordable error, then any

ǫ′ > ǫ is also an affordable error. Thirdly, we return as T ′
o the

affordable simplification corresponding to the smallest affordable

error found (which is exactly ǫo).

The correctness of Error-Search is obvious. In the following, we

discuss (1) how to construct the search space E , (2) how to perform

the error affordability check on a given ǫ, and (3) the time and space

complexities of Error-Search.

(1) Construction of E . Recall that E = {ǫ(pipj)|1 ≤ i < j ≤ n}.
Thus, we have O(n2) instances of ǫ(pipj)’s in E . A straightfor-

ward method for computing ǫ(pipj) (1 ≤ i < j ≤ n) is to com-

pare θ(pipj) with θ(phph+1) for each h ∈ [i, j). This method,

though simple, incurs the worst-case cost of O(n). Thus, the over-

all cost of constructing E based on this method is O(n3), which is

too costly. In the following, we develop a more efficient method

for computing ǫ(pipj) (1 ≤ i < j ≤ n) which runs in O(log n)
time only instead of O(n) time, resulting in the overall cost of con-

structing E being O(n2 log n).
Our method is based on the concept of “opposite direction”

which will be described in detail next. Recall that ǫ(pipj) cor-

responds to the greatest angular difference between θ(pipj) and a

direction in θ[i : j]. Thus, computing ǫ(pipj) could be finished

by finding the direction in θ[i : j] which has the greatest angular

difference from θ(pipj). Let θ∗ denote this direction. With θ∗, we

can easily compute ǫ(pipj) by computing the angular difference

between θ(pipj) and θ∗ with Equation (1). In the following, we

focus on how to find θ∗.

Let θ(pipj)
− be the opposite direction of θ(pipj), i.e.,

θ(pipj)
− = [(θ(pipj) + π) mod 2π]. We observe that θ∗ is

exactly the direction in θ[i : j] which has the smallest angular dif-

ference from θ(pipj)
−. This is simply because any direction θ

in θ[i : j] has its angular difference from θ(pipj) equal to π mi-

nus its angular difference from θ(pipj)
−, i.e., △(θ, θ(pipj)) =

π −△(θ, θ(pipj)
−).

To illustrate, consider Figure 5. θ(p1p2), θ(p2p3), θ(p3p4), and

θ(p4p5) correspond to θ[1 : 5]. θ(p1p5) and θ(p1p5)
− are also

shown. As could be verified, θ(p2p3) is the direction in θ[1 : 5]
which has the greatest angular difference from θ(p1p5) and also

the smallest angular difference from θ(p1p5)
−.

Thus, we propose to search θ∗ with two steps. First, we sort the

directions in θ[i : j] in ascending order and let θ1, θ2, ..., θj−i be

the resulting sorted list (note that sorting from scratch incurs a cost

of O(n log n) here, and what we do is to incrementally maintain

the sorted list of θ[i : j] based on the one of θ[i : j − 1] which has

already been maintained for computing ǫ(pipj−1) if we compute



ǫ(pipj−1) first, and thus this step could be finished in O(log n)
time). Second, we find the direction in the sorted list which has the

smallest angular difference from θ(pipj)
− (i.e., θ∗) and this step

could also be done in O(log n) time with a binary search process

based on the sorted list. In combination of the first step and the

second step, our method finds θ∗ in O(log n) time.

In view of the above discussion, we know that E could be con-

structed in O(n2 log n) time since we have O(n2) instances of

ǫ(pipj) each with a computation cost of O(log n).

(2) Error Affordability Check on ǫ. Given a value ǫ, the task is

to check whether there exists an affordable simplification T ′ in F
with ǫ(T ′) ≤ ǫ. A linear scan method over F is not feasible since

the size of F is exponential. In the following, we propose a method

which runs in O(n2C) time where C is usually a small constant.

LEMMA 1. Let ǫ be a non-negative value and T ′ be a simplifi-

cation of T with its error at most ǫ and its size minimized. Then, ǫ
is an affordable error iff T ′ is affordable.

PROOF. “⇒”: Suppose that ǫ is an affordable error, i.e., there

exists an affordable simplification T ′′ with ǫ(T ′′) ≤ ǫ. We have

|T ′| ≤ |T ′′| ≤W , and thus we know that T ′ is affordable.

“⇐”: Clearly, ǫ is an affordable error since T ′ is affordable and

has its error at most ǫ by definition.

Lemma 1 suggests that the error affordability check on a given

value ǫ can be implemented with the following two steps. First,

we compute the simplification T ′ of T with its error at most ǫ and

its size minimized. This essentially corresponds to solving a Min-

Size problem instance [24] with its input trajectory as T and its

input error tolerance as ǫ. Thus, this step can be done by executing

an exact algorithm of the Min-Size problem. Second, we check

whether T ′ is affordable (i.e., the size of T ′ is at most W ). If yes,

then ǫ is an affordable span. Otherwise, it is not. Since the time

complexity of the exact algorithm for the Min-Size problem in [24]

is O(n2C) (where C is usually a small constant, e.g., C = 1 if

ǫ ≤ π/2), we know that the time complexity of the above method

of performing an error affordability check is also O(n2C).

(3) Time & Space Complexity of Error-Search. In conclusion,

the time complexity of Error-Search isO(n2C log n) since the cost

of constructing E is O(n2 log n), the cost of sorting E (for binary

search) is O(n2 log n2) (= O(n2 log n)), and the cost of perform-

ing the error affordability check O(log n2) times (in the binary

search) is O(n2C · log n2) (= O(n2C log n)). The space com-

plexity of Error-Search is O(n2) which corresponds to the space

cost of storing the search space E .

4. APPROXIMATE ALGORITHM
In this section, we present our approximate algorithm called

Span-Search for the Min-Error problem which runs in O(n log2 n)
time and gives a 2-factor approximation. Specifically, in Sec-

tion 4.1, we introduce an estimator of the error of a simplifica-

tion of T called span. In Section 4.2, based on this estimator, we

define a new problem called Min-Span whose optimal solution cor-

responds to a 2-factor approximation of the Min-Error problem. In

Section 4.3, we give an overview of Span-Search which returns the

optimal solution of the Min-Span problem in O(n log2 n) time. In

Section 4.4, we give the details of Span-Search and analyze its time

and space complexities.

4.1 An Estimator of Error
We define the span of an angular range [θ1, θ2], denoted by

ξ([θ1, θ2]), to be equal to the angle of an anti-clockwise rotation

from a vector with its direction equal to θ1 to another vector with

its direction equal to θ2. Specifically, we have

ξ([θ1, θ2]) =

{

θ2 − θ1 if θ2 ≥ θ1
2π − (θ1 − θ2) if θ2 < θ1

(3)

Note that ξ([θ1, θ2]) is non-negative, and for any θ1 and θ2 in

[0, 2π), we have ξ([θ1, θ2]) + ξ([θ2, θ1]) = 2π.

To illustrate, consider Figure 3 where we have θ1 =
5.820 and θ2 = 1.107. Thus, we know ξ([θ1, θ2]) =
ξ([5.820, 1.107]) = 2π − (5.820 − 1.107) = 1.570 and

ξ([θ2, θ1]) = ξ([1.107, 5.820]) = 5.820 − 1.107 = 4.713.

Let D be the set of the directions of all possible segments in T ,

i.e.,D = θ[1 : n]. Note that |D| = n−1. Given a setD′ ⊆ D, any

angular range that covers all directions inD′ is said to be a covering

angular range ofD′. Among all covering angular ranges ofD′, the

one with the smallest span is called the minimum covering angular

range of D′ which we denote by mcar(D′).
To illustrate, consider Figure 6 where we show D′ = θ[1 :

5] = {θ(p1p2), θ(p2p3), θ(p3p4), θ(p4p5)} and two other direc-

tions θa and θb. Then, [θa, θb] (see the sector area in lighter color)

is a covering angular range of D′ since all directions in D′ fall

in [θa, θb]. Besides, the minimum covering angular range of D′,

i.e., mcar(D′), is [θ(p2p3), θ(p3p4)] (see the sector area in darker

color) since [θ(p2p3), θ(p3p4)] covers all directions in D′ (i.e.,

[θ(p3p4), θ(p5, p6)] is a covering angular range of D′) and there

exists no other covering angular range of D′ with its span smaller

than that of [θ(p2p3), θ(p3p4)] (= 1.570) (See Figure 3).

Note that the two boundaries of mcar(D′) always come from

D′ since otherwise the range could be shrunk further and it does

not have the minimum span.

Let T = (p1, p2, ..., pn) be a trajectory and T ′ =
(ps1 , ps2 , ..., psm) be a simplification of T . The span of T ′, de-

noted by ξ(T ′), is defined to be the greatest span of the minimum

covering angular ranges of θ[sk : sk+1] where k ∈ [1, m), i.e.,

ξ(T ′) = max1≤k<m{ξ(mcar(θ[sk : sk+1]))} (4)

To illustrate, consider our running example in Figure 1. T ′ =
(p1, p5, p8) is a simplification of T . As mentioned before,

mcar(θ[1 : 5]) = [θ(p2p3), θ(p3p4)] = [5.821, 1.107] and

thus ξ(mcar(θ[1 : 5])) = ξ([5.821, 1.107]) = 1.570. Be-

sides, mcar(θ[5 : 8]) = [θ(p6p7), θ(p5p6)] = [5.498, 0.464] and

thus ξ(mcar(θ[5 : 8])) = ξ([5.498, 0.464]) = 1.249. There-

fore, ξ(T ′) = max{ξ(mcar(θ[1 : 5])), ξ(mcar(θ[5 : 8]))} =
max{1.570, 1.249} = 1.570.

4.2 The MinSpan Problem
In this part, we define a problem called Min-Span which is quite

similar to Min-Error, but with a different objective.

PROBLEM 2 (MIN-SPAN). Given a trajectory T and a posi-

tive integer W , the Min-Span problem is to find a simplification T ′

of T such that |T ′| ≤W and ξ(T ′) is minimized.

To illustrate, consider a Min-Span problem instance with its in-

put trajectory as T in Figure 1 and its input W as 3. It could be ver-

ified that T ′ = (p1, p5, p8) is the optimal solution of this problem

instance since we cannot find any other simplification of T which

has its size at most 3 and its span smaller than ξ(T ′) (= 1.570).

Interestingly, the optimal solution of the Min-Span problem is a

2-factor approximation of the Min-Error problem.

LEMMA 2. Let T ′
o be the optimal solution of the Min-Error

problem with its input trajectory as T and its input storage bud-

get as W . Let T ′
ξ be the optimal solution of the Min-Span problem



with its input trajectory and its input storage budget both the same

as the Min-Error problem. Then, ǫ(T ′
ξ) ≤ 2 · ǫ(T ′

o).

PROOF. This proof is divided into two parts. In the first part, we

show that any simplification T ′ = (ps1 , ps2 , ..., psm) of T satisfies
ξ(T ′)
ǫ(T ′)

∈ [1, 2] which we prove with two steps.

First, we show that for any k ∈ [1, m), we have

ǫ(pskpsk+1
)

ξ(mcar(θ[sk:sk+1]))
∈ [1/2, 1] (5)

Suppose that mcar(θ[sk : sk+1]) is [θa, θb]. Note that θa and

θb are two directions in θ[sk : sk+1]. We have two cases.

Case 1: ξ([θa, θb]) ≤ π. For illustration, consider Figure 7(a).

In this case, θ(pskpsk+1) is covered by [θa, θb]. Therefore, we have

ǫ(pskpsk+1) = max{△(θ(pskpsk+1), θa),△(θ(pskpsk+1), θb)}

∈ [1/2, 1] · (△(θ(pskpsk+1), θa) +△(θ(pskpsk+1), θb))

= [1/2, 1] · ξ([θa, θb])

Case 2: ξ([θa, θb]) > π. In this case, θ(pskpsk+1) could be or

not be covered by [θa, θb]. We further consider two sub-cases.

Case 2(a): θ(pskpsk+1) is covered by [θa, θb]. For illustration,

consider Figure 7(b). The proof of this case is similar to the one of

Case 1 and thus it is omitted here.

Case 2(b): θ(pskpsk+1) is not covered by [θa, θb]. Then,

θ(pskpsk+1) is covered by [θb, θa]. For illustration, consider Fig-

ure 7(c). Let θc and θd be two directions in θ[sk : sk+1] such

that θc and θd are in [θa, θb] and no directions in θ[sk : sk+1]
other than θc and θd are in [θc, θd] (Note that θc and θd al-

ways exist). Then, we know that [θd, θc] corresponds to a cov-

ering angular range of θ[sk : sk+1] and θ(pskpsk+1) falls in

[θd, θc]. Besides, we know ξ([θd, θc]) ≥ ξ([θa, θb]) since [θa, θb]
is the minimum covering angular range of θ[sk : sk+1]. Simi-

lar to Case 1, we have
ǫ(pskpsk+1

)

ξ([θd,θc])
∈ [1/2, 1] which implies that

ǫ(pskpsk+1) ≥
1
2
· ξ([θd, θc]) ≥

1
2
· ξ([θa, θb]). Furthermore, we

have ǫ(pskpsk+1) ≤ π < ξ([θa, θb]). In combination, we have
ǫ(pskpsk+1

)

ξ([θa,θb])
∈ [ 1

2
, 1].

Second, Let k′ = argmaxk∈[1,m){ξ(mcar(θ[sk : sk+1]))}
and k′′ = argmaxk∈[1,m){ǫ(pskpsk+1)}. By using Equation (5),

we have

ξ(T ′) = ξ(mcar(θ[sk′ : sk′+1])) ≤ 2 · ǫ(psk′
psk′+1

)

≤ 2 · ǫ(psk′′
psk′′+1

) = 2 · ǫ(T ′) (6)

and

ξ(T ′) = ξ(mcar(θ[sk′ : sk′+1])) ≥ ξ(mcar(θ[sk′′ : sk′′+1]))

≥ ǫ(ps
k′′

ps
k′′+1

) = ǫ(T ′) (7)

By using Equations (6) and (7), we obtain
ξ(T ′)
ǫ(T ′)

∈ [1, 2].

In the second part, we show that ǫ(T ′
ξ) ≤ 2 · ǫ(T ′

o) as follows.

ǫ(T ′
ξ) ≤ ξ(T ′

ξ) ≤ ξ(T ′
o) ≤ 2 · ǫ(T ′

o)

4.3 Overview of SpanSearch
In this part, we develop an algorithm called Span-Search

which returns the optimal solution of the Min-Span problem in

O(n log2 n) time and thus gives a 2-factor approximation for the

Min-Error problem (Lemma 2).

Let T ′
ξ be the optimal solution of the Min-Span problem and ξo

be the span of T ′
ξ. Essentially, T ′

ξ corresponds to the affordable

θb

θa

θ(pskpsk+1
)

x

y
θb

θa

θ(pskpsk+1
)

x

y
θb

θa

θ(pskpsk+1
)
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(a) (b) (c)

Figure 7: Proof of Lemma 2

simplification with the smallest span. Span-Search first maintains

a search space S containing ξo and then searches ξo over S (T ′
ξ can

also be retrieved when ξo is found).

4.3.1 Concepts & Search Space S

We introduce some concepts used for defining the search

space S and then give a precise definition of S . Suppose

that T ′
ξ is (ps1 , ps2 , ..., psm). From Equation (4), we know

ξ(T ′
ξ) = max1≤k<m{ξ(mcar(θ[sk : sk+1]))}. Let k∗ =

argmax1≤k<m{ξ(mcar(θ[sk : sk+1]))}. Then, we have ξo =
ξ(T ′

ξ) = ξ(mcar(θ[sk∗ : sk∗+1])). Consider ξ(mcar(θ[sk∗ :
sk∗+1])). Let [θ, θ′] be mcar(θ[sk∗ : sk∗+1]). Note that θ and

θ′ are two directions in θ[sk∗ : sk∗+1]. Then, we derive that

ξo = ξ([θ, θ′])). By Equation (3), we have

ξo =

{

θ′ − θ if θ′ ≥ θ
2π − (θ − θ′) if θ′ < θ

(8)

Essentially, θ and θ′ could be the directions of any two segments

of T . Thus, we have the following observation.

OBSERVATION 1 (PAIRWISE DIRECTION DIFFERENCE).

Let ξo be the optimal span of the Min-Span problem. There

exist two segments of T such that ξo is equal to either θ′ − θ
or 2π − (θ − θ′) where θ and θ′ are the directions of the two

segments.

Based on the above observation, we construct an (n−1)×(n−1)
matrix Θ containing both θ′−θ and 2π−(θ−θ′) for each possible

pair (θ, θ′) ∈ D × D, where D is the set of the directions of all

possible segments of T , and define the search space S to be the

multi-set of all values in the matrix Θ. Note that the size of S is

(n− 1)2 = O(n2). Specifically, Θ is defined as follows. Let L =
(θ1, θ2, ..., θn−1) be the sorted list of the values in D in ascending

order. For each i ∈ [1, n− 1] and each j ∈ [1, n− 1], we define

Θ[i][j] =

{

θj − θi if j ≥ i
2π − (θi − θj) if j < i

(9)

To illustrate, consider Table 3 which shows the sorted list of D
of the trajectory T in Figure 1 and Table 4 which shows the corre-

sponding matrix Θ.

With Observation 1, it is easy to verify that ξo is in S . We present

this result in the following lemma.

LEMMA 3. The span of the optimal solution of the Min-Span

problem (i.e., ξo) is in S .

For example, as mentioned before, for the Min-Span problem

with its input trajectory as T presented in Figure 1 and its input W
as 3, ξo is equal to 1.570 which corresponds to Θ[6][4].

Given a value ξ, we say that ξ is an affordable span iff there

exists an affordable simplification of T with its span at most ξ. It

immediately follows that ξo corresponds to the smallest affordable

span. With Lemma 3, we know that ξo is the smallest affordable

span in S .



θ1 θ2 θ3 θ4 θ5 θ6 θ7
L: 0 0.464 0.785 1.107 5.498 5.820 5.961

Table 3: Sorted list of the directions in θ[1 : 8]

0 0.464 0.785 1.107 5.498 5.820 5.961

5.819 0 0.321 0.643 5.034 5.356 5.497

5.498 5.962 0 0.322 4.713 5.035 5.176

5.176 5.640 5.961 0 4.391 4.713 4.854

0.785 1.249 1.570 1.892 0 0.322 0.463

0.463 0.927 1.248 1.570 5.961 0 0.141

0.322 0.786 1.107 1.429 5.820 6.142 0

Table 4: Matrix Θ defined by Equation (9)

Θ[1 : 1][1] Θ[1 : 2][2] Θ[1 : 3][3] Θ[1 : 4][4] Θ[1 : 5][5] Θ[1 : 6][6] Θ[1 : 7][7]

Θ[2 : 7][1] Θ[3 : 7][2] Θ[4 : 7][3] Θ[5 : 7][4] Θ[6 : 7][5] Θ[7 : 7][6]

Table 5: The array set representing matrix Θ

(1,1,1), (1,2,2), (1,3,3), (1,4,4), (1,5,5), (1,6,6), (1,7,7)
(2,7,1), (3,7,2), (4,7,3), (5,7,4), (6,7,5), (7,7,6)

Table 6: The index triplet set (for the original search space S)

(1,0,1), (1,1,2), (1,1,3), (1,2,4), (1,5,5), (1,6,6), (1,7,7)
(2,4,1), (3,4,2), (4,5,3), (5,7,4), (6,7,5), (7,7,6)

Table 7: The index triplet set (for the updated search space

resulted from the pruning based on pivot ξ = 1.249)

4.3.2 Strategy of Searching over S

After we introduced the concepts and defined the search space S
in the previous section, in this section, we present a strategy called

Span-Search for finding the optimal span ξo on S . Given a value

ξ, we call the procedure of checking whether ξ is an affordable

span the span affordability check on ξ. This procedure, when called

with an input of ξ, also returns an affordable simplification T ′ with

ξ(T ′) ≤ ξ if ξ is an affordable span.

As we described before, we know that ξo is the smallest afford-

able span in S . Thus, we propose to find ξo with three steps.

• Step 1 (Searching Step): Step 1 is to find a value ξ from S
and perform a span affordability check on ξ. If ξ is an afford-

able span, it also obtains an affordable simplification T ′. Let

ξbest be a variable denoting the best-known affordable span

in S (i.e., the smallest affordable span in S seen so far), ini-

tialized to∞. Let T ′
best be a variable denoting the simplified

trajectory with its span at most ξbest. If ξ is an affordable

span and ξ < ξbest, it updates ξbest and T ′
best with ξ and T ′,

respectively.

• Step 2 (Iterative Step): Step 2 is to perform Step 1 itera-

tively with one of the remaining values in S to be found until

there is no remaining value in S .

• Step 3 (Output Step): Step 3 is to return ξbest and T ′
best.

A simple strategy of implementing Step 1 called Random-Search

is to select a random value from S as ξ. The algorithm with this

strategy is too costly since S involves O(n2) values and thus the

algorithm needs to perform O(n2) span affordability checks.

Another strategy of implementing Step 1 called Binary-Search is

to always select the median of the values in the current search space

as ξ since the result of the span affordability check on the median

could be used to prune at least half of the current search space due

to the following monotonicity property.

PROPERTY 1 (MONOTONICITY). Let ξ and ξ′ be two real

numbers where ξ < ξ′. If ξ is an affordable span, then ξ′ is also an

affordable span.

Specifically, if ξ is an affordable span, we can prune all values

at least ξ in the current search space; otherwise, we can prune all

values at most ξ in the current search space. Although the algorithm

with the Binary-Search strategy performs 2 log n = O(log n) span

affordability checks only, it is still not scalable (since it needs to

materialize a search space S which occupies O(n2) space) and too

Algorithm 1 Span-Search

1: Initialize the index triplet set T of S (Section 4.4.1)

2: //Steps 1 & 2

3: while there exist values in the current search space represented

by T do

4: Find a pivot ξ wrt the current search space (Section 4.4.2)

5: Perform a span affordability check on ξ (Section 4.4.3)

6: Update ξbest and T ′
best if necessary

7: Prune the search space with ξ by updating T (Section 4.4.4)

8: //Step 3

9: return ξbest and T ′
best

costly (since it introduces extra cost for finding the medians which

takes O(n2 log n) time1).

In this paper, we propose a new strategy called Span-Search.

which differs from Random-Search and Binary-Search as follows.

• Span-Search does not materialize the search space S explic-

itly as Linear-Search and Binary-Search do, instead, it mate-

rializes a concise representation of S called index triplet set

(the details will be introduced in Section 4.4.1) which occu-

pies O(n) space only.

• Span-Search performs the span affordability check always

on a pivot wrt the current search space (the details will be

introduced in Section 4.4.2) at Step 1, which is different from

Random-Search (on an random value from the current search

space) or Binary-Search (on the median of the current search

space). The details of how to perform a span affordability

check on a given value will be introduced in Section 4.4.3.

• Span-Search prunes at least 1
4

of the current search space af-

ter each span affordability check (whose details will be intro-

duced in Section 4.4.4). This implies that Span-Search needs

to perform O(log n) span affordability checks only.

• Span-Search has the time complexity of O(n log2 n) and

the space complexity of O(n) both superior over those of

Linear-Search and Binary-Search (the details will be dis-

cussed in Section 4.4.5).

The pseudo-code of Span-Search is given in Algorithm 1.

4.4 Details and Time Complexity Analysis of
SpanSearch

In this section, we give the details of Span-Search.

4.4.1 Concise Representation of S

In this part, we introduce our index triplet set which can con-

cisely represent the search space S with O(n) space (note that a

full materialization of S occupies O(n2) space).

We introduce some related concepts first. Given an l-sized array

X and two integers i, i′ ∈ [1, l], if i < i′, then X[i] is said to be

before the position of X[i′] in the array X , and X[i′] is said to be

after the position of X[i] in the array X . If i = i′, X[i] is said to

be at the position of X[i′] in the array X .

Since S is the multi-set containing all values in matrix Θ, we

focus on describing how to represent Θ concisely.

For each s, e and j ∈ [1, n − 1] where s ≤ e, we denote by

Θ[s : e][j] the array containing the values between the sth position

1One can either sort the values in S at the right beginning with

O(n2 log n2) = O(n2 log n) time and then pick the medians each
with O(1) time afterwards or run a median selection algorithm [3]
which returns the median of N values with O(N) time whenever a

median is required. Both take O(n2 log n) time.



and the eth position in the jth column of Θ, i.e., Θ[s : e][j] =
{Θ[s][j], Θ[s + 1][j], ..., Θ[e][j]}.

For each column of Θ, say, Θ[1 : n−1][j] where j ∈ [1, n−1],
which itself is an array, we maintain it with two arrays, namely

Θ[s1 : e1][j] and Θ[s2 : e2][j], where s1 = 1, e1 = j, s2 = j+1,

and e2 = n − 1 (note that the (n − 1)th column corresponds to

one array (i.e., Θ[1 : n− 1][n − 1]) only). As a result, the values

in Θ are organized with 2(n− 1)− 1 (= O(n)) arrays each in the

form of Θ[s : e][j]. Let A be the set containing all these arrays.

Thus, the size ofA is O(n). Note that the multi-set of values of the

arrays inA is exactly equal to S . In the following, for clarity, when

we write A, we mean the array set corresponding to the matrix Θ
of the search space S .

To illustrate, consider Table 4 where each column is divided into

two arrays: one with white background and the other one with gray

background. Table 5 shows the corresponding array setA.

A nice feature about A is that all arrays in A are non-increasing
2 which could be verified easily by using Equation (9) and the fact

that for each i, i′ ∈ [1, n− 1] where i ≤ i′, we have θi ≤ θi′ .

PROPERTY 2 (NON-INCREASING ARRAYS). Each array in

A is non-increasing.

To illustrate, consider the arrays in Table 5 and their correspond-

ing content shown in Table 4. It could be easily noticed that all the

arrays are non-increasing.

We have introduced the concepts used to define the index triplet

set. Let S be the search space and A be the corresponding array

set. The index triplet set of S , denoted by T , is the set containing

triplets of the indices of all arrays in A. That is,

T = {(s, e, j)|Θ[s : e][j] ∈ A} (10)

Note that each triplet in T identifies an array in A concisely. The

space complexity of T is O(n) only since we have O(n) arrays

in A each with its space cost of O(1) in T . For example, Table 6

shows the index triplet set corresponding the array set shown in

Table 5.

Interestingly, T alone concisely represents the multi-set of val-

ues of the arrays in A (or the search space S). This is because

for each triplet (s, e, j) ∈ T , we know that conceptually, we have

Θ[i][j] where i = s, s+1, ..., e. We do not materialize the content

of Θ[i][j] explicitly since given the indices (i.e., i and j), the con-

tent can be retrieved in O(1) time by using Equation (9). Instead,

we materialize T only. In the following, for the sake of conve-

nience, we referA instead of T to represent the entire search space

S (though T is the materialized version for A).

4.4.2 Definition, Search Space & Retrieval of a Pivot

In this part, we answer three questions: (1) what is a pivot, (2)

where can we find a pivot and (3) how to find a pivot.

(1) What is a pivot? Before we define what is a pivot, we introduce

a concept called bisector and its related concepts.

For each array Θ[s : e][j] inA, we define its bisector, denoted by

b(s, e, j), to be Θ[⌈ s+e
2
⌉][j]. Since Θ[s : e][j] is non-increasing,

we know that at least half of the values in Θ[s : e][j] are at most

its bisector b(s, e, j) and at least half of the values in Θ[s : e][j]
are at least its bisector b(s, e, j). For example, the bisector of array

Θ[3 : 7][2] is Θ[5][2] which is equal to 1.249 (See Table 4).

For a given value ξ ∈ S , the arrays in A could be categorized

into three disjoint groups, namely the group containing those ar-

rays with the bisectors strictly smaller than ξ which we denote

2Given an l-sized array X where l is a positive integer, X is said
to be non-increasing if for each i, i′ ∈ [1, l] where i < i′, X[i] ≥
X[i′].

by A(ξ,−), the group containing those arrays with the bisectors

exactly equal to ξ which we denote by A(ξ,=), and the group

containing those arrays with the bisectors strictly larger than ξ
which we denote by A(ξ,+). Let N(A(ξ,−)), N(A(ξ,=)), and

N(A(ξ,+)) be the size of the multi-set of the values of the ar-

rays in A(ξ,−), A(ξ,=), and A(ξ,+), respectively. Note that

N(A(ξ,−)) +N(A(ξ,=)) +N(A(ξ,+)) = |S|.
To illustrate, consider the array set A shown in Table 5. Sup-

pose ξ = 1.249. Then, we know A(ξ,−) = {Θ[1 : 1][1], Θ[2 :
7][1], Θ[1 : 2][2], Θ[1 : 3][3], Θ[4 : 7][3], Θ[1 : 4][4]}, A(ξ,=
) = {Θ[3 : 7][2]}, and A(ξ,+) = {Θ[5 : 7][4], Θ[1 : 5][5], Θ[6 :
7][5], Θ[1 : 6][6], Θ[7 : 7][6], Θ[1 : 7][7]}. As a result, we have

N(A(ξ,−)) = 20, N(A(ξ,=)) = 5, and N(A(ξ,+)) = 24.

Note that N(A(ξ,−))+N(A(ξ,=))+N(A(ξ,+)) = 49 = |S|.
Now, we are ready to define what is a pivot.

DEFINITION 1 (PIVOT). Given a value ξ ∈ S , ξ is de-

fined to be a pivot wrt S if min{N(A(ξ,−)) + N(A(ξ,=

)), N(A(ξ,+)) +N(A(ξ,=))} ≥ |S|
2

.

For example, ξ = 1.249 corresponds to a pivot wrt S since

min{N(A(ξ,−))+N(A(ξ,=)), N(A(ξ,+))+N(A(ξ,=))} =

min{20 + 5, 24 + 5} = 25 ≥ |S|
2

(= 49/2).

In the following, we simply write “a pivot wrt S” as “a pivot” if

the context of S is clear.

(2) Where can we find a pivot? Before we give the details, we

introduce a property first.

PROPERTY 3. Given ξ, ξ′ ∈ B with ξ < ξ′, we have

N(A(ξ,−)) +N(A(ξ,=)) ≤ N(A(ξ′,−)) +N(A(ξ′,=))

N(A(ξ,+)) +N(A(ξ,=)) ≥ N(A(ξ′,+)) +N(A(ξ′,=))

This essentially says that N(A(ξ,−)) + N(A(ξ,=)) is non-

decreasing while N(A(ξ,+)) + N(A(ξ,=)) is non-increasing

when ξ increases.

PROOF. This is simply becauseA(ξ,−)∪A(ξ,=) ⊆ A(ξ′,−)
and A(ξ′,+) ∪A(ξ′,=) ⊆ A(ξ,+).

Let B be the multi-set containing the bisectors of all arrays inA,

i.e., B = {Θ[⌈ s+e
2
⌉][j]|Θ[s : e][j] ∈ A}. Note that the size of B

is O(n), and B ⊆ S . We claim that there exists a pivot in B.

LEMMA 4. At least one of the values in B is a pivot wrt S .

PROOF. Let ξ1, ξ2, ..., ξ|B| be the sorted list of B in ascending

order. We prove Lemma 4 by contradiction. Assume that none of

the values in B is a pivot.

Consider ξ1. Clearly, N(A(ξ1,−)) = 0 and thus N(A(ξ1,=
)) + N(A(ξ1,+)) = |S|. Therefore, we know N(A(ξ1,−)) +
N(A(ξ1,=)) < |S|/2 since otherwise ξ1 is a pivot which leads to

a contradiction.

Consider ξ|B|. Similarly, we know N(A(ξ|B|,+)) = 0 and

thus N(A(ξ|B|,−)) +N(A(ξ|B|,=)) = |S|. Therefore, we know

N(A(ξ|B|,+)) +N(A(ξ|B|,=)) < |S|/2 since otherwise ξ|B| is

a pivot wrt S which leads to a contradiction.

By using Property 3 and the above results, we know there exists

h1 ∈ [1, |B|) such that N(A(ξh1 ,−)) + N(A(ξh1 ,=)) < |S|/2
and N(A(ξh1+1,−)) + N(A(ξh1+1,=)) ≥ |S|/2. Similarly,

there exists h2 ∈ (1, |B|] such that N(A(ξh2 ,+)) +N(A(ξh2 ,=
)) < |S|/2 and N(A(ξh2−1,+)) +N(A(ξh2−1,=)) ≥ |S|/2.

We consider 3 cases. Case 1: h2 < h1 + 1. We have

N(A(ξh2 ,−)) + 2 ·N(A(ξh2 ,=)) +N(A(ξh2 ,+)) < |S|/2 +
|S|/2 = |S| which leads to a contradiction. Case 2: h2 = h1 + 1.



This contradicts the fact that N(A(ξh1 ,−)) + N(A(ξh1 ,=)) +
N(A(ξh2 ,=))+N(A(ξh2 ,+)) = |S|. Case 3: h2 > h1 +1. We

deduce that ξh1+1 is a pivot which leads to a contradiction. That is,

we deduce a contradiction in all cases which finishes our proof.

To illustrate, consider the search space S corresponding

to the array set shown in Table 5. We can compute B =
{0, 0.785, 0, 1.249, 0.321, 1.248, 0.322, 1.570, 4.713, 5.820, 4.713,
6.142, 4.854}. As mentioned before, 1.249 is a pivot wrt S which

is contained in B.

Lemma 4 is very usefully since it not only implies that there

always exists a pivot, but also implies that we can focus on B which

has its size of O(n) for finding a pivot.

(3) How to find a pivot? According to Lemma 4, we can focus on

B for finding a pivot. A straightforward method is to traverse the

values in B one by one, check whether it is a pivot, and stop when

a pivot is found. Note that given a value ξ, the cost of checking

whether ξ is a pivot or not is O(n) since we have O(n) arrays inA
and the number of values in an array Θ[s : e][j] is simply e− s+1
which could be computed in O(1) time.

Fortunately, we can find a pivot in a smarter way with a bi-

nary search over B based on the monotonicity properties shown

in Property 3. Specifically, we first sort the values in B in as-

cending order and obtain a sorted list. Let bm be the value at the

middle of the list. Then, we compute N(A(bm,−)), N(A(bm,=
)), and N(A(bm,+)). If min{N(A(bm,−)) + N(A(bm,=

)), N(A(bm,+)) + N(A(bm,=))} ≥ |S|
2

, we return bm as a

pivot; otherwise, we have two cases.

• Case 1: N(A(bm,−)) +N(A(bm,=)) < |S|
2

. In this case,

we can safely prune all values that are at most bm in B (Here,

pruning a value means that we ignore this value for finding

a pivot, which is considered in this section, but this value is

still in the current search space S (or A)).

• Case 2: N(A(bm,+)) +N(A(bm,=)) < |S|
2

. In this case,

we can safely prune all values that are at least bm in B.

In conclusion, if bm is a pivot, we are done, and otherwise we can

prune at least half of the search space B and repeat the process

based on the remaining search space until we find a pivot.

The time complexity of the above method is simply O(n log n)
since the sorting procedure has the cost of O(n log n) and the bi-

nary search procedure has O(log n) iterations each has the cost of

O(n) for checking whether a given value is a pivot.

4.4.3 Span Affordability Check on ξ

In this part, we introduce our method for performing the span

affordability check on a given ξ.

Let ξ be a non-negative value. Given a simplification T ′ of T ,

we say that T ′ is a ξ-simplification (of T ) iff ξ(T ′) ≤ ξ.

Similar to the error affordability check described in Section 3,

we perform the span affordability check on a given ξ as follows.

First, we compute the ξ-simplification with the smallest size, say,

T ′. Then, we compare |T ′| with W . If |T ′| ≤ W , we conclude

that ξ is an affordable span; otherwise, we conclude that ξ is not an

affordable span. The correctness of this method is obvious and the

remaining issue is how to find the ξ-simplification with the smallest

size for a given ξ.

We design our algorithm as follows. Let i be the position index

of T where the algorithm starts at. Initially, i is set to 1 and pi
is appended to T ′. It tries to approximate as many consecutive

segments starting from pi in T as possible while adhering to the

constraint that the span of the minimum covering angular range

of the set containing the directions of these segments is at most

Algorithm 2 Finding ξ-simplification with the smallest size

1: T ′ ← (p1)
2: i← 1; j ← i+ 1
3: while j ≤ n do

4: while j ≤ n and ξ(mcar(θ[i : j])) ≤ ξ do

5: j ← j + 1
6: Append pj−1 to T ′

7: i← j − 1
8: return T ′

ξ. To do it, it checks the position index j starting from i + 1 one

by one. If ξ(mcar(θ[i : j])) ≤ ξ, it continues to check the next

position index by updating j to j + 1 until either j > n (i.e., j =
n + 1) or ξ(mcar(θ[i : j])) > ξ. Then, it appends pj−1 to T ′

since in either the case of j > n (i.e., j = n + 1), or the case

of ξ(mcar(θ[i : j])) > ξ, the segments between pi and pj−1

form the longest possible sequence starting from pi that could be

approximated by one segment in T ′. After that, it continues the

process from pj−1 by updating i with j − 1. It stops if j > n
which implies j = n + 1. The pseudo-code of the algorithm is

shown in Algorithm 2.

We illustrate Algorithm 2 with the input trajectory as T in Fig-

ure 1 and ξ as 1.249. Note that ξ = 1.249 is a pivot. In this

case, n = 8. T ′ is first initialized as (p1) and i = 1. It starts from

j = i+1 = 2. It computes ξ(mcar(θ[1 : 2])) = 0 since θ[1 : 2] =
{θ(p1p2)} = {0.785} and thus mcar(θ[1 : 2]) = [0.785, 0.785].
Since j ≤ n and ξ(mcar(θ[1 : 2])) ≤ ξ = 1.249, it updates j to

be j + 1 = 3. Again, it computes ξ(mcar(θ[1 : 3])) = 1.248.

Since j ≤ n and ξ(mcar(θ[1 : 3])) ≤ ξ = 1.249, it updates j
to be j + 1 = 4. Then, it computes ξ(mcar(θ[1 : 4])) = 1.570.

This time, since ξ(mcar(θ[1 : 4])) > ξ = 1.249, it stops updat-

ing j, but appends pj−1 (i.e., p3) to T ′ (thus T ′ becomes (p1, p3))
and updates i to be j − 1 = 3. It implies that (p1, p2, p3) is the

longest possible sequence starting from p1 which has the span at

most ξ = 1.249. It repeats the same process with the new start-

ing position p3 and keeps increasing j by 1 until j = 7 since

ξ(θ[3 : 7]) = 1.892 > ξ = 1.249. Then, it appends pj−1 (i.e., p6)

to T ′ (thus T ′ becomes (p1, p3, p6)) and updates i to be j−1 = 6.

It continues the same process with the new starting position p6 and

keeps increasing j by 1 until j = 9 since j > n. Then, it appends

pj−1 (i.e., p8) to T ′ (thus T ′ becomes (p1, p3, p6, p8)) and stops

the process. At the end, it returns T ′ which is (p1, p3, p6, p8).

LEMMA 5. Algorithm 2 finds the ξ-simplification with the

smallest size for a given ξ.

PROOF. Let T ′ = (ps1 , ps2 , ..., psm) be the simplification re-

turned by Algorithm 2. Let T ′′ = (pt1 , pt2 , ..., ptl) be the ξ-

simplification with the smallest size. By definition, we have s1 =
r1 = 1 and sm = tl = n. Note that |T ′| = m and |T ′′| = l.

Assume that m > l. We prove that for each k ∈ [1, l], we have

sk ≥ rk by deduction.

Base step: k = 1. We have sk = rk = 1.

Deduction step: k > 1. Assume that we have sk−1 ≥ rk−1.

According to Algorithm 2, we have ξ(mcar(θ[sk−1 : j])) ≤ ξ for

j ∈ [sk−1 + 1, sk] while ξ(mcar(θ[sk−1 : sk + 1])) > ξ. Since

sk−1 ≥ rk−1, we know rk ≤ sk since otherwise ξ(mcar(θ[rk−1 :
rk])) ≥ ξ(mcar(θ[rk−1 : sk + 1)) ≥ ξ(mcar(θ[sk−1 : sk +
1])) > ξ, which leads to a contradiction. The above inequalities

are based on the fact that ξ(mcar(D)) is non-decreasing when the

set D includes more directions.

Therefore, we have sl ≥ rl = n, which leads to a contradiction

that sl < sm = n. This finishes our proof.



Algorithm 2 has the time complexity of O(n log n), whose im-

plementation details and time complexity analysis could be found

in our technical report [25].

Recall that the span affordability check on a given ξ is performed

by first finding the ξ-simplification T ′ with the smallest size via

Algorithm 2 and then comparing |T ′| with W . Thus, the cost of

performing the span affordability check is dominated by the cost of

Algorithm 2, which is O(n log n).
To illustrate, consider the span affordability check on ξ = 1.249

with the input trajectory as T in Figure 1 and the input W as 3.

As discussed before, the ξ-simplification T ′ with the smallest size

is (p1, p3, p6, p8). Since T ′ has its size equal to 4 which is larger

than W = 3, we know that ξ = 1.249 is not an affordable span.

4.4.4 How to Prune Search Space with a Pivot

In this part, we describe how we can prune at least 1
4

of the cur-

rent search space based on a pivot. Suppose that ξ is a pivot. We

can prune the current search space based on two different cases.

• Case 1: ξ is not an affordable span. In this case, we know

that ξo > ξ and we can prune values at most ξ. To do this,

for each array Θ[s : e][j] inA(ξ,−)∪A(ξ,=), we prune its

values that are at or after the position of its bisector (because

they are at most its bisector and its bisector is at most ξ) by

shrinking it to Θ[s : ⌈ s+e
2
⌉ − 1][j] (Θ[s : ⌈ s+e

2
⌉ − 1][j] is

dropped if ⌈ s+e
2
⌉ − 1 < s). Note that the number of values

pruned is at least
N(A(ξ,−))+N(A(ξ,=))

2
. Since ξ is a pivot,

we know N(A(ξ,−)) +N(A(ξ,=)) ≥ |S|
2

which implies

that we have pruned at least
|S|
4

values. Here, by shrinking

Θ[s : e][j] to Θ[s : ⌈ s+e
2
⌉ − 1][j] in A, we mean updating

the triple (s, e, j) with (s, ⌈ s+e
2
⌉ − 1, j) in the index triplet

set T corresponding to A.

• Case 2: ξ is an affordable span. We can perform the pruning

operation in a symmetric way as Case 1 by shrinking each

array Θ[s : e][j] inA(ξ,+)∪A(ξ,=) to Θ[⌈ s+e
2
⌉+1 : e][j]

(Θ[⌈ s+e
2
⌉+1 : e][j] is dropped if ⌈ s+e

2
⌉+1 > e). Similar to

Case 1, we derive that 1
4

of the current search space is pruned,

and the corresponding shrinking operation is executed on T .

In conclusion, using a pivot can prune 1
4

of the current search space.

To illustrate, consider our running example where Table 5 shows

the array set corresponding to the current search space R contain-

ing 49 values. Suppose that we have found a pivot ξ = 1.249. Now,

we illustrate the pruning process based on ξ. Since ξ is not an af-

fordable span (we know it from the examples discussed before),

we prune the search space R be updating each array Θ[s : e][j]
in A(ξ,−) ∪ A(ξ,=) to be Θ[s : ⌈ s+e

2
⌉ − 1][j]. As discussed

before, A(ξ,−) = {Θ[1 : 1][1], Θ[2 : 7][1], Θ[1 : 2][2], Θ[1 :
3][3], Θ[4 : 7][3], Θ[1 : 4][4]} and A(ξ,=) = Θ[3 : 7][2]}. The

arrays in these two sets will be updated and the index triplet set of

the updated array set is shown in Table 7. As could be verified, the

number of values in the search space represented by this updated

index triplet set is equal to 35, i.e., (49 − 35) = 14 values have

been pruned (note that 14 > 49
4

).

Note that our index triplet set for representing the search space

makes the process of executing the pruning operations extremely

convenient, i.e., all we need is to update the indices (i.e., s and e)

of each array Θ[s : e][j], and thus the pruning operations could be

executed in O(n) time since we have O(n) arrays only.

Remark. The pruning operations only shrink the arrays and thus

Property 2 still holds for the updated array set which further im-

plies that we can repeat our process to find a pivot ξ wrt the up-

dated search space, perform a span affordability on ξ and prune the

# of trajectories total # of positons
average # of posi-

tions per trajectory

Geolife 17,621 24,876,978 1,412

T-Drive 10,359 17,740,902 1,713

Table 8: Real datasets

updated search space at the next iteration until the search space be-

comes empty. Note that the process involves O(log n) iterations

only since at least 1
4

of the search space is pruned at each iteration.

4.4.5 Time & Space Complexity of Span-Search

In this part, we analyze the time and space complexities of Span-

Search. Span-Search proceeds with iterations. At each iteration, it

first finds a pivot ξ wrt the current search space (which can be done

in O(n log n) as shown in Section 4.4.2), checks the span afford-

ability on ξ (which can be done in O(n log n) as shown in Sec-

tion 4.4.3), and prunes at least 1
4

of the current search space (which

can be done in O(n) as shown in Section 4.4.4). It could be verified

easily that the process involves 2 log n/ log(4/3) = O(log n) iter-

ations. Therefore, the time complexity of Span-Search is O(log n ·
(n log n+ n log n+ n)) = O(n log2 n). Besides, the space com-

plexity of Span-Search is simply O(n) which corresponds to the

space cost for maintaining the index triplet set.

5. EXPERIMENTS
We used two real datasets in our experiments, namely Geolife

and T-Drive. Geolife3 records the outdoor movements of 182 users

in a period of 5 years and T-Drive4 is a set of taxi trajectories in Bei-

jing. These two datasets are widely used for a broad range of appli-

cations on trajectory data [40, 38]. The statistics of these datasets

are summarized in Table 8.

Since the experimental results in [24] already show the advan-

tage of using DPTS over PPTS, we focus on the performance of

our proposed algorithms in this paper. All algorithms were im-

plemented in C/C++ and ran on a Linux platform with a 2.66GHz

machine and 40GB RAM.

5.1 Comparison with Wavelet Transformation
First, following [4], we use wavelet transformation [1] as a base-

line of trajectory simplification and compare it with our Min-Error

mechanism in terms of how good they are for preserving the di-

rection information. The major idea of wavelet transformation is

to transform the raw data which corresponds to a set of n numbers

into a set of n coefficients (this step does not introduce any infor-

mation loss and the raw data could be completely restored with

these n coefficients) and store k coefficients only where k < n,

e.g., top-k coefficients (note that this step saves some storage space

with the compression rate of k/n, but introduces some information

loss since n − k coefficients are dropped). To get an approxima-

tion of the raw data (which contains n values), a set of n values is

constructed based on the k stored coefficients. We adopt wavelet

transformation for trajectory simplification with the purpose of pre-

serving the direction information as follows. We maintain the set

of the directions of the segments of a given trajectory (this cor-

responds to the direction information of the trajectory), perform

wavelet transformation on the set of directions and store a cer-

tain number of coefficients according to the storage budget. The

goodness of wavelet transformation for preserving the direction in-

formation is measured by the maximum and also average angular

3http://research.microsoft.com/en-us/downloads/b16d359d-d164-
469e-9fd4-daa38f2b2e13/
4http://research.microsoft.com/apps/pubs/?id=152883



difference between an original direction and its corresponding ap-

proximated direction constructed based on the stored coefficients.

For both measures, the smaller, the better.

We conducted experiments on Min-Error and wavelet transfor-

mation by varying the storage budget W , and the results are shown

in Figure 8 where “Wavelet trans. (max.)” and “Wavelet trans.

(avg.)” denote the maximum and the average angular difference of

wavelet transformation, respectively, and “Min-Error (max.)” de-

notes the maximum angular difference between the direction of a

segment pp′ in the original trajectory and the direction of the seg-

ment that approximates pp′ in the simplified trajectory generated

by the exact algorithm, Error-Search, for Min-Error (note that this

corresponds to the direction-based error). Note that for Min-Error,

we do not show the average angular difference since it is extremely

small. According to these results, we have the following observa-

tions. First, wavelet transformation performs poorly when being

used for preserving the direction information, e.g., in most cases,

wavelet transformation results in high maximum and average an-

gular difference, and this holds even when the storage budget W is

near to |T |. This essentially tells that wavelet transformation is not

suitable for preserving the direction information when being used

for trajectory simplification. Second, Min-Error performs signifi-

cantly better than wavelet transformation in terms of preserving the

direction information. Thus, in the following, we focus on Min-

Error only in our experiments.

We also show the effects of the storage budget W on the

direction-based error in more detail in Figure 9 and we observe that

when W is relatively small (e.g., W ≤ 0.2), a small increase on

W yields a significant reduction on the optimal error, while when

W is relatively large (e.g., W ≥ 0.5), even a large increase on W
helps a little to reduce the optimal error.
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We do not adopt the principle of minimum description length

(MDL) [11] for our Min-Error problem since MDL is for balancing

between the size and the error of the simplied trajectory and thus

it does not allow users to specify a size constraint or optimize the

simplification error.

Next, we study the performance of our exact and approximate

algorithm in Section 5.2 and in Section 5.3, respectively.

5.2 Performance Study of the Exact Algo
rithms

In this part, we study the effects of 2 factors, namely the data

size (i.e., |T |) and the storage budget (i.e., W ) on the performance

of our exact algorithms, namely DP and Error-Search. We use 2

measures, namely the running time and the memory.

Effect of |T |. The values used for |T | are around 2,000, 4,000,

6,000, 8,000 and 10,000 (W is fixed to be 0.2, i.e., W = 0.2∗|T |).
For each setting of |T |, we select a set of 10 trajectories each of

which has its size near to this value and run our exact algorithms

on each of these trajectories. Then, we average the experimental

results on these trajectories (this policy is used throughout our ex-

periments without specification). Figure 10 show the results on

Geolife. According to these results, Error-Search is always faster

than DP, and the efficiency gap between them becomes larger when

the data size increases. This could be easily explained by the fact

that Error-Search has smaller time/space complexities than DP.

The experimental results on T-Drive are similar and thus they are

omitted due to page limit.
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Figure 10: Effects of data size |T | (Geolife)

Effect of W . The values used for W are 0.1, 0.2, 0.3, 0.4 and 0.5

(|T | is fixed to about 6,000). The results are presented in Figure 11.

We observe that DP has both its running time and its memory in-

crease with W , which could be explained by the fact that DP has

its problem space proportional to W . In contrast, W has no signif-

icant effects on Error-Search since Error-Search has its time/space

complexities independent of W .
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Figure 11: Effects of storage budget W (Geolife)

Scalability test. Figure 12 shows the scalability test results on the

exact algorithms. We observe that DP is limited to medium-sized

datasets only while Error-Search can go much further. For exam-

ple, on a trajectory with about 50,000 positions, DP runs for several

days and occupies nearly 30GB memory, while Error-Search runs

for about 1hr and occupies about 10GB memory.
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Figure 12: Scalability test (Geolife)

5.3 Performance Study of the Approximate
Algorithms

In this part, we study the effects of |T | and W on two ap-

proximate algorithms, namely Span-Search and Douglas-Peucker.

Douglas-Peucker is an adaptation of the traditional Douglas-

Peucker algorithm [8], whose major idea is to recursively cut the

trajectory at one of the end of the segment that has the greatest an-

gular difference from the segment linking the start position and the

end position of this trajectory until we have W − 1 sub-trajectories

and then use one segment to approximate each sub-trajectory. We

note here that Douglas-Peucker is the most popular algorithm for

trajectory simplification in the literature [8, 27, 12]. We use 3 mea-

sures, namely the running time, the memory and the approximation

factor. The approximation factor of an approximate algorithm is

defined to be ǫ(T ′)/ǫ(T ′
o), where T ′ is the simplified trajectory re-

turned by this approximate algorithm on a given raw trajectory and



T ′
o is the simplified trajectory returned by an exact algorithm on the

same raw trajectory. Clearly, the smaller the approximation factor

is, the better approximation quality the algorithm has.

Approximation factor. We present the results with two figures,

Figure 13(a) and Figure 13(b). Figure 13(a) shows for each approx-

imate algorithm, the (absolute) error of the simplified trajectory re-

turned and also the optimal error (i.e., the error of the simplified

trajectory returned by an exact algorithm such as Error-Search),

and Figure 13(b) shows the approximation factors of the approxi-

mate algorithms. According to these results, Span-Search is con-

sistently better than Douglas-Peucker in terms of approximation

quality. We emphasize here that Douglas-Peucker has its approx-

imation factor usually around 3. In contrast, Span-Search usually

achieves an approximation factor around 1.5, though its theoretical

worst-case bound is 2. In other words, Douglas-Peucker has an er-

ror that is 200% greater than optimum while Span-Search achieves

an error only 50% greater than optimum.
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Figure 13: Approximation quality (Geolife)

Effect of |T |. The values used for |T | are around 20,000, 40,000,

60,000, 80,000 and 100,000 (W is fixed to 0.2). Figure 14 shows

the results. According to these results, Span-Search, though slower

than Douglas-Peucker, runs reasonably fast (e.g., on a dataset with

about 100,000 positions, Span-Search runs less than 1000s). Be-

sides, both Span-Search and Douglas-Peucker are space efficient

(e.g., they occupy less than 30MB) which could be explained by

the fact that Span-Search has a linear space complexity and so does

Douglas-Peucker.
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Figure 14: Effects of data size |T | (Geolife)

Effect of W . The values used for W are 0.1, 0.2, 0.3, 0.4 and

0.5 (|T | is fixed to about 60,000). The results are shown in Fig-

ure 15. We notice that both Span-Search and Douglas-Peucker

are only slightly affected by W . Specifically, when W increases,

both the algorithms run a little bit slower. For Span-Search, with a

larger W , the span affordability check procedure would probably

maintain a larger binary search tree and also a larger priority queue

which incurs more cost. For Douglas-Peucker, with a larger W , it

would do more “cut” operations and thus it incurs more cost.
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Figure 15: Effects of storage budget W (Geolife)

Scalability test. Figure 16 shows the scalability test results on the

approximate algorithms. According to results, we know that Span-

Search is scalable to large datasets. For example, on a dataset with

about 500,000 positions, Span-Search runs for a couple of hours

and occupies less than 150MB memory.
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Figure 16: Scalability test (Geolife)
Additional experiments. We also conducted experiments on a

variant of Error-Search which adopts the Douglas-Peucker algo-

rithm for performing each error affordability check approximately

and thus it corresponds to an approximate algorithm for the Min-

Error problem. We observed that this variant of Error-Search was

dominated by our Span-Search algorithm in terms of both the run-

ning time and the minimized error. Due to the page limit, we put

the details in our technical report [25].

Empirical conclusion. About the exact algorithms, Error-Search

has its superiority over DP in terms of both time and space effi-

ciency. About the approximate algorithms, Span-Search has its ap-

proximation quality consistently better than Douglas-Peucker and

is scalable to large datasets.

6. RELATED WORK
Most existing studies on trajectory simplification aim to preserve

the position information of the trajectory, which we call position-

preserving trajectory simplification (PPTS), by adopting a position-

based error measurement for measuring the error of the simpli-

fied trajectory [8, 27, 31, 21, 29, 18]. A position-based error of

a simplified trajectory is usually defined to be the maximum Eu-

clidean distance between a position on the original trajectory and its

“mapped” position on the simplified trajectory. Two major methods

have been proposed to define for a position p on the original trajec-

tory its “mapped” position on the simplified trajectory, namely the

closest distance function [8], which defines the “mapped” position

to be the closest position from p on the simplified trajectory, and

the synchronous distance function [27, 31, 21, 29, 18], which de-

fines the “mapped” position to be the position with the same time

stamp on the simplified trajectory as p. The algorithms used by

these studies are mainly heuristic-based.

Some other existing studies on trajectory simplification include

[22] which aims to minimize the area enclosed by the original tra-

jectory and the simplified trajectory, [32, 7] which consider the se-

mantic information of a trajectory for trajectory simplification, [16,

10, 17] which study the trajectory simplification problem on trajec-

tories constrained on road networks, [36, 34, 31, 14, 19, 21, 15, 29,

20, 18] which study the online trajectory simplification problem,

[5] which combines the trajectory simplification process and the

encoding process for better compression rate, [4, 9] which study

the effects of trajectory simplification on some spatio-temporal

queries, [28] which provides a preliminary empirical study on

several trajectory simplification algorithms, [6] which proposes a

multi-resolution trajectory simplification method, and [41] which

provides a preliminary literature study on trajectory simplification.

Another closely related topic is polygonal curve approxima-

tion [2] (a good survey could be found in [13]). However, none

of these studies consider the direction-based error as adopted in

this paper.



Recently, Long et al. [24] proposed to preserve the direction in-

formation of the trajectory for simplification, which is referred to as

direction-preserving trajectory simplification (DPTS). The authors

showed that DPTS not only preserved the direction information by

its nature, but also provided guarantees on the position information

loss both theoretically and empirically. Within DPTS, the authors

identified the Min-Size problem which was to find the simplifica-

tion of a given trajectory with its error at most a given error toler-

ance and its size minimized. In this paper, we focus on DPTS, but

study a different problem from the Min-Size problem [24], i.e., the

Min-Error problem.

7. CONCLUSION
In this paper, we identified a new application scenario for DPTS

and defined a corresponding problem, i.e., the Min-Error problem.

Then, we designed two exact algorithms, DP and Error-Search,

based on dynamic programming and binary search, respectively.

Since the time complexities of the exact algorithms are relatively

high, we further developed an approximate algorithm Span-Search

which runs in O(n log2 n) time and gives a 2-factor approxima-

tion. We conducted extensive experiments on real datasets which

verified our proposed algorithms. There are several interesting re-

search directions. One is to study the DPTS problem in an online

setting. Another is to explore other functions based on the direction

information for defining the simplification error.
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