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Abstract
As multimedia content continues to grow on the web, the integra-
tion of visual and textual data has become a crucial challenge for
web applications, particularly in recommendation systems. Large
Vision Language Models (LVLMs) have demonstrated considerable
potential in addressing this challenge across various tasks that re-
quire such multimodal integration. However, their application in
multimodal sequential recommendation (MSR) has not been exten-
sively studied. To bridge this gap, we introduce MSRBench, the
first comprehensive benchmark designed to systematically evaluate
different LVLM integration strategies in web-based recommenda-
tion scenarios. We benchmark three state-of-the-art LVLMs, i.e.,
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GPT-4 Vision, GPT-4o, and Claude-3-Opus, on the next item pre-
diction task using the constructed Amazon Review Plus dataset,
which includes additional item descriptions generated by LVLMs.
Our evaluation examines five integration strategies: using LVLMs
as recommender, item enhancer, reranker, and various combinations
of these roles. The benchmark results reveal that 1) using LVLMs as
rerankers is the most effective strategy, significantly outperforming
others that rely on LVLMs to directly generate recommendations
or only enhance items; 2) GPT-4o consistently achieves the best
performance across most scenarios, particularly when employed as
a reranker; 3) the computational inefficiency of LVLMs presents a
major barrier to their widespread adoption in real-time multimodal
recommendation systems. Our code and datasets are available at
https://github.com/PALIN2018/MSRBench.

CCS Concepts
• Information systems→ Recommender systems.

Keywords
Large Vision LanguageModel, Multimodal Recommendation, Bench-
mark
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1 Introduction
The explosive growth of multimedia content on the web has fueled
the need for more sophisticated recommendation systems that can
handle diverse data modalities, such as images and text, to enhance
user experiences. Multimodal Sequential Recommender Systems
(MSRs), which integrate these multiple modalities, have witnessed
a surge in popularity in recent years due to their superior capability
in delivering more accurate and personalized web-based recommen-
dations [28]. These systems typically encode each modality with
a unique encoder and then employ complex fusion mechanisms
to align the disparate data into a unified representation for the
downstream recommendation task. However, this shallow align-
ment approach may overlook the intricate correlations between
different modalities, particularly when substantial differences exist
across modalities [44]. As a result, the performance of these sys-
tems in integrating visual and textual features on the web can be
suboptimal.

Recently, the rapid development of Large Vision-Language Mod-
els (LVLMs) has profoundly influenced various web applications,
particularly those requiring the integration of visual and textual
data, such as visual question answering [2, 3, 27], image caption-
ing [38, 42], and cross-modal retrieval [21, 24]. The performance
improvements in these fields can be largely attributed to LVLMs’
strong ability to capture the complex relationships between images
and text. However, how to effectively apply such strong ability of
LVLMs to web-based recommendation systems remains an open
question. So far, only a few preliminary exploratory studies have
been conducted: [47] and [29] are pioneer works that leverage
prompt engineering to harness the recommendation capabilities of
GPT-4 Vision [34]; [15] and [39] have also investigated the feasi-
bility of directly employing LVLMs as multimodal recommenders.
These studies do not use pre-trained LVLMs. Instead, they integrate
vision encoders into language models, thereby endowing the lan-
guage models with the capability to process visual signals. Different
from the above works, [44] adopts LVLMs as a feature extractor and
builds recommenders within traditional multimodal recommenda-
tion framework. Specifically, this work replaces separate encoders
with pretrained LVLMs, demonstrating their potential to deeply
align multimodal data and overcome the limitations of traditional
shallow alignment methods.

Despite these advancements, the aforementioned studies have
primarily focused on exploring the effectiveness of applying LVLMs
in recommendation scenarios using a single integration approach.
However, there is a lack of a comprehensive performance evaluation
of different integration approaches (e.g., LVLMs as a recommender,
LVLMs as a reranker) for the same task within the context of web
applications. In other words, we still do not fully understand the
performance disparities among these various integration strategies

when applied to web-based recommendation systems. Thus, there is
an urgent need for a systematic benchmark to thoroughly assess the
different integration strategies of LVLMs in multimodal sequential
recommendation scenarios, facilitating more informed decisions in
model selection and deployment.

To fill this gap, we construct MSRBench, the first benchmark
that comprehensively evaluates different strategies for integrating
LVLMs into the multimodal recommendation scenario. Specifically,
we benchmark three state-of-the-art LVLMs, including GPT-4 Vi-
sion [34], GPT-4o [34], and Claude-3-Opus [1], on the sequential
recommendation task. This task aims at predicting the subsequent
item which may interest a given user based on their historical
interactions with items. As shown in Figure 1, we design five in-
tegration strategies for LVLMs, with each strategy representing
either a single role or a combination of roles that LVLMs can play
during the recommendation process: recommender, item enhancer,
and reranker. To facilitate the reproducibility of our experiments
and reduce associated costs, we further augment the Amazon Re-
view dataset [33], a large-scale dataset derived from a prominent
e-commerce platform, to create a new dataset called Amazon Re-
view Plus, which includes item image descriptions generated by
LVLMs.

Comparing different LVLM integration strategies on the Ama-
zon Review Plus dataset, we uncover several key insights: First,
using LVLMs as rerankers consistently outperforms other roles,
such as recommender and item enhancer. Second, combining roles
(e.g., item enhancer and reranker) does not always lead to perfor-
mance gains and can sometimes even perform worse than simpler
single-role strategies. Third, among the three LVLMs evaluated,
GPT-4o demonstrates superior performance across most strate-
gies. Finally, and most importantly, despite these performance
gains, the computational inefficiency of LVLMs, especially in more
complex strategies, remains a significant challenge for real-time de-
ployment in industrial systems. We hope these insights can deepen
the understanding of how different LVLM integration strategies im-
pact recommendation performance, highlight the most promising
approaches for leveraging LVLMs, and validate both their utility
and the challenges they currently present. Furthermore, we hope
MSRBench can guide future improvements in model design and in-
tegration techniques, and encourage further exploration of LVLMs
in diverse web-based recommendation scenarios.

To summarize, our contributions are threefold:

• We design multiple strategies for leveraging LVLMs in multi-
modal sequential recommendation and augment the Amazon
Review dataset by creating Amazon Review Plus, which in-
cludes richer item descriptions to enable more flexible item
modeling.

• We introduce MSRBench, the first benchmark specifically tai-
lored for evaluating LVLMs in multimodal recommendation
scenarios, and conduct extensive evaluations of state-of-the-
art LVLMs, including GPT-4V, GPT-4o, and Claude-3-Opus.

• Our experimental results offer clear guidance for future re-
search and practical applications, outlining both the potential
and the challenges of integrating LVLMs into recommender
systems.

https://doi.org/10.1145/3696410.3714764
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Figure 1: Illustration of different strategies for integrating LVLMs into multimodal sequential recommendation. SR denotes
traditional sequential recommenders, such as SASRec.

2 Integrate LVLMs into Multimodal Sequential
Recommendation

In this section, we explore how LVLMs can be integrated into
multimodal sequential recommendation, focusing on three key roles
that LVLMs can play: recommender, item enhancer, and reranker.
Each role represents a different way in which LVLMs contribute to
the recommendation process:

• Recommender: The LVLM directly generates recommen-
dations by processing multimodal data (e.g., item images
and titles) to predict the items the user is most likely to be
interested in.

• Item Enhancer: The LVLM enriches item descriptions by
converting visual information into textual form, such as
generating image captions to improve item metadata.

• Reranker: The LVLM refines the output of a traditional
sequential recommender by reevaluating the recommended
items and adjusting their order based on multimodal input.

We propose five distinct integration strategies based on these
roles, as illustrated in Figure 1. The prompts used for each strategy
are summarized in Appendix Figure 5. The first three strategies (S1,
S2, S3) focus on LVLMs taking on a single role, while the latter two
strategies (S4, S5) explore whether combining different roles can
lead to performance improvements. We describe the details of each
strategy as follows:

Strategy 1 (S1): LVLM as a direct recommender. This strategy
inputs both the images and titles of items previously interacted with
by the user into the LVLM, enabling it to identify the user’s pref-
erences and generate personalized recommendations. Specifically,
the images of all previously interacted items are concatenated into
a single image, arranged in chronological order. As shown in Figure
5 in the appendix, the prompt template guides the LVLM on how to
interpret the concatenated image and link it to the corresponding
item titles. In this setup, the LVLM simultaneously leverages both

visual and textual information to generate its recommendations.
Additionally, the prompt imposes format constraints, requiring the
model to output the recommendation list in a structured format
(e.g., JSON) and provide explanations for its recommendations.

Strategy 2 (S2): LVLM as an item enhancer. In this strategy,
we leverage LVLMs to transform visual information into textual
form1. Specifically, the LVLM generates image captions that de-
scribe the content of item images, thereby enriching the item’s
textual metadata. To assess the effectiveness of this strategy, we use
BERT [9] to encode the enhanced textual data (i.e., the combination
of titles and image captions) and obtain semantic representations
of the items. These representations are then fed to traditional se-
quential recommendation models, such as SASRec [19], thereby
incorporating prior knowledge from the LVLM-enhanced data into
the recommendation process.

Strategy 3 (S3): LVLMas a reranker. In this strategy, we design
a prompt template that can be used for reranking recommenda-
tion lists from other recommendation models, such as SASRec. As
shown in Figure 5, the template prompts the LVLM to reassess the
relevance of the recommended items based on both the titles and
images of previously interacted items. The LVLM then outputs a
reranked recommendation list, prioritizing items that better align
with the user’s preferences.

Strategy 4 (S4): LVLM as both item enhancer and recom-
mender. This strategy first utilizes an LVLM to generate captions
for each item’s image. These captions, combined with the item
titles, are then used to represent the items. As shown in Figure 5,
this textual representation is injected into the prompt template
from S1, replacing the original image input. The updated prompt
is processed by the LVLM, and the final recommendations are de-
rived from its output. Notably, in S4, item images are not directly
fed into the LVLM for recommendations. Instead, the images are

1We discuss why the reverse approach (i.e., converting textual modality into visual
modality) is not considered in Appendix A.5
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transformed into captions, and the recommendations are generated
based on these captions and the associated titles.

Strategy 5 (S5): LVLM as both item enhancer and reranker.
This strategy first utilizes LVLM to obtain image captions. These
captions, combined with item titles, are then used to rerank the
recommendation list produced by other models. Similar to S4, this
approach does not use the raw image data for reranking; instead,
it leverages the transformed textual information. For the prompt
template used in S5, please refer to Figure 5 in the appendix.

3 MSRBench
In this section, we conduct comprehensive experiments to answer
the following key research questions:

• RQ1: How do LVLMs perform when integrated into multi-
modal sequential recommendation systems in various roles?

• RQ2: How do different item modalities and different image
input modes (e.g., multiple images vs. concatenated images)
affect recommendation performance?

• RQ3: Can LVLMs, when used as rerankers, consistently
enhance the performance of different traditional sequential
recommenders?

• RQ4:Which LVLM integration strategy offers the best trade-
off between computational efficiency and recommendation
accuracy?

3.1 Experimental Settings
3.1.1 Model Selection. The primary goal of MSRBench is to inves-
tigate the impact of LVLMs in different roles within a sequential
recommendation process. To this end, we select three state-of-the-
art commercial LVLMs: GPT-4V, GPT-4o, and Claude-3-Opus.These
models are used to evaluate the five integration strategies intro-
duced in Section 2. We also explored several open-source LVLMs,
including Qwen-VL [2] and GLM-4V [16]. Due to space constraints,
their performance is summarized in Table 5 in the Appendix. We
observe that Qwen-VL-13b exhibits poor instruction-following ca-
pabilities in recommendation scenarios, with outputs that are either
difficult to interpret or severely affected by hallucination issues.
Consequently, we only present its performance when Strategy 2 is
applied for integrating it into the recommender system.

For our recommendation baselines, we categorize the models
into three groups: classical sequential recommendation methods,
collaborative multimodal recommendation methods, and multi-
modal sequential recommendation methods. The classical sequen-
tial recommendation methods include: 1) Pop, which ranks items
based solely on their popularity, recommending the most popular
items to users first, and 2) SASRec[19], an ID-based sequential
recommendation model that uses self-attention mechanisms to cap-
ture user-item interaction patterns, enabling long-term preference
modeling. The collaborative multimodal recommendation methods
consist of: 1) MMGCN[40], a graph-based model that leverages
multimodal features and graph convolutional networks to enhance
recommendation performance, 2) FREEDOM[49], which freezes
the item-item graph and denoises the user-item graph for efficient
and accurate multimodal recommendations, and 3) BM3[50], a self-
supervised model that uses dropout to generate contrastive views
without the need for negative samples, improving the robustness

of the recommendations. Finally, we select two-stageMoRec[45]
framework as the baseline for multimodal sequential recommen-
dation, which first extracts modality-specific features using ded-
icated modality encoders and then feeds them into a sequential
recommender. This approach is particularly favored in real-world
industrial applications due to its high training efficiency. In our
subsequent experiments, we consider three input configurations:
text-only (MoRec (T)), image-only (MoRec (I)), and a combination
of both text and image features (MoRec (T+I)).

Note that we deliberately exclude models with complex archi-
tectures or intricate fusion mechanisms, as they could obscure the
isolated effects of LVLM integration. Therefore, we only choose
these 6 models to maintain a controlled environment that allows
us to provide clear insights into the specific benefits LVLMs bring
to sequential recommendation systems.

3.1.2 Dataset. In this study, we conduct experiments using the
Amazon Review dataset2[32], which is widely adopted in sequential
recommendation research[4, 11, 15, 25]. This dataset is particularly
well-suited for our benchmark for two key reasons. First, it offers
a rich collection of user interactions along with textual and visual
product information. Second, it reflects real-world e-commerce
scenarios, where users frequently rely on both product images and
descriptions during their decision-making processes. Following
prior works [15, 19, 48], we focus on four categories: beauty, sports,
toys, and clothing, as they represent diverse consumer goods with
distinct characteristics and interaction patterns.

In addition, we extend the original Amazon Review dataset to
create the Amazon Review Plus dataset3. The motivation behind
this extension is that in Strategy 2 (S2) and Strategy 5 (S5), LVLMs
are used to enhance items by converting visual information into
textual descriptions, specifically by generating image captions to
enrich item metadata. The generation of these captions required
approximately 192,480 API calls, covering 64,160 images across the
four categories, each processed by three state-of-the-art LVLMs. To
mitigate the reproducing cost, we integrate all generated image cap-
tions into the original Amazon Review dataset, forming the Amazon
Review Plus dataset. This dataset offers a valuable foundation for
future multimodal recommendation research, enabling researchers
to leverage LVLM-enhanced item descriptions to improve recom-
mendation performance. Following common practice, we apply the
5-core filtering, which retains only users and items with at least five
interactions. Additionally, we employ the leave-one-out strategy to
split the dataset: for each user, the last interacted item is used for
testing, the second-to-last for validation, and the rest for training.
Detailed statistics of the Amazon Review Plus dataset are presented
in Appendix Table 4. Further analysis of the image captions can be
found in the Appendix A.7.

3.1.3 Evaluation Metrics. We adopt two widely-used metrics, top-k
Hit Ratio (H@k) and top-kNormalizedDiscounted Cumulative Gain
(N@k), to evaluate the recommendation performance of LVLMs
under the five strategies.

When using LVLMs as recommenders or rerankers, the candi-
date items must be included in the input prompt for the model to

2http://jmcauley.ucsd.edu/data/amazon/
3The dataset consists of the four aforementioned categories

http://jmcauley.ucsd.edu/data/amazon/
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Table 1: Performance comparison among different strategies for integrating LVLM intomultimodal sequential recommendation.
T and I denote title and image of items, respectively. Bold text indicates the highest score, and underlined text indicates the
second highest score. “*” denotes statistical significance for 𝑝 < 0.01 between the best method and all other methods, based on a
paired 𝑡-test. All results are presented as percentages to ensure clarity and ease of reading.

Beauty Sports Toys ClothingMethod Strategy H@1 H@5 N@5 H@1 H@5 N@5 H@1 H@5 N@5 H@1 H@5 N@5
Random - 4.75 16.50 10.57 3.75 14.75 9.01 5.25 18.25 11.54 4.50 15.00 9.68
Pop - 14.00 41.00 28.00 14.50 38.00 26.81 10.25 33.50 21.86 15.25 42.00 28.41
SASRec - 26.25 50.50 38.09 18.25 50.00 34.01 22.25 43.00 32.54 13.75 36.50 25.12
MMGCN - 22.50 49.75 36.70 20.00 54.25 37.40 18.75 45.25 32.55 16.25 42.00 29.29
FREEDOM - 33.00 59.25 46.89 33.75* 64.25 49.53 32.50 61.00 47.64 26.75 49.75 38.80
BM3 - 29.00 54.75 42.91 29.75 62.50 47.11 25.00 53.50 40.09 22.25 50.00 36.21
MoRec (T) - 31.00 58.00 45.51 27.25 62.50 45.62 28.00 60.00 44.70 24.50 55.50 40.12
MoRec (I) - 34.00 58.25 47.08 23.50 63.00 43.94 30.75 59.50 45.74 24.50 56.75 40.81
MoRec (T+I) - 33.00 61.50 47.92 28.75 67.50* 49.23 33.25 64.75* 50.03 27.00 59.75 43.92

GPT-4V

S1 23.74 46.46 34.98 23.00 54.25 38.77 28.50 49.00 39.41 20.41 47.70 34.49
S2 30.75 60.75 46.46 28.50 62.25 45.77 27.75 60.00 44.91 22.50 59.50 41.45
S3 31.71 57.54 45.30 32.06 63.61 48.37 32.91 59.80 46.84 28.17 57.36 43.04
S4 22.86 48.74 35.84 21.91 51.64 37.25 29.32 53.38 41.86 20.25 48.86 35.29
S5 32.15 55.44 44.09 31.38 62.76 47.12 32.04 57.88 45.40 22.28 53.58 38.45

GPT-4o

S1 23.37 49.00 36.84 26.50 56.00 41.36 30.00 55.25 43.11 22.31 51.88 37.42
S2 30.75 60.00 46.03 26.50 62.50 44.98 29.75 59.25 45.00 26.50 53.25 40.20
S3 38.85* 61.90* 50.66* 30.83 65.41 49.01 37.50 64.75* 52.14 32.83* 61.40* 47.63*
S4 25.25 48.25 37.30 23.25 56.75 40.79 32.75 55.50 44.71 23.31 48.12 35.90
S5 38.00 59.50 49.17 33.00 65.00 49.71* 40.50* 64.00 52.84* 29.57 58.90 45.28

Claude 3-Opus

S1 19.33 46.91 33.99 21.25 52.00 37.13 29.00 51.25 40.76 19.35 48.74 34.28
S2 31.00 59.75 46.10 26.00 62.00 44.82 29.25 59.25 44.94 21.50 60.00 41.17
S3 30.40 53.77 42.06 26.75 60.00 43.96 32.75 55.75 44.98 26.82 55.64 41.64
S4 26.00 51.75 39.15 22.61 57.04 39.76 27.25 52.25 40.78 22.56 51.13 37.67
S5 30.75 53.50 42.13 24.56 62.66 44.16 29.00 53.50 41.63 26.07 55.89 41.51
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Figure 2: Performance (H@1) comparison of GPT-4V, GPT-4o and Claude-3-Opus under different integration strategies.

rank them4. Given the prompt length limitations and high inference
costs, evaluating with all unrated items (i.e., full-item ranking) is
impractical. Therefore, similar to prior studies [8, 25, 30], we evalu-
ate the models by ranking a subset of candidate items, consisting
of one target item and 29 randomly sampled negative items. Given
the high cost of API calls across the entire test set, we adopt the

4As shown in [25], directly performing sequential recommendation without including
candidate items leads to severe hallucination

approach used in previous works [8, 10, 13] by randomly sampling
users from each category for evaluation. Specifically, we sample 400
users to balance representativeness and computational efficiency.
A detailed discussion of the rationale behind this sample size is
provided in Appendix A.6.

3.1.4 Implementation Details. For the five integration strategies,
we design task-specific prompts for LVLMs to handle the multi-
modal sequential recommendation task (details shown in Figure 5).
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In S2, we use the bert-base-uncased5 as the text encoder, with a text
embedding dimension of 768. For all LVLM-related experiments, we
set the temperature of LVLMs to 0 to ensure reproducibility. Follow-
ing [12, 41], we set the maximum user interaction sequence length
to 10 for inputs to the model. For the recommendation baselines,
we implement SASRec and MoRec using the code6 provided by [45]
with default hyperparameters: the number of transformer blocks
and attention heads are both set to 2, embedding dimensions to 512,
and the dropout ratio to 0.1. To ensure fair performance reporting,
we search for the optimal batch size from 32, 64 and the best learning
rate from 1𝑒 − 5, 5𝑒 − 5, 1𝑒 − 4, ultimately setting the batch size to
64 and the learning rate to 1𝑒 − 4 for all experiments. For MMGCN,
FREEDOM, and BM3, we use the implementations provided in
MMRec7. Due to space limitations, more detailed implementation
settings of these baselines can be found in the Appendix A.6.

3.2 Overall Performance (RQ1)
Table 1 demonstrates the performance of various LVLMs when
evaluated using the five proposed strategies on the four categories of
Amazon Review Plus dataset. We make the following observations:

LVLM as a reranker (S3) is the most effective single-role
strategy, outperforming both the recommender (S1) and item
enhancer (S2) strategies in most cases. The reranking mech-
anism allows LVLMs to refine existing recommendation lists, ef-
fectively leveraging multimodal data for better item ordering. For
example, in the beauty category, GPT-4o as a reranker (S3) achieves
an H@1 of 38.85% and N@5 of 50.66%, significantly outperforming
its performance as a recommender (S1), where H@1 was 23.37%.
This suggests that LVLMs perform best when refining pre-generated
recommendations, rather than directly generating recommenda-
tions (S1) or solely enriching item descriptions (S2), particularly
when handling complex multimodal data.

Combination strategies (S4 and S5) show mixed results
when compared to their corresponding single-role strategies
(S1, S2, and S3), and neither consistently outperforms them.
S5, which combines item enhancement and reranking, does not con-
sistently outperform the standalone item enhancer (S2) or reranker
(S3) across all scenarios. Notably, under the GPT-4V setting, S5
underperforms S3 in most datasets. In contrast, under the GPT-4o
and Claude 3-Opus settings, the performance of S5 and S3 varies
across datasets, with no clear or consistent advantage for S5. Sim-
ilarly, S4, which combines item enhancement and recommender
roles, fails to consistently outperform its single-role counterparts.
For example, under the GPT-4o setting, in the sports category, S4
achieves an H@1 of 23.25%, which is lower than both S1 (26.50%)
and S2 (30.75%). These results suggest that while combining roles
(as in S4 and S5) can occasionally offer improvements, particularly
for S5, the more straightforward single-role strategies often deliver
comparable or even better results.

GPT-4o consistently outperforms GPT-4V and Claude 3-
Opus across all strategies, especially as a reranker (S3).GPT-4o
demonstrates superior handling of multimodal data, achieving the
highest scores with S3 across categories such as beauty, where it

5https://huggingface.co/google-bert/bert-base-uncased
6https://github.com/westlake-repl/IDvs.MoRec
7https://github.com/enoche/MMRec

reaches an H@1 of 38.85%, and clothing, where it reaches 32.83%.
GPT-4V, though stable, underperforms GPT-4o in more complex
strategies, such as S4 and S5, while Claude 3-Opus struggles the
most, particularly in the direct recommender strategy (S1), where its
ability to generate accurate recommendations from rawmultimodal
data is limited.

Comparison among recommendation baselines: classical
SR methods like Pop and SASRec perform weaker, with Pop achiev-
ing only 14.00% H@1 in beauty and 14.50% in sports. These mod-
els, which rely on popularity-based ranking or simple sequential
modeling, struggle to compete with more advanced multimodal
approaches. Furthermore, we select the best-performing models
from the baseline groups, namely FREEDOM and MoRec (T+I), and
compare them with our proposed LVLM-based methods in Figure 2.
We observe that both S3 and S5 applied to GPT-4o outperform these
baselines in most cases, particularly in the beauty, clothing, and
toys categories. This highlights the ability of these two strategies
to more effectively leverage multimodal data, leading to improved
recommendation accuracy.

3.3 Impact of Different Item Modalities and
Input Modes (RQ2)

This section explores the influence of different item modalities
when using LVLMs as a recommender (S1). As shown in Figure 3,
item titles consistently emerge as the most critical information for
generating accurate recommendations, while images alone lead to
significantly poorer performance. For instance, when relying solely
on images, GPT-4V and GPT-4o produce results close to random
selection, and although Claude 3 Opus performs better, it still falls
short of the Pop baseline. This suggests that LVLMs cannot yet
depend on image data alone for reliable recommendations, possibly
due to noise or ambiguity in the images. Additionally, combining
titles and images does not improve performance in S1, indicating
that current LVLMs struggle to process raw image data effectively
in this context. As highlighted in the Section 3.2 , transforming
images into textual descriptions or using images as auxiliary signals
for reranking items remains the most effective way for LVLMs to
enhance recommendation accuracy.

When leveraging LVLMs as recommenders or re-rankers, one
essential step is to input images of items from users’ historical
interactions into the LVLM. We explore two different input modes:
(Mode 1) concatenating images into a single composite image, and
(Mode 2) inputting images individually. In both modes, the im-
ages are arranged in chronological order based on the interaction
timestamp. For instance, in Mode 1, the leftmost item in the con-
catenated image represents the first interaction. Our experiments
using GPT-4V on the beauty dataset reveal that Mode 1 consis-
tently outperforms Mode 2 across key metrics. Specifically, Mode 1
achieves an H@1 of 23.74%, whereas Mode 2 results in lower H@1
scores of 22.86%. This indicates that concatenating images into a
single composite (Mode 1) helps the model capture the relation-
ships between items more effectively, thereby reflecting the user’s
preferences more accurately.
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Figure 3: Impact of different item modalities (title only, image only, title + image) on recommendation performance when using
LVLMs as a recommender (S1).
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Figure 4: Performance comparison between different LVLM-based reranking strategies (S3 and S5) using two different recom-
mendation backbones. In this analysis, GPT-4o is used as the LVLM.

3.4 In-depth Analysis of LVLM as Reranker
(RQ3)

In this section, we investigate whether LVLMs, when used as
rerankers, can enhance the performance of different sequential
recommendation models (referred to as backbones for simplicity),
such as SASRec and MoRec. Specifically, we first generate the ini-
tial recommendation lists from both backbone, and then apply two
reranking strategies: S3 (LVLM as reranker) and S5 (LVLM as both
item enhancer and reranker). Due to space constraints, as shown
in Figure 4, we present results for GPT-4o only.

We observe that for both SASRec and MoRec, S3 and S5 can
consistently improve their recommendation performances. Notably,
the S3 strategy, where the LVLM operates purely as a reranker by
directly processing product images, performs best in most cases. In
contrast, S5 first converts images into textual descriptions before
reranking, which can lead to information loss or the introduction
of irrelevant details, diminishing its effectiveness in certain sce-
narios. These results highlight the potential of integrating textual
and visual data with effective reranking strategies as a promising
approach to improving the overall recommendation performance.

In addition to improving accuracy, both S3 and S5 offer explain-
able recommendations by providing detailed explanations alongside
the results. These explanations help users understand the reasoning
behind the recommendations, which is key to enhancing user sat-
isfaction. Appendix Figure 6 illustrates a case of recommendation
results, comparing GPT-4o as an item enhancer and reranker with

the traditional SASRec system. In this case, SASRec incorrectly
suggests a finger puppet, unrelated to the user’s history with dolls,
and offers no explanation for this error. In contrast, S3 highlights
the user’s preference for dolls related to popular characters, while
S5 enriches the explanation by factoring in collectible dolls and
interactive playsets. This added depth improves transparency and
personalization, ultimately increasing user trust and satisfaction.

3.5 Efficiency Comparison (RQ4)
This section investigates the computational efficiency of different
LVLM integration strategies and all baseline models in multimodal
sequential recommendation.We conduct experiments on the Beauty
category of the Amazon Review Plus dataset, with batch size unified
to 64 for all baselines to ensure fair comparison. Table 2 summarizes
the results, and our key observations are as follows:

SASRec and two-stage basedMoRec demonstrate the fastest
training speed, outperforming collaborative multimodal rec-
ommendation methods. SASRec completes an epoch in 5.4 sec-
onds, while MoRec (T+I) takes 11 seconds per epoch. In contrast,
collaborative models such as FREEDOM and BM3 exhibit similar
training times, around 401.89 and 411.45 seconds per epoch, respec-
tively. MMGCN is the slowest, requiring 674.99 seconds per epoch.
The slower training time of MMGCN can likely be attributed to
its graph-based architecture, which adds computational complex-
ity. Despite these differences, all baseline models maintain high
inference speeds, with most achieving 0.0025 seconds per user.
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Table 2: Comparison of computational efficiency in different
LVLM integration strategies. Note that training time for S1
to S5 (except S2) is not applicable (N/A) as these methods are
prompting-based.

Model Train Time (s/epoch) Inference Time (s/user)
SASRec 5.4 0.0025
MMGCN 674.99 0.0030
FREEDOM 401.89 0.0029

BM3 411.45 0.0025
MoRec (T) 5.9 0.0025
MoRec (I) 9.75 0.0025

MoRec (T+I) 11 0.0025
S1: Recommender

GPT-4V N/A 41.7488
GPT-4o N/A 25.8993

Claude-3-Opus N/A 24.9818
S2: Item Enhancer

GPT-4V/o, Claude-3-Opus 5.9 0.0025
S3: Reranker

GPT-4V N/A 42.4901
GPT-4o N/A 24.4900

Claude-3-Opus N/A 24.7115
S4: Enhancer + Recommender

GPT-4V N/A 29.8392
GPT-4o N/A 18.3205

Claude-3-Opus N/A 23.5321
S5: Enhancer + Reranker

GPT-4V N/A 35.4451
GPT-4o N/A 28.8022

Claude-3-Opus N/A 21.8895

The computational inefficiency of LVLMs poses a major
barrier to their widespread adoption in multimodal recom-
mendation systems. Among the LVLM integration strategies, S2
(item enhancer) stands out as the most practical and feasible ap-
proach for industrial deployment. It achieves a training time of
5.9 seconds per epoch and an inference time of 0.0025 seconds per
user, making it the most computationally efficient LVLM integra-
tion strategy. Additionally, S2 performs comparably to multimodal
sequential recommendation baselines across multiple metrics, po-
sitioning it as a promising candidate for further exploration and
optimization. More complex strategies, such as S3 to S5, which
combine multiple roles, incur significantly higher inference costs.
For example, S3, which uses LVLMs as rerankers, achieves the best
recommendation performance but requires 42.49 seconds per user
for inference with GPT-4V, far exceeding the inference times of
baseline models. This presents a significant challenge for the appli-
cation of LVLMs in real-time industrial systems, where low-latency
requirements are critical.

4 Related Work
Multimodal Sequential Recommendation. multimodal sequen-
tial recommendation (MSR) integrates various data modalities (e.g.,
text and image) to better capture user preferences and improve rec-
ommendation accuracy. Early work like MV-RNN [7] introduced a
multi-view recurrent neural network that dynamically fused mul-
timodal features, while MML [35] leveraged meta-learning to ad-
dress the cold-start problem using multimodal side information.
Building on these advances, MMSR [17] introduced a graph-based
model with dual attention mechanisms to fuse multimodal features

from both homogeneous and heterogeneous user-item interactions.
MMMLP [22] demonstrated the effectiveness of simpler, purely
MLP-based architectures by efficiently fusingmultimodal sequences
for large-scale recommendation tasks. Despite the recent success of
LVLMs in various NLP tasks, only a few works have explored their
application in the MSR domain. For instance, MLLM-MSR [43] and
Rec-GPT4V [29] leverage LVLMs to summarize item images and
combine them with titles to model user preferences, while UniMP
[39] proposes a general framework for personalized recommenda-
tions. However, these methods apply LVLMs in a single integration
manner without comprehensively evaluating their performance
across different strategies. To address this gap, our work intro-
duces MSRBench, the first benchmark designed to systematically
explore the impact of different LVLMs, integration methods, and
input modalities on recommendation performance. By investigating
LVLMs in various roles, our analysis can provide new insights into
performance differences across strategies, offering a more thorough
evaluation than previous approaches.
Large Language Models in Recommendation. Large Language
Models (LLMs) have revolutionized AI research by pushing the
boundaries of natural language understanding and generation. Com-
mercial close-sourced models like ChatGPT [34] and Claude [1]
demonstrate the impressive ability of coherent text generation and
instruction following. The open-source counterparts, e.g., LLaMA
[37] and Vicuna [5], provide transparency into the model architec-
ture and training details, allowing more flexible and customized
development. For the recommendation side, several works [23, 25,
26, 31, 46] prompt or finetune LLMs to adapt them for recommen-
dation. As the pioneer attempt, Liu et.al [25] prompt and evaluate
ChatGPT’s performance on the recommendation scenarios in a
training-free way. LlamaRec [46] resorts to the open-source LLMs
and renders a real-time recommendation to streamline the autore-
gressive generation during inference time. In contrast to these uni-
modal approaches, our work focuses on investigating multimodal
LLMs for recommendation, aiming to unlock and harness their
potential for more effective and personalized recommendations.

5 Conclusion and Future Work
In this work, we introducedMSRBench, a comprehensive bench-
mark designed to evaluate different integration strategies of LVLMs
in multimodal recommendation systems. By systematically bench-
marking state-of-the-art LVLMs, including GPT-4 Vision, GPT-4o,
and Claude-3-Opus, on the next item prediction task using the
enhanced Amazon Review Plus dataset, we uncover significant
performance disparities among various integration approaches.
Our findings highlight the most effective methods for leveraging
LVLMs in multimodal recommendation contexts, providing valu-
able insights and guidance for future research and practical imple-
mentation. MSRBench sets the stage for further exploration and
innovation in this field, aiming to advance the development of more
accurate and personalized recommendation systems.
Limitations and Future Work: This work focuses on evaluating
different strategies for applying LVLMs in multimodal sequential
recommendation. However, due to resource limitations, we did not
explore the potential impact of fine-tuning these models, which we
plan to address in future research.
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A Appendix
A.1 Ethics
General Ethical Conduct. Our work follows standard ethical
guidelines in AI and machine learning research. We clearly state
our motivations, methodology, and results, ensuring transparency
and reproducibility. The dataset used, Amazon Review Plus, is an
extension of the publicly available Amazon Review dataset, and the
data augmentation is conducted using LVLMs to generate additional
item descriptions. The use of this data respects user privacy as the
dataset does not include personally identifiable information. The
primary aim of our proposed MSRBench and the Amazon Review
Plus dataset is to explore improved strategies for integrating LVLMs
into multimodal recommendation systems, potentially benefiting
users by delivering more accurate and personalized recommenda-
tions.

Potential Negative Societal Impacts. While our work aims
to enhance recommendation systems, it is crucial to consider the
potential negative societal impacts. One significant concern is the
reinforcement of existing biases present in the training data. LVLMs,
trained on vast amounts of internet data, can inadvertently learn
and propagate biases related to gender, race, and other sensitive
attributes. When integrated into recommendation systems, these
biases could lead to unfair or discriminatory recommendations,
affecting user experience and perpetuating stereotypes. While our
work does not directly cause negative societal impacts, it is crucial
to take appropriate precautions to mitigate these potential effects.

A.2 Prompts
The integration of LVLMs into multimodal recommendation sys-
tems is facilitated through a series of carefully designed prompts.
Figure 5 shows examples of the prompts we use. Each color in the
prompt structure highlights a specific component of the recommen-
dation process, ensuring that the model can accurately interpret
the information and perform the task.

Blue text represents the item titles that are passed to the LVLM.
These are essential for identifying the products that the user has
interacted with or is likely to be interested in.

Yellow text indicates the candidate item list, which is the pre-
ranked list of items that the LVLM needs to process or rerank. This
list is generated based on the user’s previous interaction history
and passed to the model for further refinement.

Green text refers to the generated image descriptions. These
are automatically created by the LVLM based on the images of the
items. These descriptions enrich the multimodal nature of the data
by providing textual representations of visual elements.

Red text highlights the output format constraints. These instruc-
tions guide the LVLM on how to structure its output, ensuring that
the recommendations are generated in a specific format that is easy
to interpret and integrate into the system.

Purple text is used exclusively for the reranking process, where
the LVLM is instructed to refine the pre-ranked list based on the
likelihood of the user purchasing each item.

A.3 Hallucination
Similar to the application of Large Language Models (LLMs) in
recommendation systems, LVLMs for multimodal sequential rec-
ommendations also face the issue of hallucination, where the rec-
ommended item may not be in the valid candidate list. This section
highlights the hallucination problem across various LVLMs. As
shown in Table 3, the hallucination rates are below 2% across all
datasets and models, indicating that the issue is generally not se-
vere. Moreover, GPT-4o, which exhibits the strongest capabilities in
recommendation tasks, also demonstrated the lowest hallucination
rates.

Table 3: The hallucination rate (%) of three LVLMs across
four datasets.

Model Beauty Clothing Sports Toys
Claude 0.55 0.88 0.69 1.06
GPT-4V 1.33 1.22 1.15 1.52
GPT-4o 0.31 0.45 0.88 1.00

A.4 Analysis of Image Captions in the Amazon
Review Plus Dataset

Distribution of token length. Figure 7 presents the distribution
of token lengths for image captions generated by three different
LVLMs (Claude-3-Opus, GPT-4V, GPT-4o) across four categories:
beauty, clothing, sports, and toys. A consistent pattern is observed
across all categories: Claude-3-Opus consistently generates longer
and more detailed captions, indicated by higher mean token lengths
and more concentrated distributions. In contrast, GPT-4V produces
the shortest captions on average, with more spread-out distribu-
tions and significantly lower means. GPT-4o falls between the two,
generating captions that are shorter than those of Claude-3-Opus
but longer and less variable than those of GPT-4V. These findings
suggest that Claude-3-Opus is more verbose and detailed in its
captioning approach, GPT-4V is more concise, and GPT-4o strikes
a balance between verbosity and conciseness. This highlights the
varying strengths of each model in generating image captions, po-
tentially influencing their suitability for different applications based
on the required level of detail and verbosity.

Word Cloud. Furthermore, Figure 8 visualizes the word clouds
for image captions generated by the three LVLMs across the four cat-
egories. Each row corresponds to a specific category, with columns
representing the different LVLMs. The size of each word indicates
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Figure 5: Examples of prompts used for different integration strategies. Blue, yellow, red and green texts represent item
titles, candidate item lists, output format constraints, generated image descriptions, respectively. Purple text is only used for
reranking.
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Figure 6: Case study between GPT-4o and SASRec. GPT-4o can provide detailed explainations for its recommendation results.

Table 4: Detailed statistics of the four categories in the Ama-
zon Review Plus dataset.

Dataset Beauty Sports Clothing Toys
#Users 22,363 35,598 39,387 19,412
#Items 12,101 18,357 23,033 11,924
#Photos 12,023 17,943 22,299 11,895
#Reviews 198,502 296,337 278,677 167,597
Sparsity (%) 99.93 99.95 99.97 99.93
Avg. Caption Len. (Claude-3-opus) 59.49 68.59 63.52 77.93
Avg. Caption Len. (GPT4-v) 21.21 23.08 26.53 35.91
Avg. Caption Len. (GPT4-o) 46.08 46.76 38.16 55.57

its frequency within the generated captions, highlighting the com-
mon terms and themes prevalent in the descriptions produced by
each model. For instance, in the beauty category, frequent terms
include “bottle,” “hair,” “color,” and “nail.” In the toys category, com-
mon words are “toy,” “game,” “set,” and “children.” This visualization
effectively demonstrates the linguistic patterns and focal points of
each model’s captioning capabilities.

A.5 Clarification on S2: LVLM as Item Enhancer
We do not adopt the strategy of converting textual modality into vi-
sual modality due to several significant challenges. One of the main
concerns is the introduction of noise. Text-to-image generation,
particularly at scale, often produces unreliable or low-quality visual
representations. Moreover, the textual data we use, such as product
titles, is often semantically abstract and includes specific brand
names and concise descriptions that are difficult to accurately con-
vert into meaningful images. As a result, generating images from

these abstract texts likely results in visuals that lack the necessary
detail and relevance to be useful in a recommendation context.
Given these challenges, text-to-image conversion is not a practical
solution for our study.

A.6 More Implementation Details
For MoRec, we employ bert-base-uncased [9] as the text en-
coder and clip-vit-base-patch32 [36] as the vision encoder. In
MoRec(T) and MoRec(I), the output from the respective modality
encoder is passed through a linear layer to generate the item rep-
resentation. In the case of MoRec(T+I), the outputs from both the
text encoder (BERT) and vision encoder (ViT) are concatenated and
passed through a linear layer to form the final item vector. The
dimensionality of the vectors from the text encoder is 768, while
the vision encoder produces vectors of 512 dimensions. The final
item vector, used by both SASRec and MoRec, is reduced to 512
dimensions. During training, the weights of BERT and ViT remain
frozen to avoid overfitting.

For MMGCN, the regularization weight and learning rate are
set to (0.1, 0.001) for Beauty, (0.0, 1e-4) for Clothing, (0.01, 5e-4) for
Sports, and (1e-5, 0.001) for Toys. For FREEDOM, the learning rate
is uniformly set to 0.001 across all datasets, with the regularization
weight and dropout rate configured as follows: (0.9, 0.0001) for
Beauty, (0.9, 0.0) for Clothing, (0.9, 0.0) for Sports, and (0.8, 0.0)
for Toys. For BM3, we select a single GCN layer for all datasets,
with the regularization weight and dropout rate set to (0.01, 0.3) for
Beauty, (0.01, 0.5) for Clothing, and (0.1, 0.5) for both Sports and
Toys.
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Figure 7: Distribution of token lengths for image captions generated by three different LVLMs across four categories. The mean
token length indicated by the dotted line.

The versions of the LVLMs we used are as follows: gpt-4o-2024-
05-13, gpt-4-vision-preview, and aws_claude3_sdk_opus. Considering
the substantial cost of API calls across the full test set, we follow
the approach of prior works [8, 10, 13] by randomly sampling users
from each category for evaluation. However, a critical question
arises: how many samples are sufficient to ensure representativeness?
To address this, we use Cochran’s Modified Formula for Finite
Populations [6, 18, 20], balancing representativeness and compu-
tational efficiency. Specifically, we select a 95% confidence level
and a ±5% margin of error, which is a commonly accepted standard

in similar studies, providing a good trade-off between statistical
accuracy and the high costs associated with API calls. The formula
is as follows:

𝑛 =
𝑁 · 𝑍 2 · 𝑝 · (1 − 𝑝)

𝑒2 · (𝑁 − 1) + 𝑍 2 · 𝑝 · (1 − 𝑝)
,

where 𝑛 is the sample size, 𝑁 the population size, 𝑍 the Z-value
for 95% confidence (1.96), 𝑝 the sample proportion (0.5), and 𝑒

the margin of error (0.05). For each category, the population sizes
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Figure 8: Word cloud for image captions generated by three different LVLMs across four categories. The size of each word
represents its frequency, highlighting common terms and themes generated by the models.

(𝑁 ) are as follows: 22,363 for Beauty, 35,598 for Sports, 39,387 for
Clothing, and 19,412 for Toys. Based on these values, we calculated
the required sample sizes: approximately 378 for Beauty, 380 for
Sports, 380 for Clothing, and 377 for Toys. To ensure consistency,
we finally sample 400 users per category.

A.7 Dataset documentation and intended uses
The following questions are from "Datasheets for Datasets" [14].

A.7.1 Motivation.

• For what purpose was the dataset created?Was there a
specific task in mind? Was there a specific gap that needed
to be filled? Please provide a description.

The dataset was created to enhance the richness and com-
prehensiveness of the original Amazon Review Dataset by
incorporating LVLM-generated image descriptions, thereby
addressing the gap of missing textual descriptions for prod-
ucts with only image data. The addition of image descriptions
can help recommendation systems better understand product
appearance features, potentially improving recommendation
accuracy and user satisfaction, particularly for product cat-
egories where image descriptions are crucial (e.g., clothing
and toys). Additionally, generating image description texts
reduces computational complexity, as directly processing
image data requires substantial computational resources and
time. This transformation of image information into easily
processed textual data improves both training and inference
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Table 5: Performance comparison between different strategies for integrating open-source LVLMs into multimodal recommen-
dation. All results are presented as percentages to ensure clarity and ease of reading.

Beauty Sports Toys ClothingMethod Strategy H@1 H@5 N@5 H@1 H@5 N@5 H@1 H@5 N@5 H@1 H@5 N@5

GLM-4V-9b

S1 5.91 20.57 12.76 5.70 16.84 11.09 12.80 26.93 19.82 5.57 16.71 10.78
S2 12.94 31.97 22.69 10.49 31.49 21.01 10.25 27.00 18.72 12.27 30.94 21.61
S3 30.08 54.14 42.59 19.95 47.47 33.51 30.13 57.97 44.16 21.50 46.89 34.34
S4 6.40 18.93 12.70 6.13 22.40 14.06 11.70 30.32 20.90 6.27 22.34 14.28
S5 31.63 57.40 45.25 26.68 58.55 42.95 30.26 57.95 44.29 25.93 53.44 40.18

Qwen-VL-13b S2 11.92 32.74 22.46 11.02 29.65 20.23 10.50 26.75 18.64 12.72 29.92 21.38

efficiency. Furthermore, in cross-modal retrieval tasks (e.g.,
finding corresponding images from text descriptions or re-
lated text information from images), image description texts
serve as a bridge, enhancing the accuracy and practicality of
retrieval systems.

• Who created the dataset (e.g., which team, research
group) and on behalf of which entity (e.g., company,
institution, organization)?
The Amazon Review Plus dataset was created by a collabo-
rative research team consisting of members from multiple
institutions and organizations.

• Who funded the creation of the dataset? If there is an
associated grant, please provide the name of the grantor and
the grant name and number.
No funding was provided for this study, and it was conducted
purely out of academic interest.

A.7.2 Composition.

• What do the instances that comprise the dataset repre-
sent (e.g., documents, photos, people, countries)? Are
there multiple types of instances (e.g., movies, users, and
ratings; people and interactions between them; nodes and
edges)? Please provide a description.
The Amazon Review Plus dataset builds upon the Amazon
Review dataset by adding a new attribute: product image
captions. These captions provide visual context and help
in understanding the product’s appearance and features as
described by the powerful LVLMs.
The original Amazon Review dataset includes user IDs, item
IDs, item side information, and interactions between users
and items such as ratings and reviews. Readers can check
the details of this dataset in Amazon Review.

• How many instances are there in total (of each type, if
appropriate)?
The dataset comprises several types of instances across four
categories: Beauty, Sports, Clothing, and Toys. Specifically,
the dataset includes a total of 22,363 users for Beauty, 35,598
users for Sports, 39,387 users for Clothing, and 19,412 users
for Toys. The number of items is 12,101 for Beauty, 18,357
for Sports, 23,033 for Clothing, and 11,924 for Toys.
In terms of images, there are 12,023 photos for Beauty, 17,943
for Sports, 22,299 for Clothing, and 11,895 for Toys. The
dataset also contains 198,502 reviews for Beauty, 296,337 for
Sports, 278,677 for Clothing, and 167,597 for Toys.

It is important to highlight that we generated captions for
all items that include images, providing visual context and
aiding in the understanding of the products’ appearances
and features.

• Does the dataset contain all possible instances or is it
a sample (not necessarily random) of instances from
a larger set? If the dataset is a sample, then what is the
larger set? Is the sample representative of the larger set
(e.g., geographic coverage)? If so, please describe how this
representativeness was validated/verified. If it is not repre-
sentative of the larger set, please describe why not (e.g., to
cover a more diverse range of instances, because instances
were withheld or unavailable).
The Amazon Review Plus dataset contain four categories:
Beauty, Sports, Clothing, and Toys. These four categories
are widely adopted in existing recommendation research.
Detailed statistics and descriptions of these datasets can be
found in Section 4.2 of our submitted manuscript.

• What data does each instance consist of? “Raw” data
(e.g., unprocessed text or images) or features? In either case,
please provide a description.
Each instance in the Amazon Review Plus dataset consists
of several components. The reviews provide textual feed-
back from customers, while the image captions, generated
for all items with images, offer visual context and help in
understanding the product’s appearance and features. Ad-
ditionally, each instance includes structured features such
as user ID, item ID, ratings, and review timestamps. These
elements collectively enable comprehensive analysis of user
interactions and product characteristics.

• Is there a label or target associated with each instance?
If so, please provide a description.
For each user interaction sequence, the last item in the se-
quence is used as the target.

• Is any information missing from individual instances?
If so, please provide a description, explaining why this infor-
mation is missing (e.g., because it was unavailable). This does
not include intentionally removed information, but might
include, e.g., redacted text.
Some instances may have missing image captions. This is
because certain products do not have associated images avail-
able at the time of data collection. As a result, these products
lack the visual context provided by image captions

https://jmcauley.ucsd.edu/data/amazon/
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• Are relationships between individual instances made
explicit (e.g., users’movie ratings, social network links)?
If so, please describe how these relationships are made ex-
plicit.
Yes, relationships between individual instances are made
explicit through user IDs and item IDs. For example, a user’s
interaction with multiple items is linked by their user ID, and
each item’s reviews and ratings can be aggregated through
their item ID. These relationships allow for analysis of user
behavior and item popularity.

• Are there recommended data splits (e.g., training, de-
velopment/validation, testing)? If so, please provide a
description of these splits, explaining the rationale behind
them.
Yes, we recommend using leave-one-out strategy for data
splitting. In this approach, for each user interaction sequence,
the last item is used for testing, the second-to-last item is
used for validation, and the remaining items are used for
training.

• Are there any errors, sources of noise, or redundancies
in the dataset? If so, please provide a description.
Yes, the image captions generated by LVLMs might not al-
ways be accurate and could contain hallucinations or incor-
rect descriptions, leading to potential noise in the dataset.

• Is the dataset self-contained, or does it link to or other-
wise rely on external resources (e.g., websites, tweets,
other datasets)? If it links to or relies on external resources,
a) are there guarantees that they will exist, and remain con-
stant, over time; b) are there official archival versions of the
complete dataset (i.e., including the external resources as
they existed at the time the dataset was created); c) are there
any restrictions (e.g., licenses, fees) associated with any of
the external resources that might apply to a dataset con-
sumer? Please provide descriptions of all external resources
and any restrictions associated with them, as well as links
or other access points, as appropriate.
The dataset is primarily self-contained, but it may include
links to product pages on Amazon for additional context.
There are no guarantees that these external links will remain
constant over time, and there are no official archival versions
of the complete dataset including these external resources.
Access to product pages is subject to Amazon’s terms of
service and availability.

• Does the dataset contain data that might be consid-
ered confidential (e.g., data that is protected by legal
privilege or by doctor–patient confidentiality, data that
includes the content of individuals’ non-public com-
munications)? If so, please provide a description.
No, the dataset does not contain data that might be consid-
ered confidential. All data included in the dataset is publicly
available information from Amazon reviews.

• Does the dataset contain data that, if viewed directly,
might be offensive, insulting, threatening, or might
otherwise cause anxiety? If so, please describe why.
The dataset may contain user-generated content that could
be offensive, insulting, or otherwise cause anxiety. This in-
cludes reviews that may have negative or harsh language,

as the content is not filtered or moderated for offensive lan-
guage before being included in the dataset.

If the dataset does not relate to people, you may skip the remain-
ing questions in this section.

• Does the dataset identify any subpopulations (e.g., by
age, gender)? If so, please describe how these subpopula-
tions are identified and provide a description of their respec-
tive distributions within the dataset.
The dataset does not explicitly identify any subpopulations
such as age or gender. All the data in the dataset is anonymized
and does not include demographic information about the
users. Therefore, subpopulations are not identified or de-
scribed within the dataset.

• Is it possible to identify individuals (i.e., one or more
natural persons), either directly or indirectly (i.e., in
combination with other data) from the dataset? If so,
please describe how.
No, it is not possible to identify individuals directly or indi-
rectly from the dataset. All personal identifiers are anonymized,
and no additional data is provided that could be used in com-
bination to identify users.

• Does the dataset contain data that might be consid-
ered sensitive in any way (e.g., data that reveals race or
ethnic origins, sexual orientations, religious beliefs, po-
litical opinions or union memberships, or locations; fi-
nancial or health data; biometric or genetic data; forms
of government identification, such as social security
numbers; criminal history)? If so, please provide a de-
scription.
No, the dataset does not contain any data that might be con-
sidered sensitive. The data consists solely of user reviews,
ratings, and related product information, without including
any sensitive personal information such as race, ethnicity,
sexual orientation, religious beliefs, political opinions, finan-
cial or health data, biometric or genetic data, government
identification, or criminal history.

A.7.3 Collection Process.

• How was the data associated with each instance ac-
quired? Was the data directly observable (e.g., raw text,
movie ratings), reported by subjects (e.g., survey responses),
or indirectly inferred/derived from other data (e.g., part-of-
speech tags, model-based guesses for age or language)? If the
data was reported by subjects or indirectly inferred/derived
from other data, was the data validated/verified? If so, please
describe how.
The data associated with each instance was directly observ-
able, consisting of raw text in the form of user reviews and
ratings from the Amazon platform. Image captions were gen-
erated using LVLMs based on the available product images.
The reviews and ratings are provided by users on Amazon.

• What mechanisms or procedures were used to collect
the data (e.g., hardware apparatuses or sensors, manual
human curation, software programs, software APIs)?
How were these mechanisms or procedures validated?
The image captionswere generated using three SOTALVLMs.
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• If the dataset is a sample from a larger set, what was
the sampling strategy (e.g., deterministic, probabilistic
with specific sampling probabilities)?
The dataset is a sample from a larger set of Amazon reviews.
Specifically, we chose four widely adopted categories: Beauty,
Sports, Clothing, and Toys.

• Who was involved in the data collection process (e.g.,
students, crowdworkers, contractors) and how were
they compensated (e.g., how much were crowdworkers
paid)?
The Amazon Review Plus dataset was enhanced from the
existing Amazon Review dataset. The enhancement process,
which involved generating image captions using LVLMs,
was carried out by engineers from Meituan. This work was
done as a voluntary service, and therefore, no compensation
was provided.

• Over what timeframe was the data collected? Does this
timeframe match the creation timeframe of the data asso-
ciated with the instances (e.g., recent crawl of old news
articles)? If not, please describe the timeframe in which the
data associated with the instances was created. The current
dataset includes interactions spanning from May 1996 to
October 2018.

• Were any ethical review processes conducted (e.g., by
an institutional review board)? If so, please provide a de-
scription of these review processes, including the outcomes,
as well as a link or other access point to any supporting
documentation.
All the data utilized in this research are publicly accessible
and unrestricted. As the dataset does not contain any private
or sensitive information, this research is exempt from ethical
review.

If the dataset does not relate to people, you may skip the remain-
ing questions in this section.

• Did you collect the data from the individuals in ques-
tion directly, or obtain it via third parties or other
sources (e.g., websites)?
The data was obtained from third-party sources, specifically
from the Amazon website, where users publicly post their
reviews and ratings.

• Were the individuals in question notified about the
data collection? If so, please describe (or show with screen-
shots or other information) how notice was provided, and
provide a link or other access point to, or otherwise repro-
duce, the exact language of the notification itself.
The individuals were not specifically notified about this par-
ticular data collection process. However, Amazon’s terms of
service inform users that their reviews and ratings may be
publicly accessible and used for various purposes, including
research.

• Did the individuals in question consent to the collec-
tion and use of their data? If so, please describe (or show
with screenshots or other information) how consent was
requested and provided, and provide a link or other access
point to, or otherwise reproduce, the exact language to which
the individuals consented.

The individuals consented to the collection and use of their
data through Amazon’s terms of service, which users agree
to when they post reviews and ratings on the platform. These
terms specify that user-generated content is publicly acces-
sible and can be used for research and other purposes.

• If consent was obtained, were the consenting individu-
als provided with a mechanism to revoke their consent
in the future or for certain uses? If so, please provide
a description, as well as a link or other access point to the
mechanism (if appropriate).
Users can revoke their consent by deleting their reviews or
closing their accounts on Amazon, which removes their data
from the platform. More details on how users can manage
their data are provided in Amazon’s privacy policy.

• Has an analysis of the potential impact of the dataset
and its use on data subjects (e.g., a data protection im-
pact analysis) been conducted? If so, please provide a
description of this analysis, including the outcomes, as well
as a link or other access point to any supporting documenta-
tion.
An explicit data protection impact analysis was not con-
ducted as part of this research. However, all data used are
publicly available and do not contain private or sensitive
information, minimizing potential negative impacts on data
subjects. The research complies with standard ethical guide-
lines for using publicly accessible data.

A.7.4 Preprocessing/cleaning/labeling.

• Was any preprocessing/cleaning/labeling of the data
done (e.g., discretization or bucketing, tokenization,
part-of-speech tagging, SIFT feature extraction, removal
of instances, processing of missing values)? If so, please
provide a description. If not, you may skip the remaining
questions in this section.
Yes, we handled missing values by either imputing or dis-
carding incomplete instances. Additionally, image captions
were generated using LVLMs to provide visual context for
items with images.

• Was the “raw” data saved in addition to the prepro-
cessed/cleaned/labeled data (e.g., to support unantic-
ipated future uses)? If so, please provide a link or other
access point to the “raw” data.
No.

• Is the software that was used to preprocess/clean/label
the data available? If so, please provide a link or other access
point.
No specific software was used; instead, custom scripts writ-
ten in Python were utilized to interact with APIs from Ope-
nAI and Anthropic.

A.7.5 Uses.

• Has the dataset been used for any tasks already? If so,
please provide a description.
Yes, the original Amazon Review dataset has been widely
used for various recommendation tasks, such as sequential
recommendation, rating prediction, explainable recommen-
dation, and more. Our enhanced version of the dataset is also
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suitable for these tasks, providing additional visual context
through image captions.

• What (other) tasks could the dataset be used for?
In addition to the multimodal recommendation tasks dis-
cussed in this paper, the dataset can be used for rating pre-
diction, explainable recommendation, review summarization,
cross-modal retrieval, and other related tasks.

• Is there anything about the composition of the dataset
or the way it was collected and preprocessed/cleaned/
labeled that might impact future uses? For example,
is there anything that a dataset consumer might need to
know to avoid uses that could result in unfair treatment of
individuals or groups (e.g., stereotyping, quality of service
issues) or other risks or harms (e.g., legal risks, financial
harms)? If so, please provide a description. Is there anything
a dataset consumer could do to mitigate these risks or harms?
No.

• Are there tasks for which the dataset should not be
used? If so, please provide a description.
There are no specific tasks for which the dataset should not
be used. However, users should ensure that the application
of the dataset aligns with ethical guidelines and data usage
policies.

A.7.6 Distribution.

• Will the dataset be distributed to third parties outside
of the entity (e.g., company, institution, organization)
on behalf of which the dataset was created? If so, please
provide a description.
Yes, the dataset will be distributed to third parties outside of
the entity.

• How will the dataset will be distributed (e.g., tarball
on website, API, GitHub)? Does the dataset have a digital
object identifier (DOI)?
The dataset will be distributed via GitHub upon acceptance.
It does not have a digital object identifier (DOI) at this time.

• Will the dataset be distributed under a copyright or
other intellectual property (IP) license, and/or under
applicable terms of use (ToU)? If so, please describe this
license and/or ToU, and provide a link or other access point
to, or otherwise reproduce, any relevant licensing terms or
ToU, as well as any fees associated with these restrictions.
The dataset will be distributed under the Apache License 2.0.

• Have any third parties imposed IP-based or other re-
strictions on the data associated with the instances? If
so, please describe these restrictions, and provide a link or
other access point to, or otherwise reproduce, any relevant
licensing terms, as well as any fees associated with these
restrictions.
No.

• Do any export controls or other regulatory restrictions
apply to the dataset or to individual instances? If so,
please describe these restrictions, and provide a link or other
access point to, or otherwise reproduce, any supporting doc-
umentation.

No.

A.7.7 Maintenance.

• Whowill be supporting/hosting/maintaining the dataset?
The first author of this paper, will be supporting, hosting,
and maintaining the dataset.

• Will the dataset be updated (e.g., to correct labeling
errors, add new instances, delete instances)? If so, please
describe how often, by whom, and how updates will be com-
municated to dataset consumers (e.g., mailing list, GitHub)?
No, the dataset will not be updated regularly. If updates are
planned in the future, the reasons will be elaborated on our
GitHub repository.

• If the dataset relates to people, are there applicable
limits on the retention of the data associated with the
instances (e.g., were the individuals in question told
that their data would be retained for a fixed period of
time and then deleted)? If so, please describe these limits
and explain how they will be enforced.
Not applicable, as the dataset does not contain data that
directly relates to identifiable individuals.

• Will older versions of the dataset continue to be sup-
ported/hosted/maintained? If so, please describe how. If
not, please describe how its obsolescence will be communi-
cated to dataset consumers.
Yes, older versions of the dataset will continue to be sup-
ported, hosted, and maintained. If updates are made, the
old version will be maintained, and the new version will be
released with an updated version number, such as Amazon
Review Plus 2.0.

• If others want to extend/augment/build on/contribute
to the dataset, is there a mechanism for them to do so?
If so, please provide a description. Will these contributions
be validated/verified? If so, please describe how. If not, why
not? Is there a process for communicating/distributing these
contributions to dataset consumers? If so, please provide a
description.
Yes, if others want to contribute to the dataset, they can
submit a pull request or contact us via email. Contributions
will be validated and verified by the maintainers before be-
ing merged into the main dataset. This process ensures the
quality and integrity of the dataset, and updates will be com-
municated through the GitHub repository.

A.8 Accessibility
(1) Links to access the dataset and its metadata will be made

available upon acceptance.
(2) The data is saved in a JSON format, with an example provided

in the README file.
(3) The dataset will be maintained on an official GitHub account

by the authors.
(4) The dataset will be released under the Apache License 2.0.

A.9 Data Usage
The authors bear all responsibility in case of violation of rights.
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